

.

*FM 5-34

FIELD MANUAL)

No. 5-34

HEADQUARTERS DEPARTMENT OF THE ARMY Washington, D.C., 30 December 1965

ENGINEER FIELD DATA

,

• -

			Parographs	Page
CHAPTER	1.	INTRODUCTION		
Section	١.	Purpose and scope	1-2	1
	١١.	References	3-4	i
CHAPTER	2.	EXPLOSIVES AND DEMOLITIONS		-
Section	١.	General information	5-8	2
	11.	Calculation of charges	9-14	9
	111.	Destruction of obstacles	15-18	26
	IV.	Constructive uses of explasives	19-23	32
CHAPTER	3.	LAND MINE WARFARE		
Section	1.	Generol doto	24-27	44
	11.	Minefield installation	28-33	45
	111.	Reports and records	34-35	77
	IV.	Enemy minefields	36-37	81
	۷.		38-40	82
CHAPTER	4.	FIELD FORTIFICATIONS		
Section	١.	Generol doto	41-42	88
	- 11.	Emplacements	43-46	90
	111.	Wire obstocles	47-57	114
CHAPTER	5.	MARKING OF BRIDGES AND		
		VEHICLES .	58-60	123
	6.	FLOATING EQUIPAGE		
Section	I .	Bridges	61-68	128
	11.	Rofts, fixed span ossemblies, and		
		engineer boots .	69-79	141
CHAPTER	7.	FIXED BRIDGES		
Section	١.	Timber trestle bridge	80-82	154
	11.	Ponel bridge, bailey type, M2	83-85	175
	111.	Mosonry orch and reinforced con-		
		crete bridges	86-87	186
ł		Miscelloneous bridging	88-93	194
CHAPTER	8.		94-106	200
}	9.	MILITARY ROAD CONSTRUCTION.	107-118	215 [.]
This r	nonue	ol supersedes FM 5-34, 27 June 1962.		

i

		Paragraphs	Page
10.	ARMY AIRFIELDS AND HELIPORTS.	119-124	240
11.	RECONNAISSANCE	125-127	249
12.	RIGGING	128-142	276
13.	EQUIPMENT PRODUCTION	143-150	298
14.	FIELD SANITATION	151-153	313
15.	CHEMICAL, BIOLOGICAL, AND		
	RADIOLOGICAL DATA	154-159	319
16.	COMMUNICATIONS	160-165	320
	ENGINEERING DATA	166-189	332
APPENDIX I.	REFERENCES		410
И.	DIMENSIONS OF VEHICLES		413
III.	FOREIGN CONVERSION FACTORS		419
INDEX .			423

.

.

•

٠

,

CHAPTER 1 INTRODUCTION

Section I. Purpose and Scope

1. PURPOSE

This manual provides o convenient packet reference for afficers ond noncammissioned afficers at the plataan level. The continuing requirement of readily accessible field dota, when librory focilities ore not avoilable, will be fulfilled to a greot extent by this monual.

2. SCOPE

o. Content. This monuol contoins candensed dota on a wide variety of subjects pertinent to the field duties of engineer officers ond noncommissioned officers. Information is presented in tables, diagrams, formulos, written motter, and illustrations.

b. Application. The information in this manual is applicable to both nuclear and nannuclear warfare.

c. Camments. Users af this monuol are encouroged to submit camments ar recammendations for chonges to improve this monuol. Comments should be keyed to the specific poge, poragraph, and line of text in which the change is recommended. Reasans shauld be provided for eoch comment to insure understanding and praper evoluotion. Comments should be forworded directly to the Cammondant, U.S. Army Engineer Schaal, Fort Belvair, Virginio, 22060.

Section II. References

3. MANUALS

Pertinent monuols and ather military publicotions ore listed in oppendix I.

4. STANDARD AGREEMENTS

Infarmation in this manuol reflects, where apprapriate, North Atlontic Treoty Orgonizatian (NATO) agreements in the farm of standord ogreements.

CHAPTER 2 EXPLOSIVES AND DEMOLITIONS

Section 1. Generol Information

5. CHARACTERISTICS OF EXPLOSIVES AND SAFETY

See table 1 for the principal types of U.S. explosives commanly used for military purposes.

Note. Safety regulations will be abserved in all situations to the fullest extent permitted by time, by materials available, and by requirements of the mission.

a. Always hondle explosives carefully.

b. Responsibility for the preparotian, placement, or firing of chorges is never to be divided; ane person should be responsible ta supervise oll phoses of a demolitian mission.

c. See table 2 for minimum sofe distances.

d. For further infarmotion, see AR 385-63.

6. FIRING SYSTEMS

Firing systems for explasives are illustrated in figure 1. A nonelectric detanating assembly is shown in figure 2.

	_			•	•			
Name	Principal use	Smollest cop required for detonotian	Relative effective- ness as external chorge	Velacity of detona- tian, fps	Value as crotering chorge	Intensity of poison- ous fumes	Woter resist- ance	Pockoging
TNT			1.00	21,000	Gaod	Oangerous	Excel- lent	1 lb, SO ta box
Tetrytol, M1, M2	Main chorge, booster chorge; cutting and	Special blosting	1.20	23,000	Foir '	Dangerous	Excel- lent	2½ lb .blocks wooden box
Composition C3	breoching chorge, gen- erol and mili- tary use in	cop, elec- tric or non- electric	1.34	· · 26,000	Excellent	Oongerous	Good .	16 21/4-lb blocks in waoden box
Compasitian (4	forword oreas		.1.34	. • 26,000	Excellent	Slight	Excel- lent	24 2½-lb blocks in ≓wooden box
Ammonium nitrote	Cratering ond ditching	Speciol blasting cop, electric or nonelectric	0.42	11,000	Excellent	Dongerous	Poor	40-1b chorge in metol can
MI18 charge demolition	(See C-4)	(See C-4)	1.34	23,000	Poor	Slight	Excel- lent	4 ea, ½ lb sheets/ container
Ailitory dynamite M1	Quorrying st <i>umping-</i> -ditching	(See C-4)	^{~~} 0.92	20,000	Gaod	Dangerous	6 00d	1/2-fb 100 to box

Table I: Characteristics of Principal U.S. Explosives

ŝ

Table 1. -- Continued

.

Name	•	Principal use	Smallest cap required far delanatian	Relative effective- ness as external charge	Velacity af detana- tian, fps	Value as cratering charge	Intensity af paisan- aus fumes	Water resist- ance	Pack	aging
Straight dynamite (Commercial)	40% 50% 60%	Land clear-		0.65 0.79 0.83	11,600 15,000 18,200	Gaod	Dangeraus	Paor Gaod Excel- Ient	102 103 106	Sticks per 50 15 bax
Ammonia dynamite (Cammercial)	40% 50% 60%	ing, cratering, quarrying, and general use in rear areas, such	Na. 6 cam- mercial cap, electric ar nanelectric	0.41 0.46 0.53	10,200 11,000 12,700	Excellent	Dangeraus	Good Good Gaod	110 110 110	Stick per SO II bax
Gelatin dynamite	40% 50% 60%	as ditching and stumping.		0.42 0.47 0.76	8,000 9,000 16,000	Goad Good Gaad	Slight	Good Very Good Very Gaod	130 120 110	Stick per SO 11 Bax
PETN		Detanating cord	Special blasting cap, electric ar nanelectric	1.00	21,000	NA	Slight	Goad		
		Blasting cap	NA							
Tetryl		Baoster charge	Special blasting cap, electric ar nanelectric	1.25	23,400	NA	Dangeraus	Excel- lent		

Table 1.—Continued

Name	Principal Use	Smallest Cap- required far detonotion	Relative effective- ness as ⁻ external charge	Velacity af detana- tion, fps	Value as cratering chorge	Intensity af poison- aus fumes		Pock aging	
Campasitian B	Banga lare tarpeda	· Special blasting cop,	1.35	25,000	Gaod	Dangeraus	Excel- lent	Bułk	
Amatal 80/20	-do-	electric ar nanelectric	1.17	16,000	Excellent	Gangerous	Paar		
Black Pawder	Time blasting fuze	NA	0.55	1310 Max. Depends on Confinement		Oangerous	Paor	Bulk	
Nitrastarch	- Substitute for TNT	Special blasting cap, electric or nanelectric	0.80	15,000	Gaod	Oongeraus	Satis- factory	1-16 blacks	

.

ŝ

Pounds	Safe	Pounds	Sofe	Pounds	Sofe
of ex-	distance	of ex-	distonce	of ex-	distonce
plosive	in feet	plosive	in feet	plosive	in feet
1-27 28 30 32 34 36 38 40 42 44	900 910 930 951 965 990 1000 1020 1030 1050	46 48 50 55 60 65 70 75 80 85	1065 1080 1104 1141 1170 1200 1225 1260 1290 1310	90 95 100 125 150 200 300 400 500	1344 1365 1400 1500 1600 1750 2000 2200 2400

Table 2. Minimum Safe Distance for Personnel in the Open

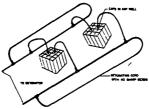
NOTE. MINIMUM distance for personnel in a missile-proof shelter is 300 feet. For charges over 500 lbs, use

Distonce = 300 ³ / Pounds of explosives

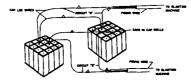
7. RELATIVE EFFECTIVENESS FACTOR

a. The formulas given in paragraphs 9 through 14 give the weight of explosive required for a demolition task (P), in pounds of TNT.

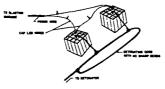
b. For external charges only, where a type of explosive other than TNT is used, the correct weight of explosive is obtained by dividing P by the relative effectiveness factor for the explosive used. See table 1, column 4.


c. Example. For a steel cutting charge, P is found to be 21 lbs of TNT. Composition C-4 is to be used. Therefore, the correct weight of C-4 required is $21 \div 1.34 = 15.7$ lbs of C-4. Use 16 lbs of C-4.

d. This adjustment is not used for internal charges or rules of thumb.


e. For further details see FM 5-25.

8. ROUNDING-OFF RULE


a. When using explosives alwoys ottempt to use the omount calculated. However, at times it may be difficult to use the exact omount calculated due to the size of the explosive pockage. Use the amount

NON ELECTRIC QUAL FIRMO SYSTEM

ELECTRIC QUAL FORMO SYSTEM

COMBINATION DUAL FIRING SYSTEM

Figure 1. Firing systems for explosives.

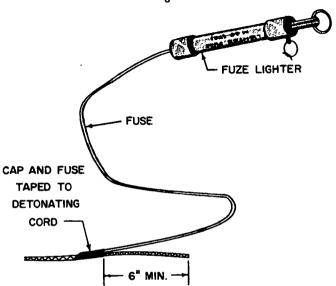


Figure 2. Nonelectric detanating ossembly.

of explosive os close to the calculoted amount os possible, but never use less thon the colculoted omount. Some explosives like C-4 ond M118 con be cut to the desired omount, while with other types the ability to size explosives is limited.

b. For chorges colculated by formula, use the following round-off steps:

 Colculate ane (1) charge for TNT using a demalitian farmula to at least two decimals.

(2) Use the relative effectiveness factor, if required.

(3) Round aff answer for one chorge to next package size or pound.

(4) Multiply onswer for one chorge by the number of chorges to obtain the total explasives required.

9. STEEL CUTTING CHARGES

a. Farmula for Structural Steel Sectians. This is the type of steel used in buildings, bridges, and after steel structures. The fallowing farmula is applicable to this steel (such as 1-beams, girders, and plates) except slender bars af 2-inch diameter ar less:

 $P = \frac{1}{2} A$ where P = paunds af TNT required and

A = crass sectional area, in square inches, af the steel member to be cut.

b. Farmula far Other Steel Sectians. The fallawing farmula is recammended far use with all high-carban steel, allay steel, armar plate, strang fargings, machine parts, cables, chains, and high-strength taals. It is also recammended far structural steel rads and bars af 2-inch diameter ar less:

 $P = D^2$ where P = pounds af TNT and

D=diameter, in inches, af sectian ta be cut, ar the smallest crass sectian dimensian.

c. Railraad Rails. The size of a railraad rail is expressed by the weight of 1 yard of rail: an 80-paund rail weighs 80 paunds per yard. Ta cut this size rail, ½ paund of TNT is set against its web. Far a heavier rail, use 1 paund of TNT. (As a rule of thumb, a rail aver 5 inches high weighs mare than 80 paunds per yard.)

d. Example:

 Calculate the amount of TNT required to cut the steel wideflange section (fig. 3).

Calculation: $P = \frac{3}{6} A$ (See a abave)

Area in flanges $= 2 \times \frac{1}{2}$ in. $\times 5$ in. = 5 sq. in. Area in web $= \frac{1}{26}$ in. $\times 11$ in. $= 4\frac{1}{6}$ sq. in. Tatal area $= 9\frac{1}{6}$ sq. in.

 $P = \frac{3}{8} \times 9\frac{1}{8} = 3.42$, therefore, use 4 lbs. TNT

(2) Plastic explasive is best suited far cutting steel. Haw much campasitian C-4 explasive is required to cut the wide-flange section shawn in figure 3? Since the amount of TNT required is 3.42 pounds and campositian C-4 has a relative effectiveness factor of 1.34 (calumn)

4 af table 1), the amount of
$$C-4 = \frac{3.42}{1.34} = 2.55$$
 paunds. Use 3 paunds

af C-4.

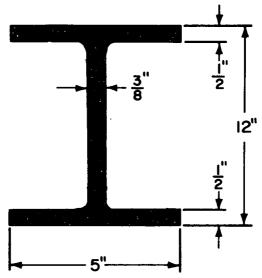


Figure 3. Wide flonge section.

e. Exomple. How much TNT is required to cut the steel choin in figure 4?

Colculation: $P = D^2$ P = 1 in. $\times 1$ in. P = 1 lb of TNT

Use 1 pound of TNT ot A ond 1 pound ot B to destroy the choin link.

1

f. Toble. See toble 3 for amount of TNT required to cut different rectongular steel sections.

10. TIMBER-CUTTING CHARGES

 Requirements. Different types of timber in various localities require vorying amounts of explosive to cut them. Test shots should be mode to determine the specific amount of explosive required for a specific type of timber.

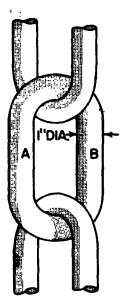


Figure 4. Steel chain.

Thickness					P =		nds of Structu		el				
of Section in Inches					Wi	dth of	Section	in Inc	hes				
	2	3	4	5	6	8	10	12	14	16	18	20	24
1/4	.2	.3	.4	.5	.6	.8	1.0	1.2	1.3	1.5	1.7	1.9	2.3
% % % % 34 %e	.3	.5	.6	.7	.9	1.2	1.4	1.7	2.0	2.3	2.6	2.8	3.4
1/2	.4	6.	.8	1.0	1.2	1.5	1.9	2.3	2.7	3.0	3.4	3.8	4.5
%	.5	.7	1.0	1.2	1.4	1.9	2.4	2.9	3.3	3.8	4.3	4.7	5.7
34	.6	.9	1.2	1.4	1.7	2.3	2.8	3.4	4.0	4.5	5.1	5.7	6.8
%e	.7	1.0	1.4	1.7	2.0	2.7	3.3	4.0	4.6	5.3	6.0	6.6	7.9
1	.8	1.2	1.5	1.9	2.3	3.0	3.8	4.5	5.3	6.0	6.8	7.5	9.0

-

Table 3. Cutting Charges For Rectangular Steel Section

Ta use table:

- 1. Measure rectangular sections of member seporately.
- 2. Using toble, find charge far each section.

3. Add charges for sectians ta find tatal charge.

- 4. Never use less than calculated charge.
- 5. If dimension is nat in the table, use next higher dimension.

12

b. Far Untamped External Charges. Ta cut trees, piles, pasts, beams, ar ather timber, the fallawing farmula gives a test shat.

$$P = \frac{D^2}{40}$$
 where P = paunds af TNT required and

D=diameter af timber in inches

Far ather explasives, adjustments for P are made accarding to paragraph 7.

c. Far Tamped Internal Charges. The fallowing farmula gives a test shat:

$$P = \frac{D^2}{250} \quad \mbox{where } p = paunds \mbox{ af any type explasive and} \\ D = diameter \mbox{ ar least crass sectional dimension in} \\ inches \mbox{ af dressed timber.}$$

d. Table. Use table 4 as a guide far bath internal and external timber cutting test charges.

e. Far Cutting Trees to Create an Obstacle. To cut trees and leave them attached to their stumps, the following formula gives a test shot.

$$P = \frac{D^2}{50}$$
 where P = paunds af TNT needed far external charges and

D=diameter af timber in inches

Far other explasives, adjustments are made according to paragraph 7. f. Placement. See figure 5 far placement of charges.

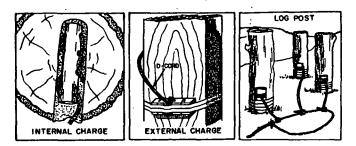


Figure 5. Placement of charges.

			Least dimension of timber in inches								
Type of Charge	Explosive	6	8	10	12	15	18	21	24	30	36
9-					Po	ounds o	f explo	sive		•	
Internal	Any	1/2	1/2	1/2	1	1	11/2	2	21/2	4	6
External	TNT	1	2	21/2	4	6	81/2	111/2	141/2	221/2	321/2
Abatis External	TNT	1	11/2	2	3	41/2	61/2	9	111/2	18	26

Table 4. Timber Cutting Test Shot Chorges

11. PRESSURE CHARGES

a. Use. Pressure charges ore effective ogainst simple span, reinforced concrete T-beam bridges.

b. For Tamped Pressure Charges. Use the following formulo:

P=3H²T where P = pounds of TNT required for each stringer

H=height of stringer (including thickness of roadwoy) in feet, ond

T=thickness of stringer in feet.

If H and T are not whole numbers, round them off to the next higher quarter-foot dimension. Neither is ever considered to be less than 1 in the formula. A minimum of 10 inches of tomping surrounding the chorge is required. For other explosives, odjustments are made accarding to paragraph 7.

c. For Untamped Pressure Charges. Increase the calculated value of P by one-third in the formula, (b obove), if the pressure chorge is not tamped.

d. Example. How much TNT is required to destroy the bridge spon in figure 6? The omount is colculated in figure 6.

e. Continuous Bridge Spans. For concrete stringer bridges of continuaus spons, charges are calculated by the breaching formula (para 12b). Charges should be so placed and colculated to insure that the breaching radius or radii will cause a complete severance of the cross concrete section. The steel probably will not be cut by the explosion.

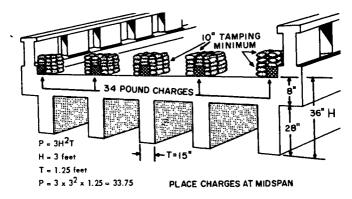


Figure 6. Colculation and plocement of pressure chorges.

f. Toble. Use toble 5 for colculation of pressure chorges far simple spon reinfarced cancrete T-beams.

12. BREACHING CHARGES

o. Use. Breaching charges have their most impartant use in the destruction of bridge piers, bridge obutments, and field fortifications of a permanent type, or in breaching walls and blowing holes in concrete slabs or roadways.

b. Formula. $P = R^3 KC$

where P = pounds of TNT required

- R=breaching radius in feet, to neorest highest ½ foot increment
- K = moterial foctar (toble 6) which indicates strength ond hordness of materiol to be demolished. (When it is not known whether or not concrete is reinfarced, it is assumed ta be reinforced.)
- C = tamping foctor (fig. 7).

NOTE. To breach walls I foot thick and under, increase the total calculated charge by 50 percent. Add 10 percent for charges under 50 pounds. For external charges, use at least 5 pounds for reinforced concrete and at least 3 pounds for dense concrete.

785-094 O-66--2

		Pour	ds of TI	NT for E	och Be	am (Tom	pod Cha	orges)				
Height of Beam in Feet		Thickness of Beam in Feet										
	1	11/4	115	11%	2	2¼	215	2¾	3			
	12 in.	15 in.	18 in.	21 in.	24 in.	27 in.	30 in.	33 in.	36 in.			
1 (12 in.)	3											
1¼ (15 in.)	5	6										
1½ (18 in.)	7	9	11									
1¾ (21 in.)	10	12	14	16			1					
2 (24 in.)	12	15	18	21	24							
2¼ (27 in.)	16	19	23	27	31	35	1					
2½ (30 in.)	19	24	29	33	38	43	47					
2¼ (33 in.)	23	29	34	40	46	51	57	63				
3 (36 in.)	27	34	41	48	54	61	68	75	81			
3¼ (39 in.)	32	40	48	56	64	72	80	88	95			
3½ (42 in.)	37	46	56	65	74	83	92	101	111			
3¾ (45 in.)	43	53	64	74	85	95	106	116	127			
4 (48 in.)	48	60	72	84	96	108	120	132	144			
4¼ (51 in.)	55	68	82	95	109	122	136	149	163			
4½ (54 in.)	61	76	92	107	122	137	152	169	183			
4¾ (57 in.)	68	85	102	1 19	136	153	170	187	203			
5 (60 in.)	75	94	113	132	150	169	188	207	225			

Table 5. Tamped Pressure Charges-Increase by 1/3 if Untamped

c. Tobles. For reinforced cancrete breaching, see table 7. See toble 8 for the breaching of masonry items other than reinforced concrete.

d. Number of Chorges. To demolish a pier, slab, or wall, use this formula:

 $N = \frac{W}{2R}$ where N = number of chorges, W = width of pier, slob, ar woll, in feet, andR = breaching radius in feet.

Material	R (breaching radius)*	ĸ
Ordinary earth	All values	0.05
Poor masonry, shale, and hard- pan, good timber and earth construction	All values	0.23
Good masonry, ordinary concrete, rock	Less than 3 ft 3 ft to less than 5 ft 5 ft to less than 7 ft 7 ft or more	0.35 .28 .25 .23
Dense concrete, first-class masonry	Less than 3 ft 3 ft to less than 5 ft 5 ft to less than 7 ft 7 ft or more	0.45 .38 .33 .28
Reinforced concrete (for concrete only; will not cut reinforcing steel)	Less than 3 ft 3 ft to less than 5 ft 5 ft to less than 7 ft 7 ft or more	0.70 .55 .50 .43

 Table 6.
 Values of Material Factor K far Use in Calculating Breaching Charges

*Distance (in feet) from the explosive, within which all material is displaced or destroyed. For external charges, the thickness of the mass to be breached may be taken. For internal charges, take one-half of thickness of mass to be breached if charge is placed midway into mass. If holes are drilled less than halfway into mass, the breaching radius is the longer distance from center of drill hole to outside of moss, e.g., to breach 4-foot wall by internal charge placed 1 foot into mass; breaching radius is 3 feet.

NOTE: FOR WATER, IF THE BREACHING RADIUS IS GREATER THAN THE DEPTH OF WATER USE 2.5: IF EQUAL TO OR LESS USE 1.25

Figure 7. Values of tamping factor "C."

When the calculated value of N contoins a fraction less than $\frac{1}{2}$, the froction is disregorded; if $\frac{1}{2}$ or more, round off to next higher figure. Exception: in N volues between 1 and 2, fractions less than $\frac{1}{4}$ are disregorded; $\frac{1}{4}$ or more is rounded off to whole number of 2.

e. Exomples.

(1) Find the size and number of TNT charges required to breach a reinforced concrete wall that is 25 feet long and 4 feet thick. Use external charges placed at ground level and untamped.

Size of charges:

 $P = R^3 KC$, R = 4, K = .55, C = 4.5 $P = (4)^3 \times (.55) \times (4.5) = 158.4$ pounds, use 159 pounds of TNT

Number of chorges:

$$N = \frac{W}{2R} \quad W = 25, \quad R = 4,$$

$$N = \frac{25}{(2)(4)} = 3 \% \qquad Use \ 3 \text{ chorges.}$$

(2) A timber ond earth woll 6½ feet thick ond an explosive charge placed at the base of the woll without tamping. The conversion factor is 0.5 (table 8). If this wall were made of reinforced concrete, 618 pounds of TNT would be required to breach it (table 7). Multiply 618 pounds of TNT by 0.5 and the result is 309 pounds of TNT required to breach the woll.

f. Breaching Hord-Surfoce Pavements.

(1) A hord-surface povement is breached so that holes can be dug for crotering charges. Use a 1-pound charge of explosives for each 2 inches of povement thickness, with tomping twice as thick as the povement.

(2) Povement may be breached by charges placed in bareholes drilled or blasted through the povement. A shaped charge readily blasts a small diameter barehole through the povement and into the subgrade. Concrete should not be breached at an expansion joint because the concrete will then shotter on only one side of the joint.

g. Shaped Chorges. Table 9 shows the size of boreholes obtained by using the standard shaped charges.

		METH	OOS OF	PLACEME	NT	ANY		
THICKNESS		DISTANCE						
OF CONCRETE IN FEET				CHAI	VEEN RGES EET EXTER- NAL			
	ÉT-		En.	έ _{-τ} 20		7	8	9
COLUMN	1	2	3		5 6	· ·		¥
2	16	28	15	8	8 10		2	4
2 75	31	\$ 5	28	16		_	2%	5
3	41	67	38	21	21 41		3	<u> </u>
3 ½	59	107	\$5	33	33 59		3½	- 7-
4	88	159	<u> </u>	49	47 181		4	8
4 1/2	126	226	116	63			4%	9
5	157	282	144	79			5	11
5 1/2	208	37 5	192	104	104 208		5 %	12
6	270	48.6	249	135	135 270		<u> </u>	13
6 %	344	618	316	172	172	-	6½	14
7	369	664	340	185	183 454	_		
7½	454	817	41B	227	221 2		7 1/2	15
8	551	991	507	276	276	49	8	<u>''</u> -
NOTES: 1. 10% HAS BEEN ADDED TO THE TABLE FOR CHARGES LESS THAN SO LBS 2 FOR BEST RESULTS PLACE CHARGE IN SHAPE OF A SQUARE 3 FOR THICKNESS OF CONCRETE OF 4' OR LESS USE CHARGE THICKNESS OF 2" ONE BLOCK THICK , OVER 4' THICK USE CHARGE THICKNESS OF 4" ONE HAVERSACK OF TETRYTOL OR PLASTIC).								
TO USE	TABLE:							
2. DECID	E HOW Y	OU WILL	CONCRETE PLACE THE	CHARGE				

Table 7. Breaching Charges, Reinforced Concrete Only

2. DECIDE HOW YOU WILL PLACE THE CHARGE AGAINST THE CONCHETE. COMPARE YOUR METHOD OF PLACEMENT WITH THE DIAGRAMS AT THE TOP OF THE PAGE IF THERE IS ANY QUESTION AS TO WHICH COLUMN TO USE. ALWAYS USE THE COLUMN THAT WILL GIVE YOU THE GREATER AMOUNT OF TNT.

FOR OTHER TYPES OF CONSTRUCTION, SEE TABLE 8

Table 8. Breaching Charges far Material Other Than Reinfarced Cancrete*

	Canversian Factars Far Material Other Than Reinfarced Cancrete								
Earth	Ordinary Masanry, Hard- pan Shale, Ordinary Cancrete, Rack, Gaad Timber and Earth Canstructian	Dense Cancrete First Class Masanry							
0.1	0.5	0.7							

Ta use table:

1. Determine the type af material in the abject yau plan ta destray if in daubt, assume the material ta be af the stranger type — e.g. — Unless yau knaw differently, assume cancrete ta be reinfarced.

2. Using the abave table, determine the apprapriate canversian factor.

3. Using table 7, determine the amount of explosive that would be required if the abject were made of reinforced concrete.

4. Multiply the number of pounds of explasives (from table 7) by the conversion factor from the table above. Example:

A timber and earth wall 61/2 ft. thick and an explasive charge placed at the base of the wall without tamping. The conversion factor is 0.5 (see table above). If this wall were made of reinforced concrete, 618 lbs of TNT would be required to breach it (see table 7).

Multiply 618 lbs of TNT by 0.5 and the result is 309 lbs of TNT required to breach it.

* For reinforced concrete see toble 7.

Toble 9. Sizes of Borehales Prod	luced By Shaped Charges
----------------------------------	-------------------------

Materiol	Informatian needed		M3 (40-lb) shoped chorge	M2A3 (15-lb) shoped chorge
Re- inforced concrete	Moximum woll thickness which can be perforated		60 in	36 ín
	Depth of penetration in thick wolls		60 in	30 in
		Entrance	5 in	3½ in
	Diemeter	Average	31/2 in	2%/in
	of hole	Minimum	2½ in	2 in
		hole with second chorge ver first hole	84 in	45 in
Armor- plete	Perforoti	n	At leost 20 in	12 in
	Averoge diameter of hole		2½ in	1½ in
Permo. frost	Depth of hole with 50-in standoff		72 in	NA
	Depth of hole with 30-in stondoff		NA	72 in
	Depth of hole with 42-in standoff		NA	60 in
	Diometer of hole with overage (30 in) standoff		NA	6 to 1½ in
	Diameter	of hole with 50-in standoff	8 to 5	NA
	Diameter of hole with normal standeff		26-30 to 7 in	26-30 to 4 in
lce	Depth with overage (42 in) stondoff		12 ft	7 ft
	Diameter with everoge (42 in) stondeff		6	3½ in

13. CRATERING CHARGES

a. Requirements. Road craters, to be effective obstacles, must be too wide for spanning by track-loying vehicles and tao deep and steep-sided far any vehicle to pass through them. They must also be large enaugh to tie into natural or manmade abstacles at each end. Antitank and antipersannel mines are often placed at the site to hamper repair operations and thus increase the effectiveness of the crater. Road craters angled at about 45° to the roadway are more effective abstacles than craters blasted perpendicular to the roadway.

b. Deliberate Road Crater. See figure 8.

c. Hosty Rood Crater. Hasty road craters blasted with barehales less than 5 feet deep and loaded with less than 50-lb explasive charges

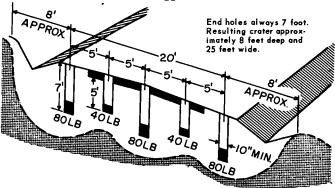


Figure 8. Placement af charges far deliberate raad crater.

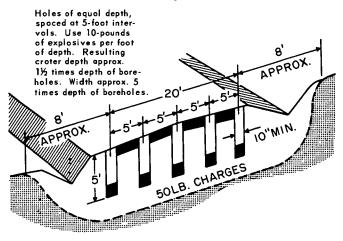
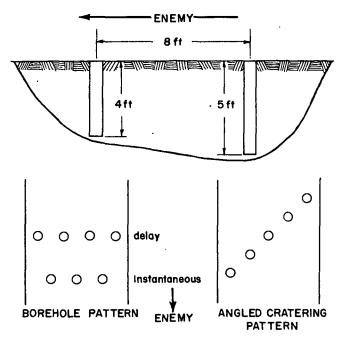



Figure 9. Placement of charges for hasty road crater.

22

are ineffective against madern tanks. Far placement and size af charges see figure 9.

d. Relieved Face Crater. Crater will be approximately 7 feet deep and 30 feet wide. Instantaneous delay caps must be used ta get desired delay detanatian. The greatest improvement over the other types of craters is the resulting trapezaidal shape. For replacement and size of charge, see figure 10.

e. Antitank Ditch Cratering. In open country, ontitank ditches are constructed to strengthen prepared defensive positions. As they are costly in time and effort, much is gained if the excavotion can be made by means of the cratering methods described above. To be effective, an antitank ditch must be wide enough and deep enough to stap an enemy tank. It may be improved by placing a log hurdle an the enemy side, by placing the spoils in the friendly side, and by digging the face in the friendly side vertical.

f. Rules of Thumb.

(1) To ensure against misfires, all ammonium nitrate cratering charges must have an additional primer, a ane-pound charge placed on tap af each can and incarporated inta a dual firing system (figs. 1 and 2).

(2) Rule of thumb for number af holes:

$$N = \frac{L - 11}{5}$$

Where L is the total length of the blawn crater.

14. BRIDGE ABUTMENT DEMOLITION

Plocing charges in the fill behind an abutment is economicol in explosives and conceols the chorges fram the enemy.

 Abutments 5 Feet Thick or Less and 20 Feet or Less in Height. See figure 11 for details.

b. Abutments More Than 5 Feet Thick and 20 Feet ar Less in Height. Place breaching charges in contact with rear face af abutment (fig. 12). Calculote the size and number of charges by the farmulo in figure 12. Charges are placed at a depth greater than or equal to R. The spocing between charges and number of charges are determined by the calculations explained in paragraph 12.

c. Abutments Over 20 Feet High. Place a combination of external breaching charges (along bottom of the river face of the abutment) and fill charges (behind the abutment) to destroy abutments more than 20 feet high. Fire them simultaneously. The fill charges may be calculated according to paragraph 12b, or placed as in figure 11, depending on the thickness of the abutment.

Beginning 5 feet in fram the side af the road, place 40-pound cratering charges in holes 5 feet deep, 5 feet an centers and 5 feet behind the river foce af the abutment.

Formula: N =
$$\frac{W}{5} = 1$$

where N = no. barehales W = width of abutment

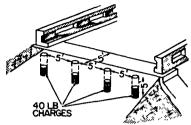


Figure 11. Charge placed in the fill behind a reinfarced cancrete abutment less than 5 feet thick and 20 feet ar less in height.

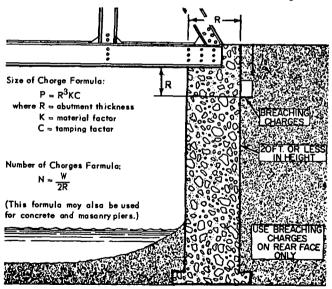


Figure 12. Charges in a fill behind a reinforced cancrete abutment mare than 5 feet thick and 20 feet ar less in height.

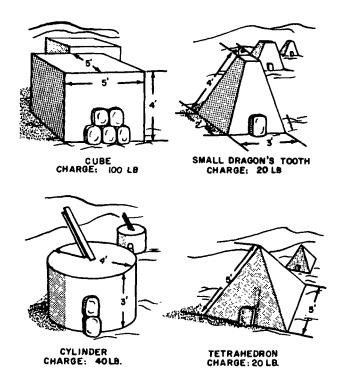
Section III. Destruction of Obstocles

15. CONCRETE OBSTACLES

o. Smoll Obstocles. Far smoll obstocles (100 ft³ or less), such as those found on beoches, use hond-ploced chorges. As shown in figure 13, use 1 pound of militory explosive, tetrytol or greoter, per cubic foot of reinforced cancrete.

 $_{\rm b}$. Lorge Obstacles. For lorge obstacles (greater than 100 ft 3), use breaching formula or bar or costle charge (fig. 14) accarding to the size of the charge.

16. STEEL AND LOG OBSTACLES


o. Plocement. The illustrations in figure 15 show several obstacles ond the placement and sizes af charges to destroy or cut them.

b. Chorges for Log Obstocles. Generally, the chorge should be ploced of a joint where the obstocle is weakest. Against log cribs, ploce 30 to 40 pounds of explosives in the center of the earth fill twothirds the depth of the crib and tamp thoroughly. Similar charges are placed on 8-foot centers for the full length of wooden posts. Log scoffolding (often under water) is destroyed by tying three 15-foot lengths of bongalare torpedo tagether and placing them at right angles to the line of scaffolding. This clears a lone 12 feet wide. Charges placed an obstocles driven into the ground as passible.

17. WALLS

a. Concrete Walls Not Bockfilled. On wolls up to 6 feet high and 6 feet thick, use 160 pounds of explosive per foot of thickness. For lorger wolls, and 80 pounds af explosive for each additional foot of height and thickness. Example: For a woll 8 feet thick and 10 feet high, $(6 \times 160) + (4 \times 80) + (2 \times 80) = 1,440$ pounds. The positions, amounts, and potterns of charges are shown in figure 14.

NOTE : SATCHEL CHARGES ARE USED TO DESTROY THESE OBSTACLES. IN COMPUTING THE NUMBER OF SATCHELS REQUIRED, ROUND UP TO THE NEXT FULL 20LB. SATCHEL.

L

Figure 13. Explosive packs needed to destroy typical small concrete abstacles.

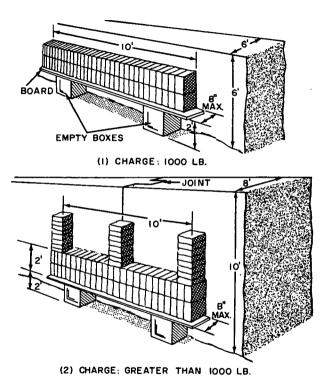


Figure 14. Placement of charges for a wall 6 feet thick and for a wall over 6 feet thick.

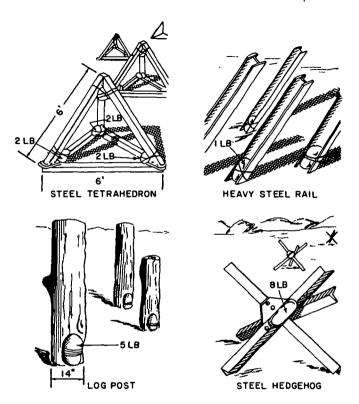


Figure 15. Plocement of chorges for destruction of steel and log obstacles.

b. Backfilled Wolls.

(1) Cancrete. Increase by 20 percent the charges specified for wolls nat bockfilled. On same wolls, where this may not be enough, use a second shot or cleor with dozers or hand labor.

(2) Lags. Ploce a 500-paund chorge 10 feet long an top of the woll 2 feet from the face (fig. 16).

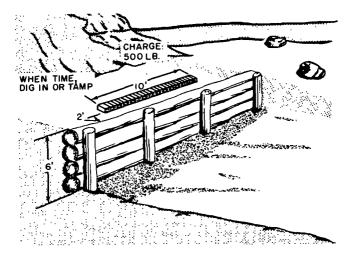


Figure 16. Breaching o bockfilled log woll.

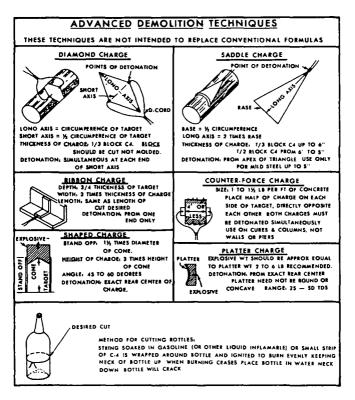


Figure 17. Advanced demolition techniques.

18. MINIMUM EXPLOSIVE CHARGES

The demolition techniques shown in figure 17 provide the desired results with a minimum of explosives. These techniques are not intended to replace conventional formulas. The diamond, soddle, and ribban charges are used an structural steel and similar materials. Use C-4 as the explosive in these charges and the improvised shope charge.

Section IV. Constructive Uses of Explosives

19. QUARRYING

a. Methods. Military quorries con be developed as either single or multiple benches. The method is determined by the drilling depth capability of the equipment available. Figure 18 shows o multiple bench quorry.

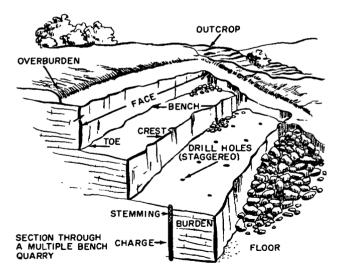


Figure 18. Multiple-bench quorry.

b. Spacing Barehales. There is a relationship between the burden, which is the distance from the raw of borehales to the face, measured ot the battam of the face (fig. 19), and the spacing af barehales in o row. This spacing also depends upan the type af borehales, of which there are twa—

(1) Vertical holes. The depth of vertical hales is limited by depth af rock, the length of drill, and drilling equipment. Spacing is equal to, or a little more than, the burden. When several rows are drilled in preparation far instantaneous blosting, the burden of the rear rows is 10 percent less than the burden of the frant row (fig. 19).

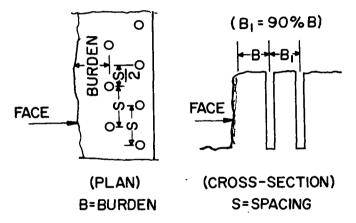


Figure 19. Arronging porallel rows of vertical borehales.

(2) Snokeholes. Drill at bose of quorry face and begin from 2 ta 4 feet above the flaar. Slape each hale downword of the some angle so that the end af the hale is level with the quorry flaar. Burden will equal ane-holf the height of face, with spacing between 8 and 10 feet (fig. 20). Snokehales are sprung by drilling to the desired depth, then firing a small charge of the bottom of the borehale ta form o chamber in which the lorger charge is placed. The omaunt of explasives ar initial ond successive springing must be determined by test.

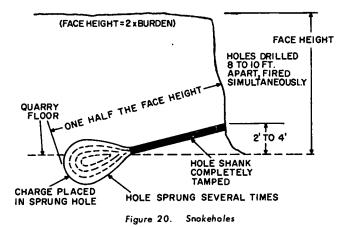
c. Amount of Explosives. An approximate amount of explosives per foot of borehole is shown in table 10 for vertical holes and in table 11 for snokeholes.

20. ROCK EXCAVATION

 Overburden. After the loyout has been decided upon, the work of removing the overburden should be started os soon as possible.

b. Blosting.

(1) Drill holes. Use drill holes to bring through cuts or sidehill cuts to grade with one shot by drilling ahead of power shovel. When the whole cut connot be blosted ot once, drill boreholes 100 to 150 feet ohead of the shovel and blost four or five rows at a time (fig. 21).


(2) Snakeholes. Use snokeholes to widen cuts (fig. 20). Drill them on 5-foot centers and wherever possible fire them simultaneously.

c. Explosive Chorge. Determine weight of explosive charge required per borehole by test shots. Table 10 gives the explosive capocity per foot of borehole of various sizes.

Toble 10. Recommended Trail Shots for Ve
--

Explosives per borehole (Ib)

Hard rock	4 3 2	6 5 3	12 9.5 6	18 14 9	23.5 19 12
Pattern dimension burden and spacing (in ft.)—					
Borehole diameter (in in.)	1.75	1.75	2	2	2

21. BLASTING BOULDERS

- o. Size of Chorge. See toble 12.
- b. Methods of Blosting. See figure 22 for details.

Bench height (ft)	Explosives per hole (lb)
5	5
10	20
15	40
20	75
25	115
30	170

Toble 11. Explosives Required in Snokeholes

NOTES

1. The omounts of explosives ore bosed on military dynamite in hard rock, with maximum hale spacing of 8 feet. Depth of hales equals ½ bench height.

2. For medium rock, multiply omount of explosive by 0.8.

- 3. For soft rock, multiply amount of explosive by 0.5.
- 4. Holes normally are sprung to accommodate charge.

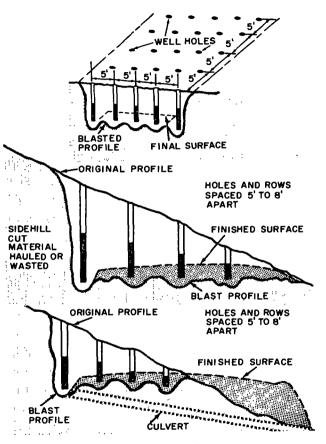


Figure 21. Benching.

SNAKEHOLING

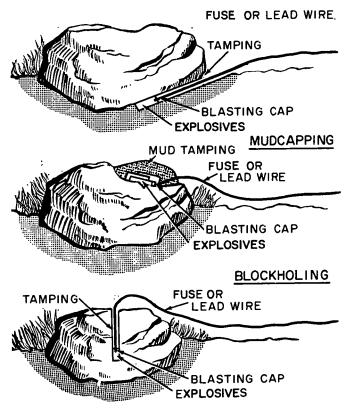


Figure 22. Methods of blasting boulders.

22. DITCHING

a. Conditions. Rough, open ditches 2½ to 12 feet deep and 4 to 40 feet wide can be blasted in most types of soil, except in gravel and sand. Trees, stumps, and large boulders are charged separately, but are fired simultaneously with the ditching charges.

b. Test Shats. Before beginning the ditching, run test shats to determine the proper depth, spocing, and weight of charges for desired results. Begin with hales 2 feet deep and 18 inches opart for small ditches ond increase in charges and depth as required (fig. 23 and table 13).

c. Alinement and Grade. Mark ditch centerlines by chalk or transit line, and by drilling holes along it.

	Lbs of TNT required				
Boulder diameter, ft	Blackholing	Snakeholing	Mudcopping		
11/2	1/8	35	1		
2	1/8	1/2	11/2		
3	14	`¾	2		
4	3/8	2	31⁄2		
5	1/2	3	6		

Table 12. Charges for Blasting Boulders

When a transit is used, the grade of the ditch can be occurately cantralled by checking the hole depth every 5 or 10 holes and at each change in grade. Drill holes in soft ground with sharp punch ar quick-

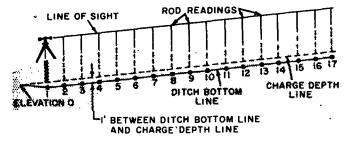


Figure 23. Charge hales set by transit line.

sond punch (fig. 24). Load ond tamp them immediately to prevent coveins and insure charge is at proper depth. Table 13 shows example af method to determine depth af hales.

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Chorge point	Ditch- bottom line elevotion, ft	Chorge- depth- line elevation, ft	Line-of- sight elevotion, ft	ROD reading, ft	Ground elevotion (4)-(5)=(6), ft	Depth of hole (6)-(3)=7, ft
1	0	1	9	5.0	4.0	3.0
5	1	2	10	4.8	5.2	3.2
9	2	3	11	6.7	4.3	1.3
13	3	4	12	7.0	5.0	1.0 ·
17	4	5	13	5.0	8.0	3.0

Table 13. Exomple Charge Points (See fig. 23)

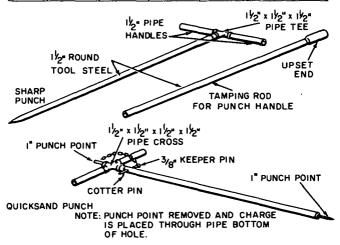


Figure 24. Punches used to place charges of proper depths in soft ground.

d. Detonation Methods.

(1) Propagatian methods. Prime the hole, ar hales, ot one end of the proposed ditch; concussion will set off the succeeding charges. Use straight dynamite. It works only in maist soils, particularly with the ground under several inches af water (fig. 25). If more than ane line of charges is used to obtain a wide ditch, each line is primed. Overcharge the prime hale 1 ar 2 pounds.

NOTE. The propagation method con only be used with 50% straight, ar greater, commercial dynamite.



Figure 25. Propagation method of detonation.

(2) Electrical method. Use ony high explasive in this method of ditching, and in any soil except sand regardless of moisture. Prime each charge with an electric cap. Blaw all charges simultaneously.

(3) Detonating card method. Use any high explasive with this method. This methad is effective in any soil except sand and gravel, regardless of the amount af maisture. Each charge is primed with detonating cord and connected to a ring main.

e. Laading Methods.

 The method of loading for a deep, narrow ditch is pictured in figure 26.

(2) The relief method of loading for shallow ditches is depicted in figure 27. Ditches 1 and 3 are blasted first ta relieve the charge in ditch 2.

(3) Figure 28 shows the posthole methad of loading far shallaw ditches in the mud.

(4) The cross sectian method of loading to clean and widen ditches is explained graphically in figure 29.

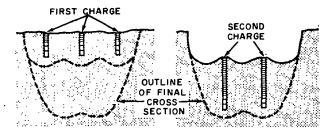


Figure 26. Method of looding o deep norrow ditch.

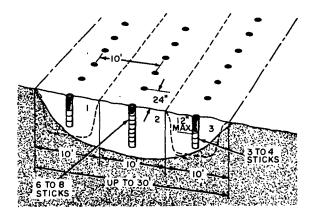


Figure 27. Relief method of looding for shollow ditches.

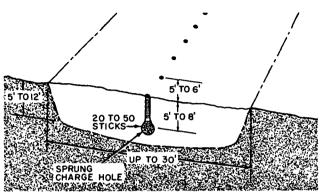


Figure 28. Post-hole method of loading for shallow ditches in mud.

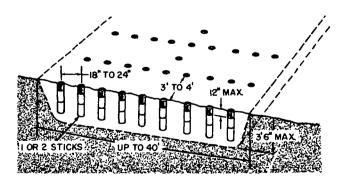


Figure 29. Cross section method of looding to clean and widen ditches.

23. BLASTING TREES AND STUMPS

o. Size of Charge Required. The size of the chorge required vories with the size, voriety, and oge af the tree or stump, ond with the soil conditions. The rule of thumb (fig. 30) shows how the size af chorge varies with the size and age af the tree, using militory dynomite. To remove stumps properly, test shots are required.

b. Drilling Holes for Chorge. In drilling hales for the chorge, follow illustrations in figure 30.

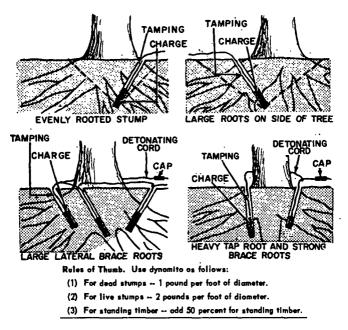


Figure 30. Stump blasting methods far various raat structures.

CHAPTER 3 LAND MINE WARFARE

Sectian I. General Data

24. MINEFIELDS

a. Types. Data an the various types of minefields is covered in table 14.

b. Siting. In the siting af minefields the fallowing factors must be cansidered:

(1) Overall plan of aperation.

(2) Nature of enemy threat (mechanized, infantry, etc.).

(3) Terrain.

(4) Lacatian of other obstacles.

(5) Likely avenues af enemy appraach.

(6) Passibility of later expansion of the field.

(7) Site shauld campel channeling af an attacking farce inta an area cavered by massed fires.

(8) On large scale, site in patterns sa that penetratian of the foremast field will be cantained by subsequent fields.

(9) Enemy capabilities far breaching, harassing, ar interfering with mine laying.

(10) Availability of mines and restrictions on use of certain types.

(11) Traaps and material available far mine laying, and their experience.

25. TYPES OF MINES

a. Live Service Mines.

(1) Antitank mines. Standard antitank (AT) mines are listed and described in table 15.

(2) Antipersannel mines. Standard antipersannel (APers) mines are listed in table 15.

b. Training Mines. Training mines are of two types:

(1) Practice. Practice mines (blue with white lettering) may resemble a specific madel af service mine ar a basic type af service mine. They praduce a report and a puff af smake ta simulate detanatian and are used an maneuvers and in training. (2) Inert. Inert mines (painted black with white letters ar O.D. with black letters) are service mines that have na explasive campanents added. They may be inert-laaded with sand, plaster, cancrete, and sa farth, and are used ta familiarize traaps with the live service mine.

26. PERSONNEL PROTECTION

Traaps laying taxic chemical mines shauld be pravided with field pratective masks, impermeable pratective clathing, pratective glaves and haad, chemical agent detector kits, decantaminating materials, protection and treatment set, and baats treated with vesicant gas-resistant leather dressing. This clathing and equipment is also required by traaps engaged in breaching and clearing an area that is uncantaminated but is suspected af cantaining taxic chemical mines.

27. CAMOUFLAGE

The principles written in FM 20-32 apply ta all phases of installing a minefield, whether by manual ar mechanical means. All traces of mine laying activity should be remaved, such as baxes, crates, and wrappings. If mines are laid an the surface, they should be lightly cavered with lacal natural materials ta blend in with the surraundings. Dan't averda this because taa much will give away each mine lacatian.

Section II. Minefield Installation

28. PLATOON ORGANIZATION

The arganizatian af the platoon as the basic unit far installing a standard pattern minefield is presented in table 16.

29. STANDARD PATTERN MINEFIELD

a. Pattern. The standard pattern is illustrated in figures 31 and 32 and statistical details are given in table 14.

b. Clusters. The mine cluster (fig. 33) is the basic unit of the standard pattern minefield. A cluster may contain from one to five mines. Two raws of clusters make up a minestrip, as shown in figure 32.

c. Numbering. The clusters in each strip are numbered fram the right end af the strip when facing the enemy (fig. 34). Cluster number 1 is the first cluster an the right when laaking dawn the strip.

Type of Field ¹	Required Autharity ²	Tactical Employment ³	Type of Mines ³	Marking Required
Protecti ve	Battalion ar higher. Not delegated lawer than commanders af campony size units.	 Temporary position pratection Forward and rear areas or in isolated locations Examples: outpast, warking parties, roadblack defense porties. Static installation protection Part of perimeter security of depots, airfields, static missile sites and ather installations normally located to rear of zone of contact. 	Antitank, antipersonnel, flares, flame mines of detectable type. Taxic chemical mines seldom emplayed. Booby traps and camplex fuzeing systems are not extensively used.	Marked and/ar guards posted to pratect friendly troops.
Defensive	Divisian and higher com- manders may not be delegated lawar than brigade and camparable commanders.	Defeat ar limit penetration into ar between positions of company, bortalian, ar brigade defense areas and ta strengthen the defenses in accardance with a tartical pien employed to delay and disorganize enemy attacks; ta disrupt, channelize and assist in the destruction af enemy mobility and to strengthen manned weapons and abstacle systems.	All types of mines, booby trapping devices and flares. Chemical mines are not to be used unless field to be included into a barrier system at least 5% of antitank mines. Booby trapped warning devices such as flares, noisematers, and smake streamers should he laid to warn of enemy breeching attempts.	As required to protect friendly troops. Narmally the standard marking fence w/markers is used.

Table 14. Cansalilated Minefield Data Sheet

See nates at end af table.

\$

.

Removal Required	Reports Required	Records Required	Oensity	Patterns	Remarks
Yes, removal required by laying unit unless releving unit commander specifically requests them to be left in place. Certificate of transfer sent to lewest commander having command over both units involved.	 Intention to lay. Initiatian of loying. Completion of loying. Report of change, if any. Forward all reports to div. hq. or equivalent hq. 	Standard form with at least minimum information. Exception: Urgency of toctical situation may sometimes preclude recording at time of loying. Forward to division.	One per meter of front by mine type. (Minimum requirements.)	Hand loid by the method best suited to the situation.	 Locate within small orms range of the defenders but beyond hand granade range of the enemy to defenders position. Normally laid on shart notice with mines laid from basic loads and local stocks.
No, if responsibility is transferred, cartificate will be completed as for a protective minefield.	Intention to lay. Initiation of laying. Gompletion of laying. Gompletion of laying. Progress (if lorge field). Report of change. Forward completion report to army hq. or comparable hq's. level.	Standard form with at least minimum information. A recard of change is required if field is attered. Forward to ormy hg's.	One A.T. and two Apers. per meter of front.	Standard, nonstandard patterns, and scattered mining is outhorized.	 Minimum depth—100 meters. Location coordinated w/division and corps fire support plans. Cover by artillery, machinegun and entitenk weapons end when possible by ell forms of fire support.

Table 14. --- Continued

47

Table	14-	Continued
labie	14	Continued

Type of Field ¹	Required Authority ²	_ Tactical Employment ³	Types of Mines ³	Marking Required
Barrier	Corps and higher commanders. May not be delegated lower than division or camparable commanders.	Employed to black enemy offack formation in selected areas, especially to the flanks and rear areas and to channel his opproach into selected bothe areas. Usually proplammed and integrated into field army, corps and division barrier plans. Employed to channelize, disrupt and delay enemy attack. To provide the defender to concentrate fire and reserves. Also used to direct the enemy attack which enables the defender to attack with blacking or counter attacking forces.	All types of mines, booby trapping devices, and flores may be used. Extensive use of complex fusing. Toxic chemical mines may be used if authorized. 20% of A.T. mines booby trapped.	As required to protect friendly troops and civilions. Normolly the standard marking fence with markers is used.
Nuisance	Army commander ar higher. May be delegated divisian ar comporable commanders.	To deloy, disorgonize ond lower morole, of advancing enemy; to hinder his use of an area or route. Particularly effective in reterograde movement, denial operations and during evacuation.	All types of A.T. ond A.P. mines, booby trops and dirty trick devices. If time permits oll A.T. mines should be booby trapped	Nane unless initiolly to protect friendly troop5.

See notes at end of table.

Table 14.—Continued

Removal Required	Reports Required	Records Required	Density	Patterns	Remarks
No	 Intertion to lay. Initiation of laying. Prograss of laying. Completion of laying. Change of field. Completion raport to army bq. 	Stondard form with at least minimum information. Forward to ormy hq. Record of change is required.	Three A.T., four fragmentation Apers, and eight Apers. blost mines per linear meter of frant.	Normally the cluster pattern will bo used.	 Minimum depth-300 meters. Cover by observation and plan made to bring down artillery and/or air attacks, and to move aut direct fire elements to provide fire cover at threatened points.
Ko	 Intention to lay. Initiation of laying. Progress (if large field). Completion of laying. Change of field Completion report to ormy hq. 	Standard form. Forward ta army bq.	None specified	None specified	 Abandoned fields become nuisance fields. May or may not be covered by firo. A booby trapped orea is considered o nuisance minefield.

Table 14.—Can	tinued
---------------	--------

Type of Roquired Fiold ¹ Autherity ²		Toctical Employment ^a	Types of Mines ^a	Morking Roquired		
Phony	The commonder who has the outharity to employ the type field simulated.	Used when lock of time, personnel, or material prevents laying a live mine field. Used to doceive the enemy into thinking area is mined. Used to axtond or supplement live fields. (Camouflage gaps in live fields.)	Phony mines only. Ground disturbed to simulate itve mines. Motai (cans, scrop, etc.) used to give foise signais on detector sets.			
tho enem opportunit	y minefiold that y loid or has an y to influence the of minos thorein)		All types of minos, special fuses and booky trops.	Markod ond/or guards posted to protact friandly "troops, by first uni discovering the field.		

30

•

¹ The basic clossification of minefields is in accordance with the tactical purpose of their ampioyment. Minefields are also categorized according to the type of enemy movement being obstructed. This includes the antipersonnel, antitation, antiomphibious and antioirborne minefields. Another category also describes the type of terroln in which the minefield is installed. It includes route mining, beach mining, river mining and field mining. Thus a barrior minefield may consist selely of or include segments of routo mining, field mining, river mining etc.; or antiomphibious minefields may be protective, defonsive, barrier or musence deponding on its tactical purpose.

Table 14.—Continued

Remaval Required	Reports Required	Records Required	Oensity	Patterns	Remorks
-	Same as for the typ	e field simulated			 Planning and coordination for loying and fire coverage must be dane with same care as for type field being simulated
No	Lacation (include apparent boundaries and known bypasses). Forward ta army hq . by unit lacating field.	Standard record farm with as much information as is available. Forward to army hq. by unit discovering field. Mark at top with "enemy mine field."			When additional information becomes available, another record form is prepared and forwarded through channels.

² Cammanders may limit the employment of mines by subordinate units by restraining as revaking authority to lay cartain types of mines or their use in specified areas.

³ Mine employment at each command echelon must be cansistent with the averall cancept of operation, probable future mission and all available resources.

KOTE. All minefield reports are classified "SECRET."

.

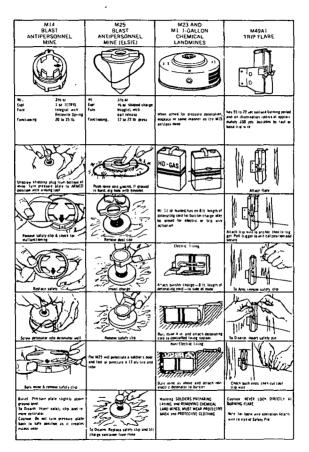


Table 15. Mine Data

Table 15.—Continued



Table 15. — Continued

Persannel	Officer	NCO	EM	Equipment
Supervisary persannel	1	1		Officer: Map, lensatic cam- pass, natebook, and minefield recard forms.
				NCO: Map, nateboak, and lensatic campass.
Siting party		1	3	Stakes ar pickets, sledges, hammers, tracing tape on reels, and nails ta peg tape.
Marking party		1	2	Barbed wire an reels, marking signs, lane signs, wire cutters, glaves, sledges, pickets.
Recarding party		1	2	Sketching equipment, lensatic campass, minefield recard farms, map, and metric tape.
1 st laying party		1	ó ta 8	Nateboak far squad leader, picks, shavels, and sandbags.
2d laying		1	6 ta 8	da
party 3d laying party		1	ó ta 8	da
Tatal	1	7	25 ta 31	

.

Table 16. Plataan Organizatian ta Install Minefield

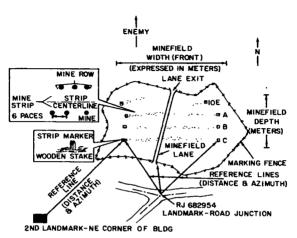
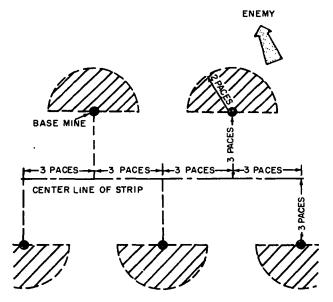


Figure 31. Standard minefield, fenced, marked, and referenced.


d. Tripwires. If tripwires are used, they are placed an selected antipersannel mines in the raw an the enemy side af the strip centerline with nat mare than ane trip-wire-activated mine ta a cluster, and na claser than every third cluster (fig. 35).

e. Arrangement. The strips are nat parallel, but their centerlines must be at least 18 paces apart at all paints. A centerline may have as many turning paints as desired (fig. 36).

30. INSTALLATION PROCEDURE

a. Limitatians. The pracedure described here may be varied accarding to the persannel, terrain, materials, and praximity af the enemy.

b. Laying Out the Field and Installing Mines. When the OIC arrives at the site with his siting and marking parties, the OIC praceeds ta lay the minefield as shawn in figures 37 through 42.

CLUSTERS ARE LAID ON BOTH SIDES OF STRIP &

THE CENTRAL MINE IN EACH CLUSTER MAY BE EITHER ANTITANK OR ANTIPERSONNEL FRAGMENTATION

ADDITIONAL MINES, ANTIPERSONNEL ONLY, ARE PLACED WITHIN EACH CLUSTER (SHADED AREA) IF DESIRED

Figure 32. Mine strip.



Figure 33. Mine clusters.

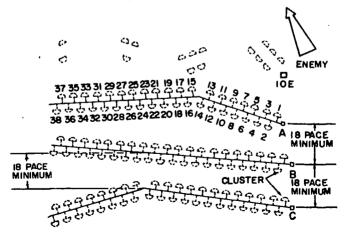


Figure 34. Method of numbering clusters in mine strips.

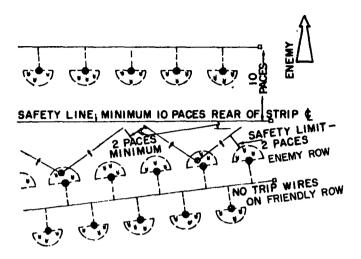


Figure 35. Use af trip-wires on front row af mine strip.

31. MINEFIELD MARKING

 Rear Areo Minefields. Completely fence o rear-area minefield with twa stronds of borbed wire of the time of loying (fig. 43). As figure 31 depicts, the fence daes nat follow the exoct boundary of the field, but is placed where it daes nat indicate the boundary. It is no closer than 20 paces from the neorest mine. Standord markers (fig. 44) are hung on the upper strand so that the words "MINES," "BOOBY TRAPS," ar, in the case of a taxic chemical minefield, the word "GAS" face away from the field. If a minefield has been contominated with taxic chemical agents (chemicol mines previously detanated ar ather means), the standord chemical cantaminatian morker (fig. 44) with ward "gos" facing away from minefield, is used olang with standard mine marker. Lanes ore morked os shawn in figure 45.

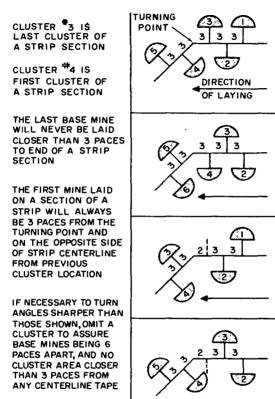


Figure 36. Turning points in a mine strip.

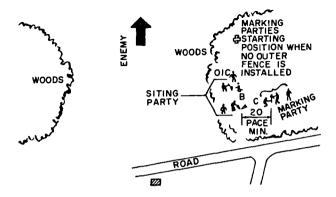


Figure 37. Initial steps in laying minefield.

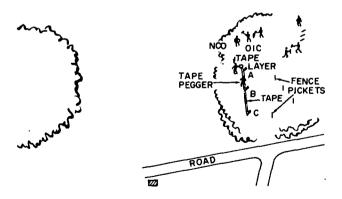


Figure 38. Establishing the right hand boundary stakes of a minefield.

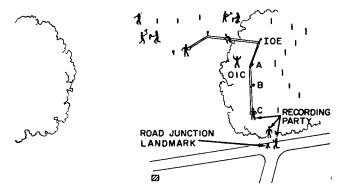


Figure 39. Laying aut the IOE strip.

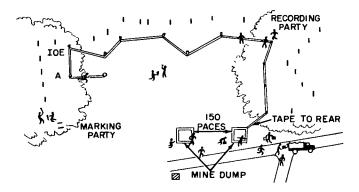


Figure 40. Laying aut strip A and establishing mine dumps.

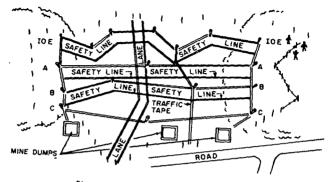


Figure 41. Minefield completely taped.

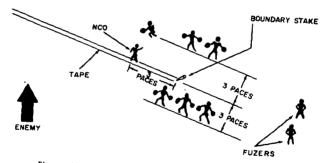


Figure 42. Laying mines on a sectian of a regular strip.

b. Forward Area Minefields. Mark forward area minefields the same as just described in a, with these exceptions:

 Minefields farward af the FEBA are sametimes fenced only an the friendly side, ar on the friendly side and flanks.

785-094 O-66-5 63

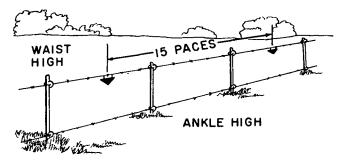
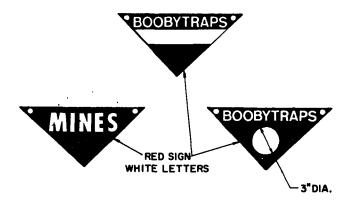
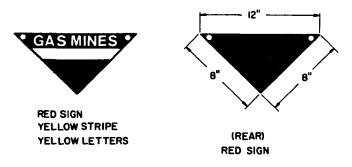
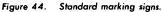


Figure 43. Standard minefield marking fence.


(2) Lanes in farward areas are marked incanspicuausly by placing wire, tape, ar clasely spaced abjects an the graund an each side af the lane, with the lane entrance identified by markers such as pickets marked with tape or piles af stanes, and the like. Do nat mark lane exits an enemy side. Fencing, marking, and camauflaging af minefields must be carefully maintained.


32. LANES AND GAPS


a. Lanes. A minefield lane is a safe path ar raute thraugh a minefield. Lanes thraugh friendly fields are 8 meters wide far ane-way vehicle traffic and 16 meters wide far two-way vehicle traffic.

b. Gops. A minefield gap is that partion of a minefield in which na mines have been laid. The purpase af a gap is ta enable a friendly farce ta pass through the field in a tactical farmatian. Gaps are af a specified width seldam less than 100 meters.

c. Siting and Lacatian. Site the lanes and gaps so that the unit protecting the field, and adjacent units, may carry aut aperatianal plans such as patralling, attacking, and caunterattacking. The tactical cammander gives the general lacatian of lanes and gaps to the cammander of the laying unit. Skillful siting of the lanes and gaps will prevent the enemy from easily determining their lacatian. Change the lacatian of lones and gaps frequently to prevent detection and subsequent ambush of friendly patrals. Tactical commanders must always be cansulted regarding future lacatians of lanes and gaps.

	Density		Strips		AP	AP	Mines Croted		Veh. w/Mines Croted		Man	Fencing Yords						
AT	APF	-AP8	Req.	AT	Frag	Blast	Wt. Tons	Cu. Ft.	ST Cgo	ST Dump	Hours	Wire	Post	Tons				
1	1	1	3	153	153	153	4.67	212.44	.41	1.57	115	1200	30	5.				
				164	164	164	4.98	226.85	.44	1.68	124	1 200	30	.32				
,	2 2			153	291	291	5.48	241.92	1.1	1.79	184	1.000						
		Z	3	164	312	312	5.86	258.74	1.17	1.92	197	1 200	30	.32				
1	4		8	8	8	153	581	1131	7.32	313.53	1.46	2.32	467	2000	50			
<u> </u>	• •				°	Ů	164	623	1213	7.84	335.8	1.57	2.49	500	2000	20	.54	
2	4	8	8	8	8	9	291	581	1131	10.7	475.99	2.16	3.53	501	2400	60	.6	
-	"					0	d	0	0	d		312	623	1213	11.46	508.96	2.3	3.77
3		4 8	•	9	428	581	1131	14.06	635.28	2.81	4.70	535	2400	60,	.6			
3	1		1	459	623	1213	15.06	680.95	3.0	5.04	574	2400	0 V.	. U.				

Table 17. Minefield Requirements for $\frac{100 \text{ Yards}}{100 \text{ Meters}}$ of Front

٠

NOTES.

1. Colculation of mines strips:

o. 3 x Density of AT mines = number of strips.

b. $3/5 \times Sum$ of desired density = number of strips.

Use a or b, whichever is greater.

2. Total mines by type include mines in strips plus IOE and 10% safety factor.

1. Calculation of mine requirements when frontage is expressed in yards or meters.

a. Mines required per pace of front = frontage (yards) + .80 equals number of mines for main field. Divide this number by 9 for clustws in the 10E. Add 10% of combined total for grand total of mines required for field.

b. Mines required per pace of front = frontage (meters) + .75 equais number of mines per pace for main field. Divide this number by 9 for clusters in the iOE. Add 10% of combined totals for grand total of mines required for field.

c. Cluster composition of iOE 1-2-2.

99

4. Mine weights based on the formation of the second seco	allowing (Reference TM 9-1345-200):	
M-15 AT Mine	M-16 AP Frag Mine	M-14 AP Biost Mine
1 mine per crate	4 mines per crute	90 mines per crute
49 ibs per crute	45 ibs per crate	44 ibs per crate
5. Mine cubage based on the fa	ilowing (Reference Fill 101-10):	
M-15 AT Mine	M-16 AP Frag Mine	M-14 AP Blast Mine
1.17 cuft per mine	77 cu ft per crote	1.7 cu ft per crate
crated	(4-16)	. (0-M14)
6. Vehicles required based on of	ff-road tannage capacity and/or cargo space.	
7. Vehicle payload capacity (Ref	ference FML 101-10):	
Туре	Off-Road (Tons)	Cargo Space (Cu Ft)
2½ ton dump	21/2	67.5
21/2 ton cargo	21/2	406
5 tan dump	5	135
5 ten corge	5	513
8. Time Requirements:		

Based on a laying rate of 4 mines per hour per man in an A/T and A/Pers minefield

9. Foncing Requirements:

Based on 2 strond fence with posts every 25 yords. For each additional 100 yords of froat add 250 yards wire and 6 posts. Far meter of front add 10% to table.

			Mine padkogii	ng data		Capacity of indicated ormy vehicles (Note: figures in porentheses indicate maximum lead w/in 100% overlead capability ond/or maximum volume of corgo space)							
Mine Nodel	Wr. (lbs.)	No. of	Wt. (Ibs)	Cro	te dimensi (ins)	ons	M-35 2½ ton cargo truck (Corgo spoce: 147 x 88 x 60 ins)						
£ type	per mine	minës, etc., për crate -	per crote	lgth.	Width	Hgt.	No of crotes	How corried	No. of tiers of crotes	Total Na. mines	Total wt. (tons)		
M-6 AT	20	o uncroted mines	-	13 ins d		2.25	-	flot	4	250 (264)	2.5 (2.64)		
		b 1, w/fuze & activotor	31	13.5	13.5	3.75	162 (322)	(on end) flat	1 (6)	162 (322)	2.51 (4.99)		
		c. 2, w/luzes & oclivotor	60	18.13	16	9.75	84 (160)	flot	2 (4)	168 (320)	2.52 (4.8)		
M-7 AV	5	o. 8, w/fuzes	56	19.25	11	8.25	90 (178)	flot	2 (4)	720 (1424)	2.52 (4.98)		
		b. 12, w/fuzes	71.5	23.5	11.75	95	70 (140)	flot	2 (4)	840 (1680)	2 5 (5)		
M-15 AT	31	o. uncroted mines	-	13 ins (13 diom.	5	-	fiol (flot, 11 an end)	3 — (3)	162 (209)	2.51 (3.24)		
		b 1, w/fuze & octivator	49	18	15.13	7.5	103 (200)	fio1	3 (5)	103 (200)	2.53 (4.9)		
M-19 AT	28	2, w/fuzes & octivotors	80	16.25	10.5	16	63 (125)	on end (on side)	1 (3)	126 (250)	2.52 (5)		

Table 18. Lond Mine Logistical Data Table

Table 18.—Continued

		(Note: figu	res in pa	rentheses	acity of ind Indicate m r maximum	iaximum la	ood w∕in	100% 0	verload	capability			
	M-105 Carga Space	11/2 ton tr 1: 133 x 87			M-47 2½ Tan Dump Truck (Cargo Spoce: 108 x 70 x 15 + ins) (Volume determines copocity)						M-51 5 1 Cargo Space: (Valume det		x 23 ins))
Na. af crates	How carried	Na. of tiers of crates	Total Na. mines	Tatal wt. (tans)	Na. af crates	Haw carried	No. af Tiers af crates	Tatal Na. mines	Tatal wt. (tans)	Na. af crotes	Haw carried	Na. of tiers af crates	Tatal Na. mines	Tatal wt. (tns)
-	flat (on edge)	3 (2)	150 (300)	1.5 (3)	-	an edge	1	165	1.65	-	flat	10	500	5
96 (195)	flot	2 (4)	96 (195)	1.48 (3 02)	140	an end	1	140	2.17	324	flat	6	324	5
50 (100)	flat	2 (4 —)	100 (200)	1.5 (3)	42	on end	1	84	1.26	60	flat (or an end)	2 (1)	120	1.8
56 (110)	flot	2 (3)	448 (880)	1.56 (3.08)	72	an end	1	576	2 01	105	on end	1	840	3
41 (85)	flat (on end)	2 (1)	492 (1020)	1 46 (3.02)	63	an end	1	756	2.25	78	an end	1	936	2.78
-	flat (an edge)	3 (2)	100 (200)	1.55 (3.1)	-	an end (or flat)	1 (3)	105	1.62	-	flat	5	270	4.1
61 (122)	flat	2 (4)	61 (122)	1.49 (2.98)	56	on end	1	56	1.37	90	flot	3	90	2.2
37 (75)	flat	1 — (2)	74 (150)	1.48 (3)	40	an end	1	80	1.6	98	flat	2	196	3.9

.

•

69

				Mine packagi	ng data			N) umixom	pacity of ate: figures m laad w/ or maximu	in parent in 100%	thesis india averland a	ate apability	
	Mine Wt Madel (Ibs)		No at .	Wt. (1bs)	Gu	ite dimensi (ins)	ans	M-35 2½ tan carga truck (Cargo space: 147 x 88 x 60 ins)					
	& type	per mine	mines, etc , per crote	per crate	Lgth.	Width	Hgt.	Na. al crates	Haw carried	Na. al tiers af crotes	Tatal Na mines	Tatal wt (tans)	
-	M-21 AT	18.75	4, w/M-607 luzes	90	29.2	13.5	12.5	56 (111)	flat	2 (34)	224 (444)	2 51 (4.98)	
1	M·2 AP	5	ó, w∕luzes & trip wire	50	15	10 25	9.5	100 (200)	ftat	2 (3)	600 (1200)	2.5 (5)	
1	N-3 AP	96	6, w/fuzes & trip wire	72	18	8.75	9.5	70 (138)	flat	2- (2+)	420 (828)	2.52 (4.96)	
	M-14 AP	0.2	90, w/dets & wrenches	44	19	18	8 75	114 (227)	flat (an end)	4 (3)	10,260 (20,430)	2.5 (4.99)	
1	W-16 AP	8	4, w∕luzes & trip wire	45	15.75	10.13	8.5	112 (222)	flat	2 (4)	448 (888)	2.52 (4.99)	
1	M-18 AP	2.5	a. 1, (M-68 kit) w/elec cap, 50' firing wire, 1 btry hldr	3.2	8.75	3	55	1562 (3125)	upright	3 + (6)	1562 (3125)	2.5 (5)	
			b. 5 (M-69 kit) w/elec caps, 500' firing wire	21.5	13.5	10.5	5.5	233 (466)	upright	2 + (5 +)	1165 (2330)	2.52 (5 +)	

Table 18.—Continued

20

Table 18.---Continued

			(Note: fig	gures in	porenthes	pacity of i es indicate or moximu	moximum	lood w∕i	n 100%	overload	capability			
	M-105 Corgo space	1½ ton t 133 x 8)	(0	argo Space:	tos v 70 tos x 70 etermines d	s)		M-51 5 1 orgo Spoce. (volume de		x 23 in	s)	
No. of crotos	How corried	No. of tiers of crotes	Total No. mines	Total wt. (tons)	No. of crotes	How corried	No. of tiers of crates	Totol No. mines	Totol wt (tns)	No. of crotes	How corried	No. of tiers of crates	Totol No. mines	Totol wt. (tons)
33 (66)	flot	1+ (3-)	132 (264)	1.48 (2.96)	40	on end	1	160	1.79	48 (60)	flot (on end)	2 (1)	192 (240)	21 (2.7)
60 (120)	flot	1 (2)	360 (740)	1.5 (3)	70	on end (or flot)	1 (2)	420	1.75	128	flot	2	768	3.2
41 (83)	flat	1 (2—)	246 (498)	1 47 (2.98)	70	on end (or flot)	1 - (2)	420	2.52	108	flot	2	648	3 5
68 (136)	flot	3 (5)	6120 (12,240)	1.49 (2.99)	48	on end	1	4320	1 05	72	flot	3	6480	15
66 (133)	flot	1+ (2+)	264 (532)	1.48 (2.99)	80	on end (or flot)	1 (2)	320	1 80	168	flot	3	672	3.7
938 (1875 <u>)</u>	upright	3- (5)	938 (1875)	1.5+ (3)	864	on end	2	864	1 38	1782	on end	3	1782	2.8
140 (280)	upright	2 (3+)	700 (1400)	15+ (3+)		on end	2	480	1.03	252	flot	4	1260	27

Ξ

			Mine pockagır	ng d ata		Capacity of indicated ormy vehicles (Note: figures in parentheses indicate maximum load w/in 100% overload capabilit ond/ar maximum valume af carga space)							
Mine Wt. Madel (Ibs)		No. of	Wt. (ibs)	Cro	ita dimen: (ins)	sians			1½ tan ca ce 147 x i	rga truck 88 x 60 in	s)		
& type	per mine	mines, etc. per crate	per crote	lgth	Width	Hgt.	Na. af cratas	How carried	No. of tiars af cratas	Tatal No. minas	Tatol wt. (tans)		
M·23 Chem	24.7	3, w/fuzes & activatars	a. 110 (1 drum)	(stnd s	is diam hipping im)	22	46 (80)	an side (an and)	2 (2)	138 (240)	2.53 (4.4)		
			b. 1,840 (pailat af 16 drums)	52	46	48	3 pallets	flat	1	144	2.76		
M-24 AP	2.3	a. 3 in cardbd tube	8.12	18	-	5 om.	615 (1230)	flat	3+ (6)	1845 (3690)	2.5 (5)		
		b. 18 (6 tubes in o wooden box)	70±	21.25	12 5	10	70 (140)	flot	1+ (3+)	†260 (2520)	2.5 (5)		
M-25 AP	0.21	96 (12 per bag; 8 bags per crote)	40	18.75	9.25	12 5	125 (250)	flot	2 (4)	12,000 (24,000)	2.5 (5)		

.

Table 18.—Continued

Table 18.—Continued

		(Net	te: figures		theses in	dicate mox	cated army cimum load rolume of c	l w/in 10		load copo	bility				
((0		1½ ton ti 133 x 87	ailer x 71 ins)			rgo Spoce:	2 Tan Dum 108 x 70 etermines	x 15 + i	n)	M-51 5 Ton Dump Truck (Corgo Space: 125 x 82 x 23 ins) (Volume determines capacity)					
No. af crotes	How corried	No of tiers of crotes	Totol No. mines	Total wt. (tons)	No. af crotes	How corried	No. of tiers of crotes	Totol No. mines	Totol wt. (tons)	Na. of crotes	How corried	No. of tiers of crotes	Totol No. mines	Tatal wt. (tons)	
27 (54)	flot	2- (3)	71 {142}	1.48 (2.97)	24	on end	1	72	1.32	28	on end	1	84	1.5	
2 pallets	flot	1	96	1 84	2	flot	1	96	1 84	3	flot	1	144	27	
370 (706)	flot	3- (5-)	1110 (2118)	1,51 (3)	600	on end	1	1800	2.42	864	flot	6	2592	3.5	
43 (86)	flot	1+ (2+)	774 (1548) _	1.5 (3)	50	on end	1	900	1 75	80	on end	1	1440	2.8	
75 (150)	fiot	2 (3)	7200 (14,400)	1.5 (3)	70	flat	2	6720	14	86	flot	2	9216	2	

				line packoging d	Capacity of indicated ormy vehicles (Note: figures in parentheses indicate maximum load w/in 100% overload capabilit; ond/or maximum volume of corgo space)										
	Mine Wt Model (lbs)		No. of	Wt. (lbs)	Crote dimensions (ins)				M-35 2½ ton cargo truck (Cargo spoce: 147 x 88 x60 ins)						
	& per type mine	mines, etc., per crote	per crate	Lgth.	₩ıdth	Hgt.	No. of crotes	How carried	No. of tiers of crates	Toto) No. mines	Total wt. (tons)				
	M-48 para- chute flare	5	4. w/fuzes & trip wire	41	14 7	13.13	11	122 (244)	flat	2+ (4+)	488 (976)	2.5 (5)			
74	M-49 static flare	1.4	a. 16, w/fuzes & trip wire	45	21.25	14.5	11	111 (180)	flot	3+ (5)	1776 (2880)	2.49 (4.04)			
			b. 25, w/luzes & trip wire	59	21.25	14.5	11	84 (170)	flot	3— (5)	2100 (4250)	2 47 (5)			

•

Table 18.—Continued

NOTES.

1. Loads limited to: 16,000 lbs on roads; 6,500 lbs (3.25 tons) cross-country.

2. Moximum poylood: 1,024 lbs (0.5 ton) internal; 3,000 lbs (1 5 tons) external

3. Maximum poylood 4,182 lbs (2.09 tons)

.Table 18.—Continued

		(1	ote: figuri	in.pai	entheses	indicote m	licated orm oximum lo volume of	, ad w∕in	100% 01	verlood ca	pability			
(Ca	M-105 fly2 ton roline M-47 2½ Ton Dump Truck M-51 5 Ton Dump Truck (Carga Space-100 x 105 15 x 82 x 23 in) (Carga Space-100 x 105 + ins) (Carga Space-100 x 15 + ins) (Volume determines capacity) (Volume determines capacity) (Volume determines capacity) No + No + <td< th=""></td<>													
No. of crotes	How corried	• No. of tiers of clotes	Total No. mines	Total wt. (tons)	No. of crates	How corried	No. of tiers of crotes	Totol No. mines	Total wt. (tons)	No. al crates	How carried	No. of tiers of clotes	Total No. mines	Totol wt. (tons)
73 (146)	fiat	2+ (1)	292 (584)	1.49 (2.98)	70	flot	2	280	1 43	96	flot	2	384	2
66 (132)	flot	2 (4-)	1056 (2112)	1.48 (2.96)	42	on end	1	672	0.94	50	flot	2	800	1.1
50 (101)	flat	2 (3—)	1250 (2525)	1.47 (2.97)	42	on end	1	1050	f.23	50	flot	2	1250	f.5

 Mines are transported unarmed and w/o being assembled with firing chain components. These tables also are applicable to croted mines only

5. Safety in transporting mines and explosive items must be observed for all modes of transportation.

.

	<u>'</u> ,		
Method	Width of cleored lone (in meters)	Mon-hours req'd per 100 meters	Remorks
Manuol			
Locotion by probing	1 (foatpoth)	16-22	See note.
Removal by rope or explosives Locotion by detector, ossisted by prob-	8 oneway (vehicle lane)	38-44	See note.
ing	8 onewoy (vehicle lone)	27-33	See note.
Removal by rape or explosives	8	220-247	See note.
Explosive Demolition snokes, M3A1	6	40-100	
Demolition snake M157 (Diamond Lil)	3.5-4.5	6-8	+6 — 8 manhour to ossemble
Bongalare torpedo.	1 (foatpoth)	3.5-4.5	See note.
	l		

Toble 19. Minefield Breaching/Cleoring Average Time and Moterial Requirements

NOTE. Based upon average conditians of visibility and moderate enemy activity and normal U.S. cauntermeasures, i.e. screening of enemy abservation and counter-battery fires against hastile artillery ar other weapons covering the field.

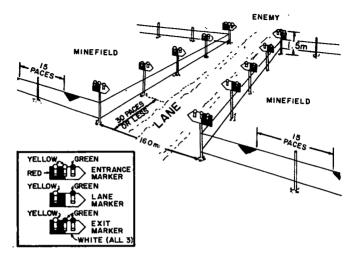


Figure 45. Standard minefield lane marking in rear area.

33. LOGISTICAL DATA

- a. Lagistical ond Planning Data. See tables 17 and 18.
- b. Material and Manpawer Requirements. See table 19.

Section III. Reports and Recards

34. REPORTING AND RECORDING

o. Reparts.

(1) Three reports are required far every minefield laid. First is the report of intention to lay, which is made as soon as it is decided to install the minefield. The second report is the initiation of laying and is made when the laying unit is ready to begin. Third is the report of the campletian of laying. All reports are classified SECRET. See FM 20-32.

(2) In addition, there is the written report of transfer made to the relieving commander by the commander of the unit responsible for the field when the transfer of responsibility is effected.

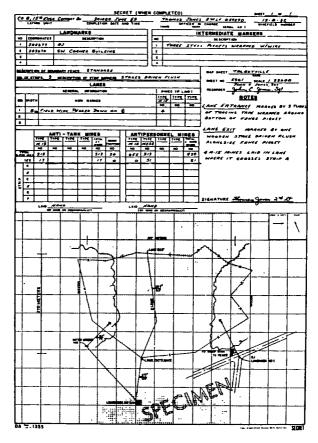
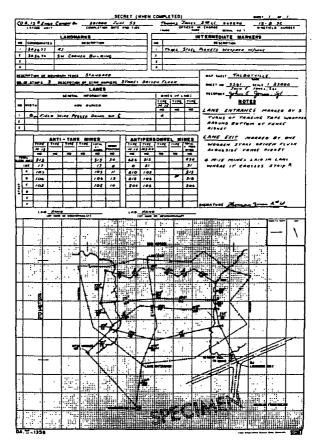



Figure 46. Minefield record with minimum information,

.

Figure 47. Minefield record with moximum information.

785-094 O-66-6

(3) A report of removal is made to the next higher commander immediately when friendly mines ore removed.

(4) When any chonges ore mode in a friendly minefield, a report of chonge is sent by the commonder responsible far the minefield to the headquorters which maintoins the written mine recard.

(5) Progress reports ore initioted according ta unit SOP.

b. Recards.

35. MINE SYMBOLS

(1) The standard minefield record form is o single printed sheet as shawn in the samples in figures 46 and 47. A standard minefield record form is prepared by the commonder of the laying unit, signed by him, and sent to the next higher heodquoiters. It is clossified SECRET. The number of copies prepared depends an the type af minefield and SOP. Narmolly one capy is forwarded to higher headquorters. The SOP should provide for dissemination of recards up, dawn, and loterolly. For this purpose, the record is phatagraphically reproduced.

(2) When changes are made to a friendly minefield, a completely new recard must be prepared an the standard form. It is marked REVISED, but retains the same minefield number.

(3) Boobytropped oreas are recarded as nuisonce type minefields.

AT, boobytropped Type unknown AT, double or multiple Apers AT Baabytraps Toxic chemicol

80

Section IV. Enemy Minefields

36. RECONNAISSANCE

- o. Types.
 - (1) Ground reconnoissance.
 - (2) Aerial reconnoissonce.
 - (3) Reconnoissonce by fire.
 - (o) Artillery, mortor, or rocket.
 - (b) Bombing.

b. Reconnoissance Potrol.

(1) A minefield reconnoissance potrol is normally comprised of an experienced officer or senior NCO, four to six trained men, and a security element armed with light automatic weapons and grenodes (fig. 48).

(2) Depending upon the potrol's mission ond types of mines it may encounter, equipment may include composses, wirecutters, probes, mine detectors, disorming implements (wires, sofety pins, and the like), tape ond protective body armor. If secrecy is not essential, it may include prepared demolition charges, gropnels, light lines, and similar means for mine remaval. Where taxic chemical mines may be encountered,

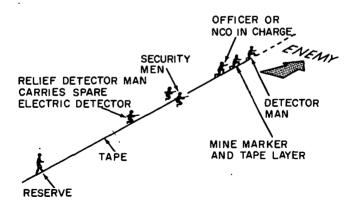


Figure 48. Minefield reconnoissonce potrol.

take such equipment as protective clothing, chemical ogent detector set, first oid supplies, ond decontamination equipment.

(3) Where reconnoissonce is preliminory to breaching, the potrol records information by a tape laid on the centerline of the path. Indicate location of tripwires or types of mines by knots tied on tope as follows:

Туре	No. of knots
Apers mine	ו
AT mine	2
Tripwire	3
New type mine	4
Toxic chemicol mine	5

37. REPORTING AND RECORDING

a. Reporting. Report any knowledge or suspicion of the existence of an enemy minefield to the next higher commonder immediately. This report is forwarded to Army heodquarters and shauld include os much af the following information as is obtainable:

- (1) Location and apparent boundaries of the enemy minefield.
- (2) Bypasses oround the field, if any.
- (3) Type ond density of mines.
- (4) Potterns.
- (5) Enemy defenses, fortifications, fire coverage, and observation.

A unit encountering on enemy minefield erects temporary worning signs, pending installation of standord markings as prescribed in porograph 31 far friendly reor orea minefields. A report is mode to the next higher headquorters whenever enemy mines are removed.

b. Recording. Use the stondord NATO, if avoiloble, ar the U.S. minefield record form when preparing a record of an enemy field. This record contains the identity of the unit preparing it and is identified ot the top by the words ENEMY MINEFIELD. Include a full description of the markings, a sketch or overlay showing lacotion, ond other information as outlined in paragraph 34. Whenever additional information becomes available, another record is prepared and submitted to higher headquarters.

Section V. Breaching and Cleoring Operations

38. MINE DETECTION METHODS

a. Visual. Visual search is an important method of locating mines. Experience with the mine hobits of an enemy is aften of great help in locating his mines. b. Probing. In this méthod, the earth is penetrated with a sharp instrument such as a mine prabe, a bayanet, ar a stiff wire. Probing is the best way to lacate buried nanmetallic mines, particularly the small anti-personnel type similar to the M14. When prabing, the soldier maves an hands and knees with sleeves ralled up to lacate tripwires and pressure prangs.

c. Electricol Detection. When used in connectian with visual inspectian and probing, mine detectars (metallic and nanmetallic) are effective aids in locating mines. Bath types af detectars, metallic ar nanmetallic, may give a signal when items ather than mines are detected; experience in operating each type enables the user ta recagnize the characteristics af the signal ta be expected far each type af mine. Far the saldier assigned ta this task, it is an exacting job, and he must canstantly watch far baabytraps and tripwires. Twenty minutes at a time shauld be the maximum period for each soldier.

39. METHODS OF BREACHING MINEFIELDS

a. Hasty and Deliberate Methods. Breaching is the use of any means avoilable to apen a lane through a mined area for the possage of vehicles ar personnel. It is either hasty ar deliberote.

(1) Hasty breaching requires speed with a minimum af planning. Leading cambat units must aften clear a lane of all mines. Special mechanical ar explasive devices, artillery ar aerial bambardment, ar specially trained teams accamplish this. See table 19, Minefield Breaching/Clearing Average Time and Material Requirements.

(2) Deliberate breaching requires extensive planning, and is normally dane by engineers ar other trained personnel, supparted by cambined arms. Deliberate breaching is usually made in the fallowing phases:

- (a) Recannaissance
- (b) Plans and preparations.
- (c) Breaching ond attack.
- (d) Passage of forces.

b. Explasive Methods. The use of explasives is the easiest method af remaving mines. One pound of explasive, with a standard firing assembly, placed an tap of a mine will detanate mast mines. A detanating card firing system may cannect a graup of mines to fire them simultaneously. Several different rigid and flexible line charges ore available for breaching foot and vehicle lanes thraugh minefields. They range in size fram the man-carried bangalare tarpeda to the tank pushed "snakes". The various madels available are described in TM 9-1375-200, Demalitian Materials. c. Mechanical Methads. The term, mechanical methads, refers ta use af rallers, flails, derelict vehicles, etc., pushed by armared vehicles.

d. Platoon Organization and Equipment for Monual Breaching. Table 20 and figure 49 show the arganization of this plataan and the operation of a breaching party, respectively.

Table 20. Plataan Organizatian and Equipment far Monual Breaching

Personnel	Officer	NCO	EM	Equipment
Officer in chorge .	1		• • •	Lensatic compass, mop, rodia, ond individual weapan.
Plotoon sergeant . Na. 1 breoching		1		Same os OIC, except no radio.
party		1	7	2 partoble detectors, 2 probes, mine mork- ers, morking tape or wire an reels, safety pins, clips, smaoth wires (18" lengths), 1-lb. blacks af ex- plasive, blasting caps, detonating card, safety fuze, fuze lighters, crimpers, ord
Na. 2 breaching party		1	7	partable rodia. Some os Na. 1 breaching
Na. 3 breaching				porty.
party		1	7	Some as Na. 1 breaching party.
Suppart party		1	10	Same as Na. 1 party, plus: sledges ar mouls, hammers, pliers, wire- cutters, 2'' by 4'' stakes of least 6' lang, individual weap- ons, litters, lonemork- ing signs, gauntlets, borbed wire, stakes and pickets.
Tatal	1 1	5	31	

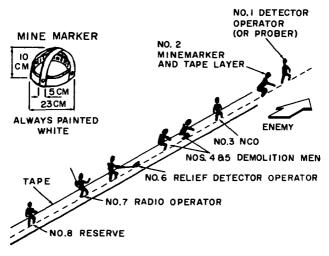


Figure 49. Minefield breaching party.

40. METHODS OF CLEARING MINEFIELDS

a. Intraduction. To clear a minefield is to remove ar destray all mines, enemy ar friendly, in the field. The methods used in mine clearance are similar to those in breaching, but are more deliberate and carefully applied. Minefield recards are used to the maximum. Brush and ather caver in the minefield area may be removed by burning.

b. By Prabing. Ta clear mines from an enemy field ar a friendly field far which recards are unavailable, the pracedure described here is ta be cansidered as a guide anly. The plataan is used as the basic unit, and mines are blawn in place ar removed by rape.

(1) The platoon is arganized as shawn in table 21. The clearing parties aperate as depicted in figure 50.

(2) The use of explasive is described in paragraph 39.

(3) Rape remaval is safer than remaving mines by hand. Praceed as fallows:

(a) Uncaver tap of mine.

(b) Attach rape ar wire at least 45 meters lang ta mine.

Persannel	Officer	NCO	EM	Equipment
Officer in charge	1			Map, lensatic compass, partable radio, ond all available informatian on mines in area.
Na. 1 clearing party		1	10	Mine prabes, tracing tope on reels, mine markers, graphels, rope or wire in 45 meters lengths, 45-cm lengths af 10-and 16-gage wire, demalition equipment, shavels ar entrenching tools, and portable radios
No. 2 cleoring party	••	1	10	Same as Na 1 cleoring party
No. 3 clearing porty		1	10	Same as Na. 1 clearing party
Cantrol porty		1	2	Map, lensatic compass, partable radia (2 preferably, 1 far platoon ond 1 for campany net)
TOTAL	1	4	32	

Toble 21. Plotoon Orgonization and Equipment for Manual Clearing

(c) Moke sure oll personnel neorby have taken cover.

(d) Toke cover ot least 45 meters from mine and pull it from hole. (Moke sure the place of cover, such as a faxhole, is checked for enemy boobytrops prior to this action.)

- (e) Woit 30 seconds before opprooching mine.
- (f) Recheck hole for odditional mines.
- (g) Remove fuze or cut the firing choin.
- (h) Corry mine to o dump for disposol or reuse.
- c. By Use of Detectors.

(1) The plotoon is organized the some os for probing, except that each clearing party has three electrical mine detectors and is reduced by one man. The duties and procedures are basically the some as for probing.

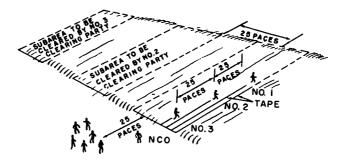


Figure 50. Number 1 clearing party in operation.

(2) Figure 51 shows the clearing party in action, using electrical detectors.

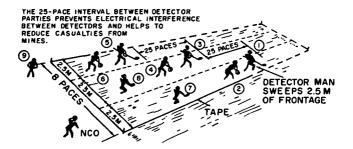


Figure 51. Clearing party using electrical detectors.

CHAPTER 4 FIELD FORTIFICATIONS

Section I. General Data

41. PRIORITY OF TASKS

Many of the jabs involved in preparing a defensive positian are carried an concurrently, but same will be executed in priority. The commander, therefore, specifies the sequence for the preparation of the position and ony special precautians to be taken regarding camouflage. The following is a recammended sequence.

o. Establish security.

b. Position weapons.

c. Clear fields of fire, remave abjects, mask observatian ond determine ranges to probable target locations.

d. Provide for signal communications and observation systems.

e. Prepore weapons emplacements and individual pasitions to include overhead cover, and camouflage them cancurrently.

f. Lay minefields and prepare important demolitians.

g. Prepare obstacles (other than minefields) and less vital demolitions.

h. Prepore routes for movement and for supply and evacuation.

i. Prepare alternate and supplementary positions.

j. Prepare CBR pratective shelters as required.

k. Prepare deceptive installations in accordance with deceptive plans of higher headquarters.

42. CLEARING FIELDS OF FIRE

o. Principles. There is little opportunity to clear fields of fire when a unit is in cantact with the enemy. Individual riflemen and weapons crews must select the best natural pasitians available. Usually, there is only time ta clear areas in the immediate vicinity of the pasitian.

However, in preparing defensive positions for expected contact with the enemy, suitable fields of fire are cleared in front af each pasitian. The following principles are pertinent:

(1) Excess af careless clearing will disclose firing positions.

(2) In areas arganized for close defense, clearing shauld start near the pasition and work forward for at least 100 meters ar to the maximum effective range af the weapon if time permits.

(3) A thin natural screen af vegetation shauld be left ta hide defensive positions. **b.** Pracedure.

 Remove the lower branches of large scattered trees in sporsely wooded areos.

(2) In heavy woods, fields of fire moy neither be possible nor desiroble within the time available. Restrict work to thinning the undergrowth and remaving the lower bronches of large trees. Clear narrow lanes of fire for outomatic weapons.

(3) Thin or remave dense brush since it is never a suitable obstacle and obstructs the field of fire.

(4) Cut weeds when they obstruct the view from firing positions.

(5) Remove brush, weeds, and limbs that have been cut to areas where they cannot be used to conceal enemy movements ar disclose the position.

(6) Do only a limited amount of clearing at one time. Overestimating the capabilities of the unit in this respect may result in a field af fire improperly cleared which would afford the enemy better concealment ond caver than the natural state.

(7) Cut or burn grain, hay, and tall weeds.

c. Manhours Required. The manhours required to clear 100 square meters are tabuloted in table 22.

Description of clearing	Tools used	Manhaurs required*
Medium clearing: Clearing undergrowth and trees less than 12" in dlameter	Saws, axes	5
Light clearing: Clearing small brush	Axes, brush- haaks, machetes, and hatchets	2.5

Table 22. Manhours Required to Clear 100 Square Meters

* Figures are for daylight; for wark at night, increase labor by 50 percent

Section II. Emplocements

43. TYPES

a. Requirements. Emplacements shauld be so constructed as to permít each individual or weapon crew ta meet the following requirements:

(1) Permit each individual ar eoch weapons crew to occomplish ossigned fire missions.

(2) Be simple and easily constructed.

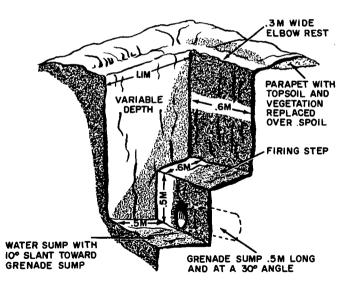


Figure 52. Open one-man foxhole.

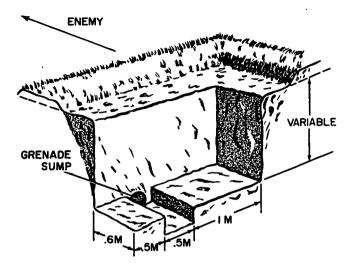


Figure 53. Open twa-man faxhale.

- (3) Provide maximum protection with minimum time and lobor.
- (4) Be comaufloged and canceoled.
- (5) Provide protection against mechanized attack.
- (6) Provide protection against nucleor attack.
- b. Types. See figures 52 through 57 for different types.
- c. Lobor Requirements for Emplacements. See tobles 23 and 24.

44. REVETMENTS

a. Retaining-Wall Type. This type of revetment is used in relatively unstable sails. The harizantal layers of the wall are tied together so

	Totol c	onstructio	on time	in mon	hours for	Weight ond volume af materials								
	construction with O-hondle shovels and ordinory corpentry tools						evetment r cover su			Complete revetment				
Type of emplocement ar shelter	IL FIGIS TOF COVER I			Complete Na revetment revet-		Carrugated metal construction		Sized lumber construction		Corruga ted metal construction		Sized lumber construction		
	gated Sized metol lumber		Corru- gated metal constr.	Sized lumber constr	ment moteriols used		Volume (cu. ft.)	-	Volume (cu. ft)		Volume (cv. ft.)		Volume (cu. ft.)	
Improved crater	N/A	N/A	N/A	N/A	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Skirmishers trench	N/A	N/A	N/A	N/A	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Prone emplocoment	N/A	N/A	N/A	N/A	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Open one man foxhole	N/A	N/A	3.5	4.5	2.0	N/A	N/A	N/A	N/A	190	3.5	240	8	
Open one man foxhole with offset	9.0	14.0	10.0	16.0	N/A	50	0.6	180	55	240	4.0	420	13.0	
One mon foxhole with half cover	2.5	30	4 5	5.5	N/A ·	10	0.1	20	0.6	200	3.5	260	8.0	
One mon foxhole with half cover ond offset	10 0	14.0	12.0	18.0	N/A	60	0.7	200	6.0	250	4.0	440	14.0	
Open two mon foxhole	N/A	N/A	6.0	8.0	3.0	N/A	N/A	N/A	N/A	280	5.0	320	10.0	
Oeepened two mon faxhole	N/A	N/A	80	10.0	5.0	N/A	N/A	N/A	N/A	300	5.5	375	12.0	
Two mon faxhole with holf caver.	4.0	4.0	8.0	10.0	N/A	15	0.2	32	1.0	280	5.0	350	11.0	
Two mon loxhole with hall cover and two offsets.	20.0	30.0	22.0	35.0	N/A	120	1.5	400	12.0	380	6.0	700	22.0	
Two mon foxhole with holf covor ond adjorning shelter.	11.0	17.0	13.0	22.0	N/A	100	12	560	18.0	460	7.0	880	28.0	
Open fighting trench (25' length)	N/A	N/A	28.0	32.0	21.0	N/A	N/A	N/A	N/A	490	80	710	22.0	
Fighting trench with full cover (25' length).	27.0	29.0	35.0	40.0	N/A	240	4.0	360	11.0	730	12.0	1060	33.0	

Table 23. Time and Material Requirements for Personnel and Individual Weapans Emplacement

92

	Total construction time in mon hours for					Weight and valume of materials								
	construction with O-handle shovels and ordinory carpentry tools						levetment r covet si			Complete revetment				
Type af emplacement ar shelter	Revetment mote- rials far cover support only			•	Na revet-	Corrugoted metal construction		Sized lumber cconstruction		Corrugoted metal canstruction			ed iber uction	
	Corru- goted metal constr	Sized fumber constr.	Corru- goted metal canstr.	Sized lumber canstr.	er used	Weight	Volume (cu. ft.)		Volume (cu. ft.)		Volume (cu. ft.)		Volume (cu. ft)	
		CHARACT	ERISTECS	of CREW	SERVED W	EAPONS E	MPLACEME	NTS						
Open automatic rifle emplacement Automatic rifle emplacement with 18" af caver.	N/A 4.0	N/A 50	7.0 6.0	8.0 7.0	4.0 N/A	N/A 45	N/A 0.5	N/A 70	N/A 20	170 220	3 0 4.0	200 270	6.0 10.0	
Open harseshae type .30 cal ma- chinegun emplocement	N/A	N/A	5.0	7.0	20	N/A	N/A	N/A	N/A	280	5.0	450	14.0	
Open 2 ane-man foxhole type fight mochinegun emplocement.	N/A	N/A	6.0	7.0	40	N/A	N/A	N/A	N/A	530	10 0	640	20.0	
Horseshoe type light mochinegun emplacement with full caver	9.0	110	11.0	14.0	N/A	190	4.0	250	70	720	13.0	890	27.0	
2 one-man faxhale type lt. machine- gun type emplacement with 1/2 caver and adjaining shelter	15.0	22.0	190	28.0	N/A	250	2.5	630	20.0	520	75	850	30.0	
Circular type 50 cal machinegun emplocement	N/A	N/A	14.5	16.5	10.0	N/A	N/A	N/A	N/A	300	5.0	420	13.0	
Pit type emplocement for 3.5 rocket launcher.	N/A	N/A	5.0	60	3.0	N/A	N/A	N/A	N/A	110	1.0	160	5.0	

Table 24. Characteristics of Crew Served Infantry and Artillery Weapons Emplacements

.

93

Table 24.—Continued

	fotol co	nstructio	n time	in mon	hours for			Weight	ond volu	me of m	oteriols		
Type of emplocement or shelter		ctran wi [.] ordinary					avetment r:cover su			Camplete revetment			
	Revetment mote- riols for cover support only		Complete revetmant		No revet-	Corrugated metal - construction		Sized lumber canstruction		Corrugated matal construction		Sized Iumber construction	
	Corru- goted metal constr	Sized lumbar canstr.	Corru- goted metal constr.	Sizad lumber constr.	ment mate- rials vsad	Weight (lb.)	Volume (cv. ft.)		Valume (cv. ft)		Yalume (cv. ft.)	-	Yolume (cv ft.)
81-mm morter emplocement	N/A	N/A	12.0	N/A	N/A	N/A	N/A	N/A	N/A	210	3.0	N/A	N/A
4.2 inch mortor amplacement.	N/A	N/A	29 0	N/A	N/A	N/A	N/A	N/A	N/A	370	6.0	N/A	N/A
Recoilless rifle pasitran (maunted)	• N/A	N/A	N/A	N/A	30 0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Recoilless rifle position (dismounted).	N/A	N/A	N/A	N/A	17.0	N/A	N/A	N/A	₩/A	N/A	N/A	N/A	N/A
	4	I	L	CHARACTI	RISTICS	ARTILLE	RY WEAPOI	NS EMPLA	CEMENTS		·		L
105-mm howitzar emplacement	N/A	N/A	N/A	N/A	100 0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
155-mm howitzer emplacement.	N/A	N/A	N/A	N/A	170 0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

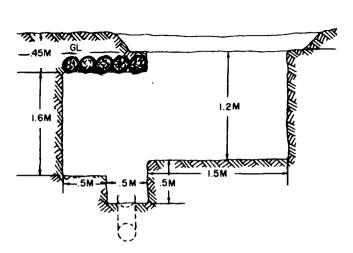


Figure 54. Two-mon foxhole with holf cover.

that the wall acts as a structural unit without any sliding of one part upon another. This type of reverment (fig. 58) may be constructed of sondbogs, sod blocks, and various expedients as described below. The methods of building with these construction materials are so follows:

(1) Sondbogs ore useful for temporory revetments. Loy them as follows:

(o) Fill to three-fourths of full copocity (5" \times 10" \times 20").

(b) Ploce o double raw of olternote heoders ond stretchers as shown in figure 58.

(c) Ploce obout 800 sondbogs per 25 square meters of revetted surfoce.

(d) Stobilize bogs to prolong their life by filling them with 1 port cement to 10 ports dry eorth; in a sond-gravel mixture, increase ratio to 1 to 6.

(e) Tuck in bottom corner of bogs ofter filling.

(f) Slope the woll toword revetted foce of slope of 1 to 4.

(g) With stabilized sandbags the foundation should be about 15 centimeters below floor level.

785-094 O-66-7

- (h) Place bags perpendicular ta slape.
- (i) Place all bags an battam raw as headers (fig. 58).
- (j) Alternate intermediate raws as headers and stretchers.
- (k) Have tap raw cansist af headers.
- (1) Place side seams and chaked ends an inside.

(2) Sad blacks af thick sad with gaad raats pravide satisfactary revetting material. Cut sad blacks into 20- by 45-centimeter sections and lay them flat, using the alternate stretcher-method as with sandbags ((1) abave). Lay sad grass-ta-grass and sail-ta-sail except for the tap layer which is placed with grass upward far camauflage purpases. Drive twa waaden pegs thraugh each section of every layer as it is campleted. Lay this sad revetment at a slape of 1 to 3.

(3) Expedients may be used, such as ice blacks in cald weather. They are stacked the same as sandbags ar sad. Water is run aver them

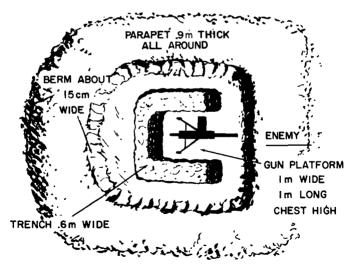


Figure 55. Harseshae type emplacement.

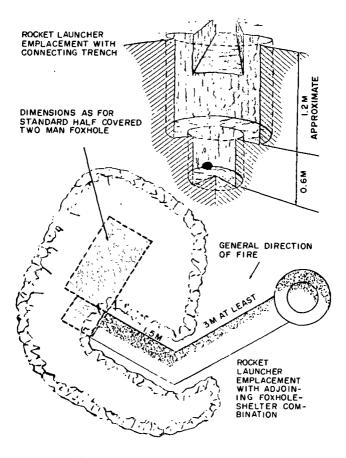


Figure 56. Rocket launcher emplacement.

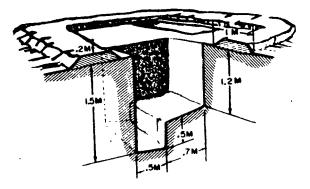
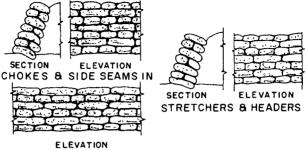



Figure 57. Two one-mon foxhole types.

JOINTS BROKEN

Figure 58. Retaining wall type of revetment.

 to bind by freezing. Another expedient is earth-filled pocking coses or ammunition baxes, which ore ploced in pasitian and nailed to the loyer belaw. The boxes are then filled with earth ar rack. In wooded areas, small timber may be used as revetting material.

b. Facing Type. This type of revetment serves mainly to protect revetted surfaces from weather and damage caused by accupation. This revetment cansists of facing (revetting) material and support which hald this material in place. The top of the facing is set belaw ground level so that the revetting is not damaged by tanks crossing the emplocement.

(1) Moterials used in focing may be brushwaad bundles, continuous brush, pale and dimensional timbers, carrugated metal, ar burlap and chicken wire. Construction methods af each type are described in (3) below.

(2) Methods of support.

(a) Timber frames of dimensioned timber ore built to fit the battam and sides of the position and hald the facing moterial opart. This insures that the excovated width remains stable.

. (b) Pickets ore driven into the ground an the positian side of the facing moterial and held tightly against the facing by bracing the pickets opart or fastening their tops to stokes ar holdfosts (fig. 59).

(3) Methods of constructing facing type revetments.

(a) The size of pickets depends upon the soil type ond the kind

of focing moterial, but timber pickets should not be smaller than 7.6 centimeters in diameter. Maximum spacing between pickets should be 1.8 meters. Steel wire fence U-shoped pickets are excellent for revetting. Pickets are driven at least 0.46 meters into the floar of the position. Where the pickets are anchored at the top, proceed as shown in figure 59.

(b) A brushwood bundle (hurdle) is o woven revetment unit usuolly 1.8 meters long ond of required height.

(c) The pole revetment is similar to the continuous brush revetment, except that a layer of small harizantal round poles cut to wall length is used. If available, boards or planks are used.

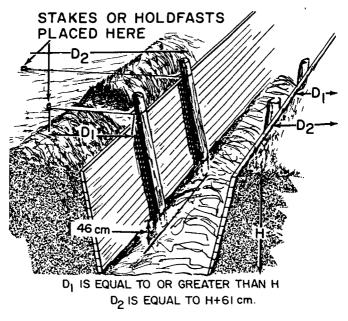


Figure 59. Method of onchoring pickets.

(d) Corrugated metal sheets or pierced steel planks ore strong, durable, and rapidly installed. They may be used for any height or length of revetment. Smear metal surfaces with mud to eliminate possible reflection of thermal radiation and to aid comouflage.

45. BUNKERS

o. For protection against shells and bombs, see tobles 25 and 26.

Material		explasive and racket:		General-purpase bambs						
	75-mm	105-mm	155-mm	100-IB	250-Ib	500·Ib	1,000-16			
Solid Walls:							1			
Brick masanry.	10	15	20	20	25	33	43			
Cancrete, ploin	10	13	15	20	25	38	46			
Concrete, rein-						ł				
forced	8	10	13	18	23	30	38			
Timber	20	25	36	38	46	60	76			
Walls of loase										
material bet-										
ween boords:							1			
Brick rubble.	23	25	30	45	60.	71	76			
Gravel, small										
stanes	23	25	30	45	60	71	76			
Earth ¹	38	45	60	60	76					
Sandbags filled										
with:						1				
Brick rubble	25	25	50	50	50	76	100			
Gravel, small										
stanes	25	25	50	50	50	76	100			
Sand ¹	25	25	50	76	76	100	100			
	50	50	76	76	100	100	127			
Poropets of: ²				1	(ł				
Sond ¹	30	45	60	60	90	90	120			
Earth ¹	60	90	120	90	120	152				

 Table 25.
 Material Thicknesses in Centimeters Needed Against Projectiles

 and Bombs Exploding 15 Meters Awoy

¹ Figures based on dry material. If wet moterial, double figures.

² Figures given to nearest 15 cm.

						-		
Material	Small-aims and machine-gun (7 92-mm) fire at 100 m 1	Antitank rifle (7 92 mm) fire at 100 m.	20-mm antitank file at 200 m	37-mm antitank fire at 400 m.	50-mm. antitank fire at 400 m.	75-mm. driect fire, 500 to 1,000 m.	88-mm direct fire, 500 to 1,000 m	Remarks
Solid wolls, ²								
Brick mesonry	45	60	76	152			1	1
Concrete, not reinforced 3	30	45	50	107	120	137	198	
Concrete, reinforced	15	30	45	90	107	120	198	Ploin, farmed-concrete walls.
Stone mosonry	30	45	76	107	137	152	198	Structurolly reinforced
,			1 "	107	137	152		These figures can be taken os
Wood	60	90	120					guides anly. These figures can be taken as
Tember	90	152					·····	guides only. These figures can be taken as
Walls of loose material packed between boards 2								guides only
Brick rubble	30	60	76	152	180	ł		
Cloy, day	90	120			100			Add 100 % if wet
Loom, dry	60	90	120					Add 50 % if wet
Grovel or small crushed								Add DU Sit wet
rack	30	60	76	152	180			
Sond, dry.	30	60	76	152	180			Add 100 % of wet.
Sandbags filled with	••	••			100			Add IUU % if wet.
Buck rubble	51	76	76	110				
Clay, dry	102	152	/0	152	178			
Loom, dry	76	127	152			••••••		Add 100 % if wet
Concrete, gravel or	~		132			•••••		Add 50% if wet
small crushed rock	51	76	76	160	1.77		1	
Sand, dry	51	76	76	152 152	178 178		• • • • • • • • • • • • • • • • • • • •	
Loose payopets of ²		/0	/0	152	1/8			Add 100% if wet.
	107							
	107	152						Add 100 % if wet.
e	90 60	120	152					Add 50 % il wet.
Sand	60	90	120					Add 100 % if wet.

Table 26. Material Thicknesses in Centimeters Needed for Protection Against Direct Hits by Direct-Fire Weapons

NOTE. Protective thicknesses given ore for a single shot only (except 1) Where direct fire weapons are able to get five at six hits in the same area. the required protective thickness is approximately twice that indicated

¹One burst of five shots. ²Thicknesses given to nearest 15 cm. ³For 3,000 psi concrete.

b. The pratective cover and at least the roof of the supporting structure of an emplocement should be a design unity that freely moves in unison. That is, the overall cover and roof must be rigid enough to displace as a unit, yet the construction must be able to absorb or dampen the shock of an exploding shell.

c. Proctical fulfillment of this design unity is a sandwich construction in which the two outer layers, burster course, and roof structure, possess a certain amount of both rigidity and resiliency, and the middle layer is a cushion of porous consistency.

d. The most effective test example of the design unity for resistance to direct hits of 155-mm, fuze-delay shells was the following design (see fig. 60)

(1) Burster course — 1 foot (30½ cm) of 6 inches (15 cm) — to 8 inches (20 cm) rock.

(2) Cushion layer — 1 foot (30 % cm) thick of dry uncompacted . soils.

(3) Structure roof—10 inches (25 cm) thick of 2 inch (5 cm) by 12 inch ($30\frac{1}{2}$ cm) planks laid in five layers, each layer 90° to adjacent layers.

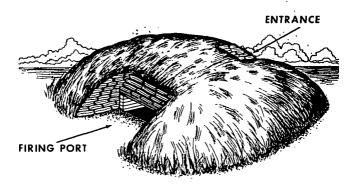


Figure 60. Bunker.

103

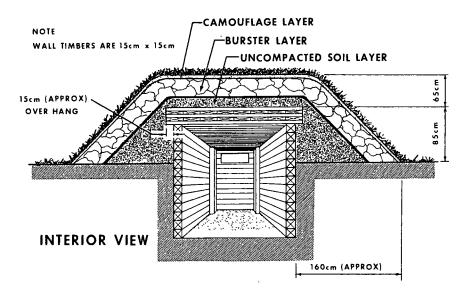
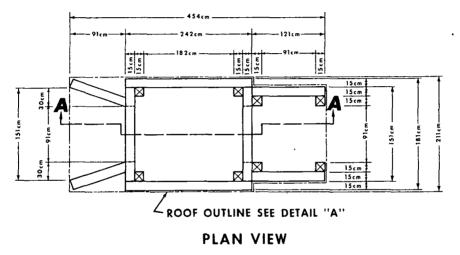



Figure 60—Continued.

.

Figure 60—Continued.

.

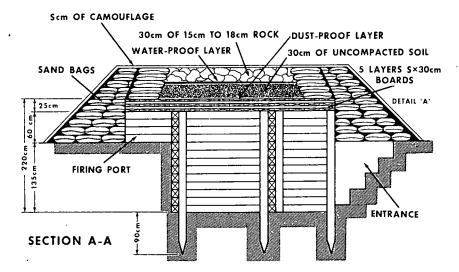


Figure 60—Continued.

ITEM	DESCRIPTION	NO. PCS
ROOF	5cm × 30cm × 2.11m Long - Wood	48pcs
	5cm × 30cm × 4.54m Long	14pcs
SIDE WALLS	15cm × 15cm × 2.42m Long — Wood	26pcs
ENTRANCE WALL	15cm × 15cm × 1.21m Long Wood	26pcs
FIRING PORT AND		
ENTRANCE DOOR	15cm × 15cm × 30cm Long Wood	26pcs
FRONT AND REAR		
WALLS	15cm × 15cm × 1.51m Long Wood	13pcs
FIRING PORT AND		
RETAINING WALL	15cm × 15cm × 1.00m Long - Wood	8pcs
SIDE POST	15cm × 15cm × 2.85m Long — Wood	ópcs
SIDE POST	15cm × 15cm × 1.95m Long - Wood	2pcs

Figure 60-Continued.

e. In obtaining protectian from direct hits af deloyed-fuze shells, it is impartant that the burster cause be thick and rigid enough ta effect detonation before the shell has passed through it. A 1-faat $(30\frac{1}{2} \text{ cm})$ thickness of 6-inch (15 cm) —ta 8-inch (10 cm) stane seems to be optimum for ammunitan up through 155 mm.

f. The camouflage loyer of sail aver the burster caurse should be obaut 2 inches (5 cm) thick.

g. In timber canstructian, notching or grooving shauld be ovaided.

 Timber field fortifications with solid walls are undoubtedly stranger than the past, cap, and stringer type but require cansiderably mare timber.

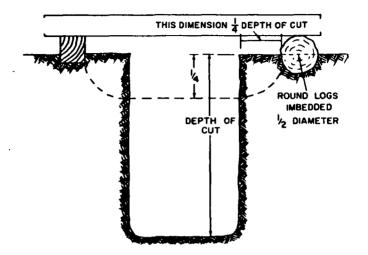


Figure 61. Support of overhead cover on earth banks.

i. It is preferable that a field fortification structure be based on the excovation floor, instead of the ground-up type. If based on the ground-up type, columns (post) should extend down into the ground at the four corners for the purpose of anchoring and supporting the structure.

j. See figures 60 and 61.

46. IMPROVISED OBSTACLES See figures 62 through 66.

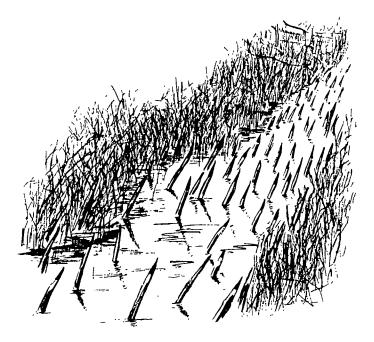


Figure 62. Belt of imbedded sharpened stakes.

Figure 63. Panji jungle trap.

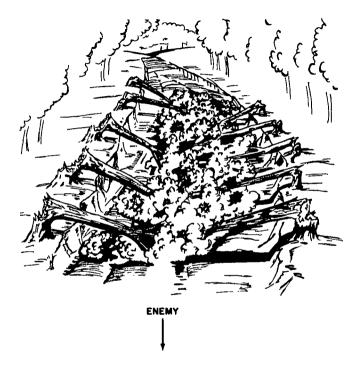


Figure 64. Abatis used as roadblock.

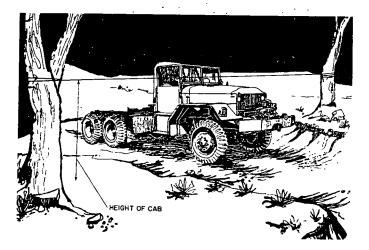


Figure 65. Wire-rope roadblock.

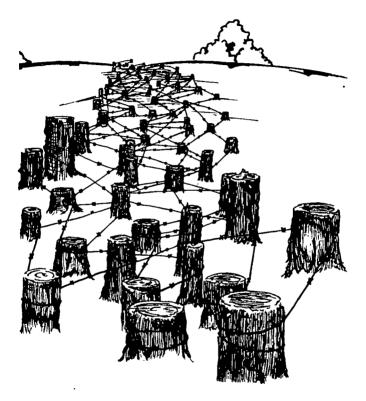


Figure 66. Belt of log post obstocles.

Section III. Wire Obstocles

47. ESTIMATING BARBED WIRE REQUIREMENTS

When the length of front is token os stroight line distonce between limiting points, the totol length of wire obstocles moy be estimated as follows:

 o. Tocticol Wire. Length of tocticol wire is 1¼ times the length of front times number of belts. This can be either three belts of 4- and 2-pace double opron fence or two belts of triple standard concertino.

b. Protective Wire. Length of protective wire entonglement for o defensive position is 5 times the length of the plotoon front times number of belts, times the number of plotoons. Becouse protective wire usually encircles each platoon, the length of entanglement per individual plotoon is $2\frac{1}{2}$ times the plotoon frontage. This can be 1 belt of 4- and 2-pace double opron fence or 1 belt of triple standard concertino.

c. Supplementory Wire. Supplementory wire in front of the FEBA breaks up the line of toctical entanglements. It is $1\frac{1}{4}$ times the unit frontage, times the number of belts, times the number of plotoons. Behind the FEBA, it is $2\frac{1}{2}$ times the unit depth, times the number of belts. Supplementory wire should be of identical construction to the wire it supplements.

d. Supply ond Lobor. For construction estimates of monhours and materials, see tables 27 and 28.

м	oterial	Approx weight, Kg	Approx length, M	Na. cor- riod by 1 man	Approx weight of man-lood, Kg
Reel		47.5	366	1/2	24
Bobbin		3.5-4.0	27.5	4-6	14.5-24.5
Stondard barbod-wire concertina		25	15.2	1	25
Expedient barbed-wire concertina		13.5	6.1	1	13.5
Screw pickets	Long	4	1.6	4	16.3 •
	Medium	2.7	0.81	6	16.3
	Short	1.8	0.53	8	14.5
	Extra Long	7.25	2.4	3-4	21.8-29.0
U-shoped	Long	4.5	1.5	4	18.1
pickets	Medium	2.7	0.81	6	16.3
•	Short	1.8	0.61	8	14.5
w 1	Extro Long	7.7-10.5	2.13	2	15.4-20.8
Wooden	Long	5.4-7.25	1.5	3	16.3-21.7
pickets	Short	1.4-2.7	0.75	8	11.0-21.7

Toble 27. Wire Entonglement Moteriols

		Pic	kets		Barbed wire, no.	No. of		Kgs af materials per lin m	Man-haurs to erect 300 m af
Type of entanglement	Extra lang	Lang	Me- dium	Shart	af 400 m,	1.	Staples	af entangle- ment ²	entangle- ment ³
Dauble-apron, 4- and 2-pace	-	100		200	14 - 15	-		4.9	59
Double apron, 6- and 3-pace	- 1	66	•	132	13-14	-	-	3.5	49
High wire (less guy wires)	-	198	-		17 . 19			59	79
Law wire, 4- and 2-pace	-	-	100	200	11	.		3.7	49
4-strond fence	•	100	-	2	5.6	•	-	1.9	20
Dauble expedient concertino	-	101	-	4	3	100	295	6.9	40
Triple expedient concertino	51	101	•	7	4	148	295	10.4	99
Triple stondord concertino	•	160	-	4	3	59	317	7.9	30

Table 28. Material and Labar Requirements far 300-meter Sections of Various Barbed-Wire Entanglements

¹ Lawer number of reels applies when screw pickets are used; high number when U-shaped pickets ore used. Add difference between the twa ta the higher number when wood pickets ore used.

^{•2} Average weight when ony issue metol pickets ore used.

³With the exception of the triple-standard concertinos, man-hours are based an the use of screw pickets.

When driven pickets are used, odd 20 percent to man-hours. With experienced traops, reduce man-haurs by ane-third. Increase man-hours by 50 percent far night work.

⁴ Bosed an cancertinas being made up in rear oreos ond reody for issue. One expedient concertina apens ta 6-meter length, os compored with 15 meters far a stordard cancertina; it requires 92 meters of stondord borbed wire, also smoll quantities of No. 16 smooth wire for ties. 48. BARBED WIRE TIES See figure 67.

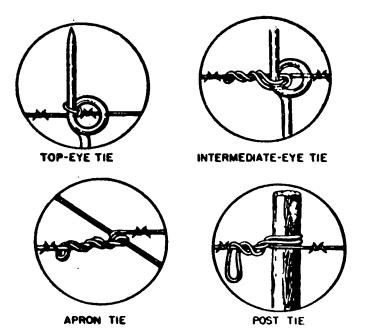
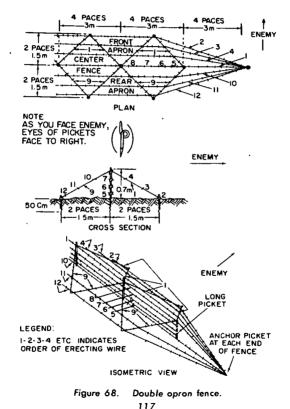


Figure 67. Barbed wire ties.


49. FOUR AND TWO PACE DOUBLE APRON FENCE

- a. Erect from right to left (as you face the enemy).
- b. Spacing of pickets.
 - (1) Long pickets are four paces apart.

(2) Anchor pickets are placed two poces from the line of center pickets ond opposite the midpoint of the space between the center pickets.

(3) Anchor pickets are also placed on ends of fence, four paces from the first and last long pickets.

c. See figure 68.

50. SIX AND THREE PACE DOUBLE APRON FENCE

o. Erect from right to left (os you foce the enemy).

b. Spocing of pickets.

(1) Long pickets ore six poces oport.

(2) Anchor pickets ore ploced three poces from the line of center pickets ond opposite the midpoint of the spoce between the center pickets.

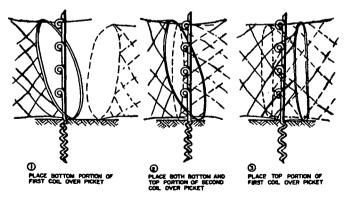
(3) Anchor pickets ore olso ploced on ends of fence, six poces from the first ond lost long pickets.

51. CONSTRUCTION PROCEDURE FOR DOUBLE APRON FENCES

- o. First operation-layout and installation of pickets (3 crews).
 - (1) First crew loys out long pickets.
 - (2) Second crew loys out short pickets.
 - (3) Third crew installs all pickets.

b. Second operation—layout and installation of wire (men are broken into 2-4 man crews to install wire).

- (1) First wire, enemy diogonol.
- (2) Second wire, enemy trip wire (5-10 cm off ground).
- (3) Third ond fourth wire, enemy opron.
- (4) Fifth, sixth, seventh, eighth, center fence (install from bottom up).
 - (5) Ninth wire, friendly diogonol.
 - (6) Tenth ond eleventh wire, friendly opron.
 - (7) Twelfth wire, friendly trip wire.
- 52. TRIPLE STANDARD CONCERTINA
 - o. Erect from right to left (os you foce the enemy).
 - b. Spoce pickets os follows:
 - (1) Long pickets ore five poces oport.
 - (2) Anchor pickets ore ploced two poces from end long pickets.
 - (3) Enemy ond friendly rows of pickets ore 3 feet (.9M) oport.
 - (4) Friendly picket row is offset from enemy row.
 - c. See figure 69.


53. CONSTRUCTION PROCEDURE—TRIPLE STANDARD CONCERTINA

- o. First operation (3 crews).
 - (1) First crew loys out all pickets.
 - (2) Second crew installs all pickets.
 - (3) Third crew loys out concertinos.
 - (o) One concertino in front of third picket on enemy side.
 - (b) Two concertinos to reor of third picket on friendly side.

Figure 69. Installing cancertinos.

- (c) Remove binding wire and place on hondles.
- (d) Repeat same performance every fourth picket thereafter.
- b. Second aperation (All personnel).
 - (1) Instoll frant row concerting ond harizantol wire.
 - (a) Drap concertinas over pickets.
 - (b) Method of jaining (fig. 70).
 - 1. Battom of old concerting on jaining picket.
 - 2. Battom and top af new cancertino on jaining picket.
 - 3. Tap af ald concertino on joining picket.
 - (2) Install reor row concertina ond horizontal wire.
 - (3) Install top raw concerting and rock to the reor horizantal wire.

54. LOW WIRE FENCE

This is like a 4- and 2-poce dauble apran fence, except that medium pickets instead of lang pickets are used in the centerline. The Nas. 5, 6, and 7 wires ore not used, which results in all opran ond diagonol wires being much closer ta the graund. Being law ta the graund, this obstocle is easily hidden in tall grass ar shallow woter. For best results, it should be used in depth.

55. FOUR-STRAND CATTLE FENCE

This is the four-strand center section of a double-opran fence. In farm cauntry, such an obstacle blends with the landscape. Waoden pickets at 2- ta 4-pace intervals ore set up. If guy wires are used, they should be added separately when estimating because this material is nat included in the amaunts listed in table 28.

a. Use eight men an short sectians of this fence. On 300-meter sectians, use up ta 17 men.

b. In the first operation the working party is divided into two appraximately equal graups. The first graup lays aut lang pickets of 3-meter intervals. It begins ond ends the section with an anchar picket, including anchor pickets for guys, if needed. The secand graup installs the pickets.

c. As each man campletes the first aperatian, he moves to the fence. These teams af twa ar faur men are organized ta instoll wires. In fourman teoms, twa men carry the reel, and twa makes ties and tighten the wire. In the twa-man teams, the wire is unralled far 50 ta 100 meters, then the men make the ties. The first team installs the battom wire, and succeeding teoms install the next wires in order.

56. COMBINATION BANDS

Many types af fence may be combined in bonds ta form abstacles mare difficult ta breach thon single belts. Other voriatians may be readily develaped.

57. PORTABLE BARBED-WIRE OBSTACLES

Standord concertinas are in this category becoase they ore reodily maved. Other portable barbed-wire obstacles are listed belaw.

a. Spirols of laase wire ore used to fill open spoces in and between wire entanglements. Prepore them by driving faur 1-meter posts into the graund ta form a diamond 1 meter by 0.5 meter. Wind 75 meters of wire around them from bottam ta tap. Remove wire from the frame, tie it of the quorter points, then corry the spirals ta the site where they are apened and used.

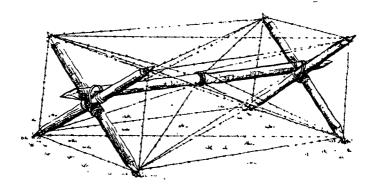


Figure 71. Knife rest.

b. The knife rest (fig. 71) is o portable wooden or metal frome strung D. the knite rest (rig. / 1) is o portoble wooden or merol frome strong with borbed wire. It is obout 4.5 meters long ond 1.2 meters high. It must be securely fixed in position. c. Right offer o defensive position is occupied and before protective wire is erected, trip wires should be ploced just outside of grenode ronge (obout 40 meters). Stretch the wires obout 25 centimeters obove the

ground ond stretch on pickets of 1.5-meter intervols. Conceol them in long gross, on the side of o poth, or of the edge of o field. d. Tanglefoot is used where conceolment is needed (fig. 72). a. tangteroor is used where conceolment is needed (ng. 14). Use it in a minimum depth of 9 meters. Place pickets of irregular intervals of from 0.75 to 3 meters. Height of the borbed wire vories from 0.25 Ploce

to 0.75 meters. Site this wire in scrub, if possible. supports for port of the wire ond short pickets in open ground. e. The trestle opron fence (fig. 73) hos inclined cross-pieces spaced at 5- to 6-meter intervols to corry wires on the enemy side.

Use bushes os

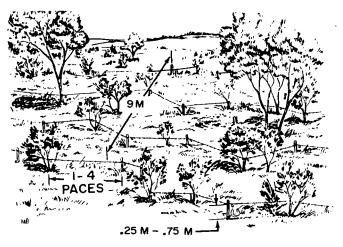


Figure 72. Tanglefoot.

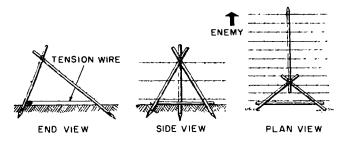


Figure 73. Trestle apron fence.

CHAPTER 5 MARKING OF BRIDGES AND VEHICLES

58. MARKING OF BRIDGES

o. Clossification.

(1) The closs number of o bridge represents the sofe load-corrying copocity of o single-lone bridge, or o single lone of o multilone bridge under normal crossing conditions. The bridge closs number may be o single closs number, which will permit either o wheeled or trocked vehicle to cross if the vehicle closs number is equal to or less than the bridge closs number. The bridge closs number may be o dual closs number, which indicates one normal closs number for wheeled vehicles and onother normal closs number for trocked vehicles. Dual classification may be used for bridges with a copacity greater than Class 30. For reconnaissance reports and tables, dual closs numbers written (70)/ 50, (80)/60, (50)/70, and so an, with the wheeled class number in porentheses above the tracked vehicle class number.

(2) The normal class number is the largest bridge class number (single or dual) which permits the normal crossing of vehicles whose vehicle class numbers are equal to ar less than the bridge class number.

(3) A special class number represents the load-corrying copacity of a bridge under special crossing conditions. These numbers are not posted on standard bridge marking signs, but an supplementary signs.

(4) Width requirements. See toble 29.

b. Bridge Signs.

(1) For prefobricoted bridges ond ferries, bridge signs indicate the closs number given in technical manuals. For bridges fixed in place or for nonstandard fixed bridges designed in the field, bridge signs shall indicate the closs number found by methods shown in chapter 7.

(2) All single-lone bridge signs ore o minimum of 16 inches in diometer. For multilone ond duol closs bridges, the signs ore ot leost 20 inches in diometer. Numerols ore block on o yellow bockground, with o block border 1 ½ inches wide.

Bridge class	4 - 12	13 - 30	31 - 60	61 - 100
One-lane width	9'0"	11'0''	13'2''	14'9''
Twa-lane width	18'0''	18'0''	24'0''	27'0''

Toble 29. Bridge Width Requirements '

(3) A multilane bridge hos o roodway wide enough to corry ot least two lones of troffic simultaneously. If each lone hos the some closs, the signs ore the some as for single-lane bridges. If the lones ore of different closses, eoch lone has o class sign. Two-lone bridges moy corry a combination circular sign (fig. 74), which gives the normal twoway classification on the left and the computed, one-way classification on the right.

(4) Duol clossification is used for bridges with a copacity greater than class 30. Two numbers are then shown on the sign: the upper one for wheeled vehicles, the lower one for tracked vehicles (fig. 74). Dualcloss two-lone bridges may be designated by a composite sign indicating both dual-class and combination classes (fig. 74).

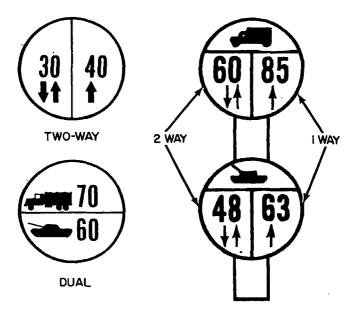


Figure 74. Bridge classification signs.

c. Traffic Control. Ta expedite passage of vehicles and to prevent damage to the bridge, rigid control of bridge traffic must be maintained. This is done by the fallowing control measures wherever possible.

(1) A troffic park is set up where vehicles con be halted and dispersed so as to avaid congestion.

(2) A turnout area is pravided for vehicles ta turn aff the raad and . aut af the line of traffic. It is meant primarily far vehicles having mechonical troubles, but it can be used as a limited troffic park.

(3) Telltates are provided for bridges having overhead framing, trolley wires, or other features which limit averhead clearance (fig. 75).

(4) A normal crassing is defined as one in which the vehicle class number is equal ta ar less than the bridge classification number, where vehicles mointain 30-yord gops, and where speed is restricted to 25 miles per hour. On flaating bridges, sudden stopping or acceleration is farbidden.

(5) Special crassings are outharized by the lacol tactical commander under exceptional aperoting canditians in the field to permit o vehicle ta crass a bridge, ar other crassing meons, whose closs number

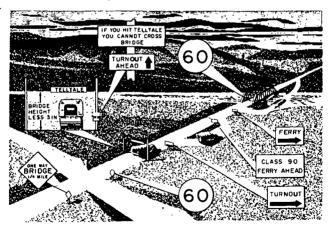


Figure 75. Exomple of telltale, turnaut, ond sign arangement for singlelone bridges.

is less thon thot of the vehicle. Special crossings are either caution crossings or risk crossings.

(o) In o coution crossing of o bridge, vehicles with a clossification up to 25 percent above the copacity of the nonstandard bridge ore allowed to cross under strict traffic control. Coution crossings also require that the vehicle remain on the centerline, maintain a 50-yard distance from other vehicles, not exceed 8 miles per hour, not stop, not accelerate, and not have its gears shifted on the bridge.

(b) A risk crossing may be mode only on stondord prefobricated fixed ond flooting bridges. Risk crossings ore mode only in the greatest emergencies. The vehicle moves on the centerline, does not exceed 3 miles per hour, is the only vehicle on the bridge, does not stop, is not occeleroted, ond does not shift geors on the bridge. The vehicle closs number must not exceed the published risk closs. After the crossing, ond before other troffic is permitted, the engineer officer should reinspect the entire bridge.

59. MARKING OF VEHICLES

o. Weight Clossification. All vehicles with a gross weight over 3 tans and all trailers with roted payload over $1\frac{1}{2}$ tans are assigned classification numbers. These numbers indicate a relationship between the load carrying capacity of a bridge and the effect produced on it by a vehicle (fig. 76).

b. Vehicle Signs.

(1) Clossification numbers assigned to vehicles are whole numbers ranging from 4 through 150. Front signs on a vehicle are 9 inches in diameter and the side signs are 6 inches in diameter. The signs have block numerals on a yellow background, and the numerals are os large os the sign will permit. Place the front sign above the bumper to the driver's right and below his line of vision; and the side sign on the right side of the vehicle in a place where normal use of the vehicle does not conceol it from view.

(2) With a combination vehicle (two or more single vehicles spaced less than 30 yords aport), the front sign shows the normal vehicle class for the combination with the letter "C" in red above the class number. Each vehicle in the combination corries a side sign which shows its class os a single vehicle.

(3) If one vehicle is towing onother, they are considered separate. However, if they are both on the same span and the distance between them is less than 30 yards, they are considered as a combination vehicle with a temporary front sign showing the class number. If the sum of the class numbers of the two vehicles is 60 or less, use the formula

EFFECT OF VEHICLE ON BRIDGE DEPENDS ON:

- I. GROSS WEIGHT OF VEHICLE
- 2. WEIGHT DISTRIBUTION TO AXLES
- 3. SPEED AT WHICH VEHICLE CROSSES BRIDGE

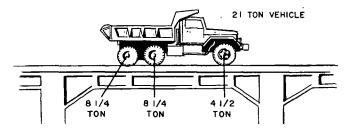


Figure 76. Effect of vehicle on bridge.

9/10(A+B) to obtain the combination class, where A is class of the first vehicle, and B is the class of the second vehicle. If the class normbers add to more than 60, use the sum as the combination class.

60. DIMENSIONS, WEIGHTS, AND CLASSIFICATION OF VEHICLES For information concerning specific vehicles see oppendix II.

CHAPTER 6 FLOATING EQUIPAGE

Section 1. Bridges

61. ANCHORAGE SYSTEMS

a. Ancharages must be pravided to secure the bridge between the abutments and to insure continued alinement. The selection of an anchorage system is influenced by the width af the river; its velacity, turbulence, variatians in stage; debris flaw; nature af material in the river bed and embankments; and the time, materials, and persannel available. The ancharage system is designed to withstand the warst canditians anticipated. The basic ancharage systems used are: averhead cable-bridle line systems, share guys, kedge anchars, and a cambinatian of kedge anchars and share guys. The most satisfactory method of ancharing a flaating bridge is the averhead cable bridle-line system supplemented by share guys. Flaat supparted cables, share guys, and kedge anchars shauld nat be used as the final ancharage system except when it is not possible to install an overhead cable system. Although cambinations of the basic ancharage systems may be used during assembly and far reinfarcement, the laad cannat be properly divided between two systems; ane system must supplement the other. Overhead cable systems can hald in currents up to 11 fps; cambination kedge anchors and share guys up to 5 fps; and kedge anchars ar share auys alane up ta 3 fps. Kedge anchars are used an every bay upstream and every other bay downstream. Share auss are used an every sixth bay upstream and every tenth bay dawnstream. When an averhead cable system is used, a bridle line is used an every panton.

b. See figure 77 far a typical layaut of an averhead cable-bridle line system. Table 30 can be used to select the required size ar the required number of averhead cables for a particular situation.

Example: a 400-faat span reinfarced M4T6 bridge in a maximum current af 9 fps wauld require 1 each 1¼-inch-diameter cable, ar 2 each 1-inch-diameter cables, ar 3 each ¾-inch-diameter cables (fram table 30).

62. ALUMINUM FLOATING FOOTBRIDGE

a. The aluminum faatbridge is the standard means af crassing foot traaps. This faatbridge set furnishes 472 feet 6 inches af bridge, and

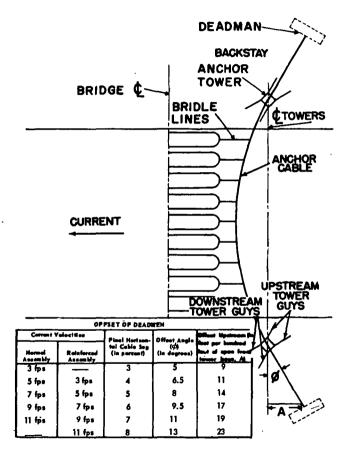


Figure 77. Typical anchor cable system.

can be used in currents up to 11 feet per second. One bay of bridge consists of one panton, one treadway, and four handrail posts, which provides 11 feet 3 inches of bridging. The bridge is erected by successively cannecting individual bays to the near share end and pushing the entire bridge toward the far shore. Capacity, in men per minute with a current velocity up to 8 feet per second, is: day—75; moonlight—40; blackout—25. This is based on troops crossing single file at a 2-pace interval in daylight and moanlight at double time. Reduce the capacities by 20 percent in currents of 9-11 fps.

BRIDGE	BRIDGE		SIZE	(IN.) A	NO NU	IMBER	OF C	ABLES	FOR S	PECIFI	EO ST	REAM	VELOO	ITIES
SPAN	TYPE &			5 FPS			7 FPS			9 FPS		11 FPS		
(11.)	ASSY		SINGLE	DUAL	TRIPLE	SINGLE	DUAL	TRIPLE	SDIGLE	DUAL	TRIPLE	SINGLE	OUAL	TRIPLE
	M4	N	3/6	3/6	3/6	5/8	₩3	3/8	1⁄2	76	₩.	1/2	1/2	₩3
200	m.4	R	1/2	34	¥∎	1/2	5%	3/8	5%	1/2	5/8	%	1/2	1/2
200	M4T6	N	1/2	5/8	16	\$/8	1/2	1/2	- 1/4	¥18	1⁄2	7∕∎	3⁄4	- 14
	& CL 60	R	5/8	1/2	5%	3/4	*	1/2	7/8	3/4	*a	11/8	%	3/4
		N	1/2	3/8	*	1/2	1/2	¥a	*	1/2	₩.	₹4.	76	1/2
400	M4	R	3/6	1/2	3%	*1	1/2	1/2	3/4	₩	1/2	7/8	3/4	718
400	M4T6	N	46	1/2	1/2	3/4	\$/8	1/2	1	1/8	¥a	11/4	1	3/4
	& CL 60	R	3/4	*	1/2	1	3⁄4	76	11/4	1	3/4	11/2	11/4	7/8
		N	3/8	1/2	3/8	5/8	1/2	3/8	3/4	5/8	1/2	7∕8	3/4	1/8
	M4	R	3/4	1/2	1/2	3/4	7/8	1/2	7⁄8	3/4	5/8	1	7∕∎	74
600	M4T6	N	3/4	5/8	1/2	1	3/4	3/8	11/4	1	3/4	11/2	11/4	1/6
	& CL 60	R	1	3/4	%	11/a	1	3/4	11/2	11/4	7∕a		11/2	11/0
		N	₩	1/2	7/8	3/4	₩	1/2	7⁄8	7/4	*	1	7∕∎	3/4
	M4	R	3/4	3/8	1/2	7∕a	3/4	*a	1	7/8	3⁄4	11/8	1	7∕∎
800	M4T6	N	7/8	3/4	3%	11⁄a	7∕8	3⁄4	15%	1%	7∕∎		11/2	11/8
	& CL 60	R	11/0	7∕∎	3⁄4	15%	11/a	7/8		1%	1			11/4
		N	3/4	₩	1/2	7/8	%	1/2	1	3/4	%	11/8	1/8	3/4
	M4	R	3/8	¥4	%	1	3/4	5/9	11/8	7∕8	3/4	11/4	1%	7/8
1000	M4T6	N	1	7/8	3/4	11/4	1	7/8	11/2	13%	1			11/4
	& CL 60	R	11⁄4	1	3/4	11/2	11/4	1	-		11/8			13%

Table 30. Anchor Cable Requirements

b. Construction and transportation data are found in table 31.

c. As an expedient vehicle bridge, the aluminum footbridge can be assembled with pontons butted next ta one another and offset alternately left and right of the centerline. Two treadways are used as vehicle tracks. One-quarter ton vehicles with trailers can be crossed an this bridge. Use appropriate anchorage system. See paragraph 61 and figure 78.

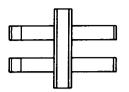
		Suggested working porty					
Bridge set	Bosis of issue	Ceto il	NCO I I I	EM			
Normol Assembly: 472 ft 6 in. Light vehicle bridge: 100 ft. Expedient roffs: 3 Mojor items: Ponton 42	One set to each engineer float bridge company* Vehicles required for transportation of bridge set: Two, 2½-ton 6 x 6 corgo trucks with 2½-ton pole-type	Neor-shore onchor coble For-shore onchor coble Bridle line Guy line Shore ossembly Assembly corrying River ossembly Hondroil	1 1 1	6 7 2 5 6 4 3			
Treodwoys 42	troilers or 3, 2½-ton corgo trucks.	Plus 2 EM per 100 ft of bridge.					

Toble 31. Aluminum Flooting Faotbridge Doto

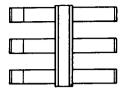
* Also one set to each Airborne Engineer Bn.

63. LIGHT TACTICAL BRIDGE

o. The light tocticol flooting bridge is ossembled fram the light tactical raft equipment. Both raft and bridge cansist of a deck built af oluminum sectians supported on oluminum pontons. With a trained crew, during daylight hours, ond in still woter, this bridge can be hond erected at o rote of 3½ feet per minute. Each boy provides 11 feet of bridging with a deck width of 9 feet. This equipment is issued os o light tacticol raft set.


b. See table 32, for bridge capacities. Organization of ossembly crews is given in table 32.

64. M4 FLOATING BRIDGE


o. The M4 bridge boy consists of two M4 aluminum holf pontans joined stern to stern with a deck of hallaw aluminum balk. The deck bolk pattern is sa designed thot a "cantinuous beam" octian results which distributes the laad over mare thon one ponton. With 18 bolk ocross the deck, the roodway width is 166 inches. The effective length af ane boy is 15 feet.

b. The M4 bridge is currently stocked as a Standard B item ond may be requisitioned against existing needs by length af bridging needed rother thon by bridge sets.

c. For a layaut of the M4 bridge see figure 79 ond for canstruction and tronspartotion data see table 34. Copacities may be faund in table 32.

SECOND H-BAY

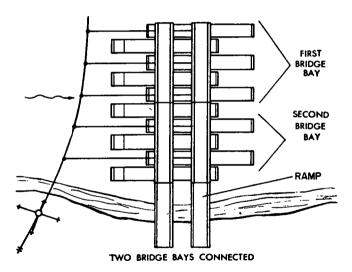


Figure 78. Assembly of light vehicle bridge.

	. ,			velocities for specifie							in feet per d ossembly		
Type of Type of bridge crossing			Reinforced -					-					
		3	5,	7	8	9	11	3	5	7	8	9	n
	Normal	, 60	60	(45) ⁴ 50	(45) 45	(30) 35	(18) 20	95	95	(75) 80	(60) 65	(45) 50	(24) 27
M4 5	Caution	68	65	(58) 59	(52) 53	(44) 46	(29) 31	100	(100) 99	(88) 85	(75) 74	62	(35) 37
	Risk	72	68	(61) 62	(58) 59	(53) 54	(37) 39	(105) 100	(105) 100	(101) 96	(88) 85	(74) (45 73	(45) 46
Nor mai	Normal	(60) 65	(55) 65	(45)	(40) 50	(35) 45	(22) 25	65	65	65	65	65	(30) 35
Closs 60 G	Coution	(65) 70	(62) 67	(56) 61	(52) 56	(45) 49	(34) 37	75	75	75	75	75	(47) 51
	Risk	(75) 75	(72)	(67) 72	(62) 67	(57) 62	(46) 50	85 -	85	85	85	85	(70) 74
Narmal	(50) 55	(45) 55	(40) 50	(35) 45	(30) 40	(25) 30	75	75	(70) 75	(65) 70	(55) <u>60</u>	(27) 30	
M416 ⁵	W4T6 ⁵ Caution	(60) 61	(58)	(54) 55	(49) 51	(45) 47	(35) 37	80	80	79	73	(66) 67	(43) 45
	Risk	(68)	(66)	(62)	(59) 60	(54) 56	(43) 45	90	90	90	87	.81	(59) 60

Table 32. Flaating Bridge Capacities

See footnates ot end of table.

133

•	Time of	Stream velacitles in feet per second far specified assembly ^s							Stream velocities in feet per second far specified assembly ¹						
Type of Type of bridge crassing	Normol ²							Reinfarced ³							
		3	5	7	8	9	11	3 5 ,7 8 9				9	11		
tocticol	Normal	16	16	13	11	8	2								
	Coution	18	18	15	12	9	3								
	21	21	17	14	11	5									

Table 32. — Continued.

134

¹ Use 2-space distance for 3fps only; 1-bay distance for 4 and 5 fps; 2-bay distance for 6 and 7 fps.

² Based upon obutment deck level within 10 inches of floating bridge deck level, except for hinged or other special end spons. Where limitations are exceeded, capacities must be reduced.

³ Reinforced by placing 3 flooting supports under 2 boys of decking. 50 percent reinforced.

* (Wheeled vehicle classification)/Trocked vehicle classification. Single classification indicates both classifications are the same.

⁵ Capacities based on roadway widths of 18 bolk and deck width at 22 bolk. Reinfarced assembly requires a 38'4" superimposed end span.

⁶ Reinforced bridge copocities up to 9 fps ore cantralled by end spon limitations.

65. CLASS 60 FLOATING BRIDGE

a. The Closs 60 bridge bay cansists af twa steel deck-tread panels, twa curbs, and ane filler panel with an effective bridging length of 15 feet and a raadway width af 162 inches. The flaating suppart far one bay cansists of twa pneumatic half flaats jained stern to stern and, when praperly saddled with the equipment pravided, it is rated at 24 tons capacity. The bridge requires cranes and air campressars far assembly.

b. Canstructian and transpartatian data are listed in table 35, and capacities are given in table 32.

c. Twa trestle assemblies are furnished with each set. See paragraphs 69 through 79.

66. M4T6 FLOATING BRIDGE

a. Thraugh the use af deck balk stiffeners and saddle adapters, the deck balk fram the M4 flaating bridge and the pneumatic flaats fram the class 60 flaating bridge can be cambined to build a hand erected

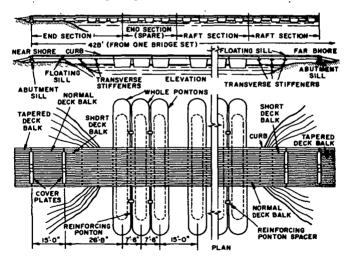


Figure 79. Flaating bridge, M4.

135

high capacity bridge. An air compressor is required for assembly. The deck farms a continuous beam action over the pontons and provides an effective bridging length of 15 feet per bay with a roadway width of 166 inches. See figure 80 for deck balk layout.

b. Construction and transportation data are listed in table 36 and capacities are given in table 32.

c. Two trestle assemblies are furnished with each set. See section II, this chapter.

d. For information about connection of the M4T6 bridge to the M4 and class 60 floating bridges, see TM 5-210.

Details	NCO	EM	Summary of Tasks
Pontan	١	10	Unload, launch, and join half pontons.
Deck	1	10	Unload and place deck panels, curbs and filler panels on pontons.
Ponton delivery		2	Deliver complete bays to bridge- connecting site.
Bridge connecting	1	4	Connect assembled bays to the bridge.
Near-shore abutment.	1	8	Construct near-shore abutment; connect articulator and ramps; and maintain bridge aline- ment.
Far-shore abutment	1	8	Construct far-shore abutment, in- stall end section articulator and ramps.
Anchorage	2	12	Install anchar cable, bridle lines, and shore guys (see TM 5– 210 and para 61 FM 5–34)

Table 33. Organization for Assembly of Light Tactical Bridge by Successive Pontons

Gridge set	Standard 9 Stock Basis af Issue	Suggested working party					
	Closs iV	Qetail	NCO	EN			
Floating bridge:	Vehicles required for	Neor-shore abutment	1	8			
608 ft 4 in.	transportation of	Pontan autfitting (2 arews).	4	36			
	bridge set:	Ponton delivery (2 crews)	2	10			
Fixed bridges:		Anchorage	2	12			
2-23 ft	∛a-ton cargo truck	Solk corrying	2	88			
2-30 ft	21/2-tan cargo truck	Balk loying	1	1			
2-38 ft	21/2-ton truck, balster	For shore abutment.	1	16			
2-45 ft	21/2-ton holster trailer 21/2-ton pale type trailer	Pin checking	1	3			
Rofts:	5 ton dump truck	Total	14	181			
4-4-ponton	Transported by						
4-6-ponton	organic vehicles of			ŀ			
4-7 ponton	the using unit.						

۰

Toble 34. Construction and Transportation Data of M4

Table 35. Canstructian and Transpartatian Data of Class 60

• • • • • • •		Suggested working party					
äridge set	Basis of issue*	Detail	NCO	EN			
Floating bridge:	Closs iV	Supervisory	2				
135 ft.		Crone crew	1	1			
Fixed bridges: 4, 30 ft	Vehicles required for transportation of	Saddie ossembly—2 crews Floot inflotion	2	20			
3, 45 ft	bridge set:	Oeck panel	ı	6			
2, 60 ft 1, 75 ft 1 multispen	9 ea. 5-ton 6 x 6 militory bridging trucks corry	Single bay, cannecting Soot crew	I	6 4			
from 85 to	one complete bay each.	Bridge ossembly	1	9			
92 ft	3 eq. carry occessories	Ancharage	i	10			
Rofts:	·	Trestle	i	9			
1 4, 5, or 6 float.	Allocation same os M4T6 see toble 36.	Tatal	10	80			

*May be portiol issue of M4T6 bridge sets. See table 36.

Bridge set	Basis of issue*	Suggested working party					
Normal floating bridge,	Divisional Engr. 4 sets.	Detail	NCO	EM per crew			
141 ft. 8 in. One 4-float and one 5-float reinforced raft, 2 fleating bridges, 75 ft., one without reinforcing balk an end float, 38 ft. 4 in.span fixed bridges.	Abn. Div. Engr. none. Engineer float bridge campany (5 bridge sets af 141' 8" each for a float bridge company at full strength, and 3 sets for a company at reduced strength).	Floot inflotion Saddle assembly Assembled flaat delivery Balk-carrying from share Balk-laying Ancharage Ancharage Near-shore abutment Far-share abutment	1 2 2 1 2 1 1	8 20 4 40 12 12 8 8 8			

Table 36. Canstructian and Transportatian Data of M4T6

"May be partial issue af class 60 steel treadway bridge transportatian same as class 60 bridge set. See table 35.

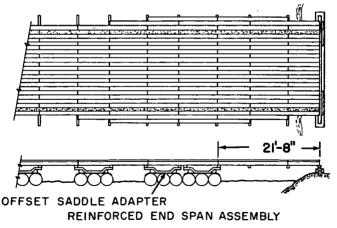


Figure 80. Bridge, flaating, aluminum deck-balk superstructure (M4T6).

67. AMPHIBIOUS RIVER CROSSING EQUIPMENT (ARCE-FRENCH)

o. Descriptian.

(1) This omphibiaus river-crossing equipment consists af these twa majar items: the amphibious bridge vehicle, class 60 (ABV-60); the amphibious romp vehicle, class 60 (ARV-60).

(2) The basic unit of each omphibiaus vehicle is a welded steelplate water-tight hull mounted an a four-wheel drive chossis.

(3) Ta insure stability and buayancy during novigation, each vehicle is equipped with twa pneumatic floats abaut 36 feet in length and 4½ feet in diameter, attached ta the sides. A compressor is kept in operation during water travel ta maintain a constant pressure on the floats.

(4) An integrol port af eoch ABV-60 is 26 feet 3 inches af decking, folded for rood tronspart, and pivated ond widened far bridge canstructian. After entering the water, the deck sectian is rototed 90°, widened to 13 feet 2 inches, ond deck-filler ponels ore added.

(5) The effective length of the ramp of he ARV-60 is 26 feet 3 inches. It is 13 feet 2 inches wide.

(6) See toble 37 for vehicle specifications.

b. Copacity. The French ARCE is classified as a closs 60 bridge in currents up to 9.8 fps.

c. Operation.

 A four-man crew, cansisting af o driver, pilat, and two crewmen, is required to operate the vehicle an lond, in the woter, ond during bridge constructian.

(2) The ABV-60 enters the woter, reody far incorparatian onta a bridge ar raft, as a 26 foot 3 inch floating sectian. All mavements of the decking during canstructian are hydroulically controlled. As successive units enter the water they are joined until the required length of bridge or raft has been built, then ramps are added to each end.

 $(\bar{3})$ The end ramp is transported by the ARV-60. The corrier unit positions the romp far connection to the bridge ar raft and is disengoged when the cannectian has been mode. All mavement of the ramp during construction and operation is dane by the hydroulic system of the carrier and bridge vehicle to which it is cannected.

68. MOBILE FLOATING ASSAULT BRIDGE/FERRY (MFAB/F-U.S.)

a. Description.

(1) This omphibious river crassing equipment consists of a bosic hull of aluminum plote with either on intermediote superstructure ar on

Specificatian	U.S.	French
Vehicle length	42'-3"	36'-0"
Vehicle width — Land travel	12'-0"	10'-0"
— Intermediate	_	13'-0"
— Water travel	12'-0"	19'-8"
Vehicle height—Interiar bay	10'-6"	12'-10"
—End bay	11'-9"	12'-10"
Draft-unlaaded		
Atmaspheric wheel well	2'-7"	_
Air pressure wheel well	2'-0"	2'-0"
Weight—Tans—Interiar bay	23.75	29.70
End bay	25.13	30.20
Turning radius	40'-0"	57'-5"
Vehicle speed — Land travel — MPH	35	37
Fuel tank capacity—U.S. gallans	100	132
Engine harsepawer	335	222
Superstructure dimensions		
Length—Interiar bay	26'-0"	26'-3"
—End bay	37'-0"	26'-3"
Width	13'-6"	13'-2"
Ramp articulatian — Abave harizantal	6'-3''	10'-0"
—Belaw harizantal	6'-3"	1'-0"

Table 37. Mabile Flaating Assault Bridge Vehicles

articulating ramp end sectian mounted an tap of it. The hull alane pravides all the buayancy for the vehicle and the bridge laad.

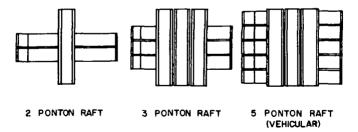
(2) The faur wheels which prapel the MFAB/F unit an lond retract in the water and the wheel wells can be air-pressurized for added buayancy.

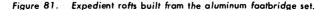
(3) Similar ta the French ARCE, the U.S. MFAB/F has a superstructure which is ratated 90° ta farm ane bay af bridge decking.

(4) See table 37 far vehicle specifications.

(5) Effective length af the ramp is 37 feet, and the interiar bay is 26 feet.

b. Capacity. The U.S. MOFAB is classified as a class 60 bridge.


c. Operatian. A three man crew aperates the bridge unit an land and in the water, ratating the superstructure and maneuvering to cannect the unit to onather interiar bay ar ramp unit. The ramp daes not discannect fram the ramp vehicle os with the French ARCE. Section II. Rofts, Fixed Spon Assemblies, and Boats


69. RAFT POWER AND PERSONNEL

All stondard rafts built fram stondord bridge sets may be pawered by properly rigged 19-faat ar 27-faat bridge erectian power boats. One 19-taat baat may be used in currents not aver 5 fps. In currents aver 5 fps, normally two 19-foat baats may be substituted far one 27-foat baot. Rafts built fram the light toctical roft set ore normally pawered with from ane ta faur autbaard motars. All standard rofts require appraximately one squad af men far aperatian plus pawer baat aperatars. Where stream velacities are so high as ta prevent available pawer sources fram pushing a roft streight ocross the streom, the unlaading point must be dawn streom fram the looding point. Use steel pickets in hord soil and wood pickets in softer sails to form haldfosts ta secure rofts far looding ond unlaading.

70. EXPEDIENT RAFTS USING ALUMINUM FOOTBRIDGE

Expedient persannel or vehicle rafts moy be constructed by plocing one ar three widths af oluminum footbridge treodway, side by side ocross o row of two, three, ar five pontans fram the some set, olso butted side by side. Treadwoys connected ta the twa outside deck treodways will farm a ramp far vehicle looding. A single ¼-tan truck ar o single ¼-tan troiler (securely blocked ar tied down) is the maximum load thot should be ottempted with the vehiculor roft. The rofts ore propelled by poles, poddles, or outboard matars (fig. 81).

7	4	2
	4	

	Tabl	le 3	38	. Ra	ft Ca	pacities
--	------	------	----	------	-------	----------

_	No. of			Class (of roft		Len	igth	
Type of	pontons or	Type of	5	tream Ve	locity, fp:	5	Overoll,	Avoiloble	
roft	floots	crossing	5	7	9	11	including romps	for looding*	
	4	Normal	(40) 45	(40) 45	(35) 40	(25) 30			
	4, normol	Risk	(50) 55	(50)	(45) 50	(35) 40	92'-5''	51'-0"	
	4, rein-	Normol	(45) 55	(40) 45	(35) 40	(25)			
	forced	Risk	(55) 60	(50) 55	(45) 50	(35) 40	83'-1''	40'-0''	
		Normol	(50) 55	(50) 55	(40) 45	(30)		66'-0''	
Class 60	5, normol -	Risk	(60) 65	(60) 65	(50)	(40) 45	107'-5"		
	5, rein- forced	Normol	(55) 60	(55)	(45) 50	(35)		54'-6''	
		Risk	(60) 70	(60) 65	(55) 60	(45)	92'-5″		
	5, with one short deck boy rein- forced	Normol	(60) 65	(55) 60	(50) 55	(45) 50			
		Risk	(65) 75	(65) 70	(60) 65	(55) 60	83'-1"	43'-9"	
	6, rein-	Normol	(65) 75	(65) 75	(60) 65	(50) 55		57'-0''	
	forced	Risk	(80) 90	(80) 90	(70) 80	(60) 70	92'-5''		
	6, with one short deck	Normol	(60) 70	(60)	(55)	(45)			
	boy rein-	Risk	(75) 85	(75) 85	(65) 75	(55) 65	98'-9''	50'-10''	
		Normol	(50) 55	(50) 55	(50) 55	(40) 45			
	4, normol	Risk	55) 60	(55)	(55)	(45)	87'-0''	51'-8″	
44	6, partiolly	Normol	(70)	<u>60</u> (70)	60 (65)	<u>50</u> (50)		- <u>-</u>	
	reinforced	Risk	75 (75) 80	75 (75) 80	70 (75) 80	55 (55) 60	87'-0''	51'-8"	

	farced	Bick	(70)	(70)	(65)	(55)	88'-9''	1	0'-1"
		Risk	75	75	70	60			
	4 pontons	Normai	12	12	8	0	58		
Light	3 bays	Risk	14	14	12	4			
tactical	5 pontons	Normal	9	9	8	2	80		
raft w/	5 bays	Risk	11	11	11	6			
erticula- tors	6 pantons	Normal	13	13	13	5	69		
	4 bays	Risk	15	15	15	11			
							Strea	m wie	ith ft.
Operating characteristics of rafts								500	1,000

*Measured from autside edge ta autside edge af end pontans or float saddle beams. NOTES.

1. Numerals in parentheses represent wheeled vehicle class; numerals without parentheses represent tracked vehicle class.

2. Capacities are based on loading rafts with center of gravity of loads 6" downstream fram top of raft and an properly infloted floats.

3. Extreme cautian is required in loading and unlaading vehicles weighing mare than 70 tans.

Raadway width cansists of 18 balk between curbs with 22 balk averall (M4 & M476).
 M476).

5. Capacities of LTR may be increased by 4 if na articulatars are used.

71. LIGHT TACTICAL RAFT

o. The deck of the light tactical raft consists of two aluminum deck treads and filler panels. The unit of issue of this raft pravides components of one 4-pontan normal raft.

b. See toble 38 for roft classification by construction and stream velocity. See table 39 far classes of French-ARCE rafts.

c. Construction transportation, ond operation is as follows:

(1) The construction time for assembly of the light toctical raft is given in toble 40.

(2) The light tactical roft camponents are normolly tronsparted on two $2\frac{1}{2}$ -tan corga trucks and one $2\frac{1}{2}$ -ton pale-type trailer. With each raft set there ore four chain slings, four binders, and ane crodle. The chain slings and binder secure the raft sets on vehicles, and the crodle nests the half pontans on troilers. The eight deck panels, eight filler panels, ond eight lang curbs of the superstructure are transported on the $2\frac{1}{2}$ -ton truck used to houl the trailer. Another $2\frac{1}{2}$ -ton truck transports the articulating ossemblies, ramps, ponels, orticulator ond romp curbs, orticulator and ramp fillers, onchors, and holdfasts.

(3) The party operating the roft is normolly under the supervision of an NCO ond camprises o roft crew, o nearshore crew, and a forshare crew. Toble 41 autlines their duties.

72. M4 RAFT

a. The M4 roft (fig. 82) can be assembled from the components of the M4 floating bridge set, (para. 64). The basic 4-ponton roft con be converted to a reinforced roft with greoter load capacity by adding reinforcing pontons. The ather recommended types of rafts ossembled from M4 bridge equipment ore the 6-panton and 7-ponton, both reinforced (fig. 82).

Raft construction	Current velacity fps					
	0-4.9	5.0-6.6	6.7-8.2			
2—Bay	55	49.5	4.4			
3—Bay	88	80.3	71.5			
2 — Bay 3 — Bay 4 — Bay	121	110	99			
		1				

Table 39. ARCE Raft Copacities

Capacities are given in short tons.

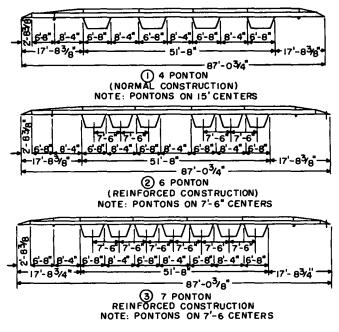
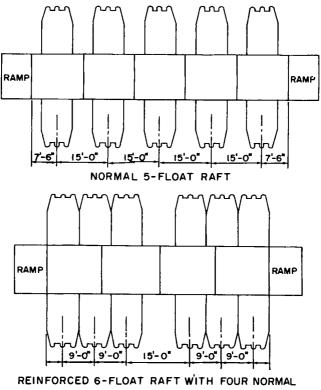


Figure 82. M4 raft.

b. The amount of time and the number of trained men required for the assembly of M4 rafts are given in table 42. Raft classifications are given in table 38.

73. CLASS 60 RAFT


a. The class 60 raft (fig. 83) can be assembled from the components af the class 60 flaating bridge set, (para. 65).

b. Raft classifications are given in table 38.

74. M4T6 RAFT

a. The M4T6 raft (fig. 84) can be assembled fram campanents af the M4T6 flaating bridge set, (para. 66).

b. Raft classifications are given in table 38.

DECK BAYS

146

Type of assembly	NCO	ЕМ	Time required, minutes
4-ponton, 3-bay 5-ponton, 5-bay	33	27 27	15 20
6-pantan, 4-bay.	3	27	30

Table 40. Canstructian Time far Light Tacticol Roft

75. ARCE RAFT (FRENCH)

a. Far rafting, the canstruction pracedure far 2-, 3-, 4-, and 5-unit rofts is similar ta that used far the bridge. Time required varies from 15 minutes (2-unit) ta 25 minutes (5-unit). In each case, about 10 minutes are required far cannectian of the romps.

b. See table 39 far raft construction and classification.

76. MFAB/FERRY (U.S.)

a. Far rafting, the canstruction pracedure is similar ta that used far the bridge. A faur-unit ferry cansisting af two end bays and twa interior bays and copable af corying o closs 62 vehicle ar a tatal of 72 tans payload, at 8 mph con be assembled by its crew of three men per unit in obout 12 minutes.

b. Tentative MFAB/Ferry classifications are given in table 43. These classifications are subject to change with further development of the units.

Crew	Na. af men	Duties
Raft	8	4 men operate autboard mators; 4 men place and remave chocks fram wheels af vehicles.
'Near share	1	1 man guides vehicles anta raft and instructs drivers in proper aperatian af vehicles while being laaded and unlaaded.
Far shore	1	1 man guides vehicle aff raft.
Guy line	4	Handle guy lines.

Toble 41. Duties af Porty Operating Light Tactical Raft

Type of ossembly'	Time, hr.º
4-ponton roft, 15-ft. spocing	2
4-ponton roft, short deck	2
Reinforced rofts	
5-ponton	21/2
ó-ponton	3
7-ponton	31/2
5-ponton roft, short deck	21/2

Toble 42. Time ond Lobor to Assemble M4 Roft

¹One platoon is required far each type af assembly.

²For night assembly, increase time 50 percent.

The lorger rafts (5-, 6-, ar 7-ponton) are assembled by adding one, or mare, pontons to this 4-ponton raft. The reinfarcing ponton(s) is centered between the center pontons ond fostened to them by four reinforcing ponton spacers. Fram five to seven bolster-body trucks, depending upon the number of odded pantans, are required far transportation.

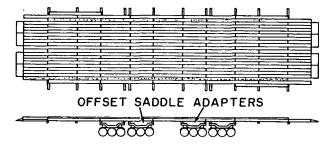


Figure 84. M4T6 reinforced roft.

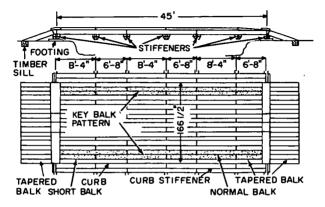


Figure 85. Loyout of deck-bolk fixed bridge.

77. EXPEDIENT AVLB RAFT

The ormored vehicle launched bridge may be launched in the usual monner from o suitable embankment onto four fully saddled 24-tan pneumatic floats from the closs 60 flooting bridge set or the M4T6 Rooting bridge set to build on expedient roft. The bridge is centered lengthwise across the floats and offset downstream from the roft centerline enough so as not to rest on the treadway halddown lugs. Four roller choin rachet hoists are used to tie the bridge down to the floats. They are connected to the hook rings on each side of the bridge and to the outermost saddle beams an the end flagts. The floots are tied together securely with rope befare the bridge is lounched. Power is sup-The roft should not be used in fost plied by bridge erection boots. currents and should be used only as a necessary expedient. Four hinge pins must be ploced in the top center connectors when the AVLB is used as a raft. These pins are not kept with the bridge because they serve no function in the normal use of the bridge.

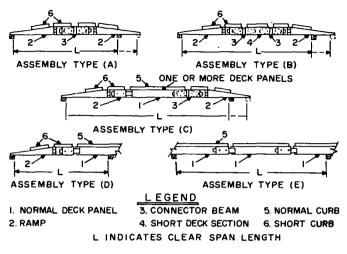


Figure 86. Class 60 fixed bridge.

Raft construction	Type crossing				
	Narmol	Risk			
end bays	25				
3 boys	47	55			
4 boys	72 •	81			
5 bays	90*				
óbays	108*	115			

Toble 43. MFAB/Ferry Classification (Tons)

*Provided that no single vehicle in the payload exceeds class 62. All closses are tentatively designated.

.

Туре af		C	Capacity	far Spe	cified	Span L	.ength	s (f oo	t) and	Ratio	of Decl	(Road)	voy Width	• ¹	
Crossing	23'4''		30'0''			38'	4''					45'()''		
	22 18	22 18	22 16	24 18	22 18	22 16	24 18	26 18	20 16	22 18	22 16	24 18	24 16	26 18	26 16
Normal	³ (120) ² 100	(85) 65	(90) 70	(90) 70	(45) 35	(50) 40	(55) 45	-		(24) 25	(30) 30	(30) 30	(40) 35	(40) 35	(45) 40
Coution	(120) ² 100 ²	(100) 80	(100) 80	(105) 85	(70) 51	(70) 51			(40) 35	-	(46) 40	(51) 43	(51) 43	(56) 46	(56) 46
Risk	(120) ² 100 ²	(110) 90	(110) 90	(115) 95		(78) 57		(90) 67	(47) 40	1	(54) 45	(60) 49	(60) 49	(66) 53	(66) 53

Table 44. Deck Balk Fixed Bridges (Span Capacities)

²Limited by roodwoy width

78. FIXED SPAN CONSTRUCTION

a. The decks fram either the class 60 floating bridge sets ar the M4 and M4T6 bridge sets can be assembled as fixed bridges ta crass small gaps. Twa trestle sets are furnished with each class 60 and M4T6 bridge set. These must be used as sets af twa and crass braced ta each ather ta attain the praper classificatian.

b. Tables 44 and 45 and figures 85 and 86 list the classifications far variaus spans af M4 balk and class 60 fixed spans. The span is the clear distance between abutments, trestles, ar suitable expedient supports.

79. LIGHT STEAM CROSSING EQUIPMENT

Data an the characteristics af engineer stream-crassing equipment is campiled in table 46.

Clear	Type of		Classes	
span (feet)	assembly	Narmal	Cautian	Risk
24	ABCDE	(120*) 100	(120*) 100*	(120*) 100*
26	ABCD	(120*) 95	(120*) 100	(120*) 100*
	Ε	1201 100	(120•) 100	(120*) 100*
28	ABCD .	(115) 80	(120*) 87	(120°) 100
	Ε	(120) 85	(120*) 92	(120*) 100*
30	ABCD	(105) 65	(110) 65	(120*) 90
	Ε	(110) 70	(120) 80	(120*) 95
32	BCDE	(95) 60	(105) 70	(120) 85
34	BCDE	(85) 55	(90) 63	(110) 75
36	BCDE	(75) 50	(81) 58	(100) 68
38	CDE	(65) 45	(75) 53	(90) 65
40	CDE	(60) 40	(68) 50	(83) 60
50	CDE	(30) 30	(36) 36	(50) 45
60	CDE	(20) 22	(22) 25	(28) 30

Table 45. Classes of Fixed-Span Assemblies Shawn in Figure 86

*Limited by roadway widths.

NOTES.

 Figures in porentheses represent wheeled vehicle closs and other figures represent tracked vehicle closs.

2. These capocities are for mast critical position of obutments.

3. For symmetrical erection of type B, with respect to obutments, the stated copocities may be increased 10 tans.

4. Number of narmol deck panels utilized depends on spon length desired.

Table 46. Engineer Light Stream-Crossing Equipment Dato

l te m	Use	Öescription	Copocity	Remorks
Three-mon recon- noissance bon*	Reconnoissonce	Coovos w/S com- portments Issued w/tawline ond 3 poddles. Total wgt 30 pounds.	3 men in current Speeds up to 4 KMPH.	Boat is breath-inflated or hand pumped. Easlly carried by ane mon when deflated and packed in case.
Plastic assault boot	Initial crassing	Plastic, hand paddled Weight 300 pounds Length 16'5'' Width 5'4''	12 Inlantrymen w/fuls equipment or equiv- olent in current speeds up to 4 KMPH.	Marmol crew, three engineers. Maximum apacity w/no current is 3300 pounds. Can be propolled by ono 25-KP outboard motor ot speed of 12.8 KMPH w/o o load roduc- tion.
Storm boot	Speed crossing	Plywood, double- bottomed. Weight 440 lbs. w/o motor.	7 Infontry w/full equipment	Normal crew, two engineers. Power supplied by two 25-HP motors Moximum speed 32 to 40 KMPH. Capable of crash-londing of full speed. Engr CL IV Supply.
Plostic ossoult boot Employed os storm boot	Speed crossing	See plostic ossoult boat obove.	5 Riflemen w/full equipment and 1-mon crew.	Moximum speed 32 KMPH. Capable of crasb-londing of full speed. Can be used in currents up to 12 KMPH. Power supplied by one 25-HP mator.
Light tacticol raft (alum)			Closs 16 load in cur- rent velocity of B KMPH. Closs B load io cur- rent velocity of 9.6 KMPH.	Two rafts organic to Olv. Engr. Bn.
Assault boot pneumotic	Assoult crossing	Neoprene coated nylon, pneumotic, weight 250 lbs. length 17 feet, widtb 5'8''	12 fully equipped Infontrymaa, crew 3 engr	18 in Olv. Engr. Sn. Con be poddled or power supplied by 25-BHP motor. 13 KMPH in current of 7-KMPH.

153

•

CHAPTER 7 FIXED BRIDGES

Section I. Timber Trestle Bridge

80. INFORMATION

A timber trestle bridge (fig. 87) is ane af the simplest types of bridge built in a theater af aperations. Steel ar timber stringers rest an near and far-share obutments and intermediate supparts. The intermediate supparts may be timber bents, timber piers, pile bents, ar a cambination af these supparts. Spans are usually limited to 25 feet when using timber stringers. Deep water, swift current, ar adverse faating camditions demand the use of piles (fig. 88). The laad carrying component af the superstructure is the stringer system, which may be rectangular timber, round timber, ar steel beams. Steel stringers are either 1-beams, wide-flange beams, channel beams, ar built-up beams. Maximum span will depend on the size beam and capacity required. See figures 88– 92 and table 47 for nomenclature. See chapter 5 for pasting af classification signs. See TM 5-312 for further reference.

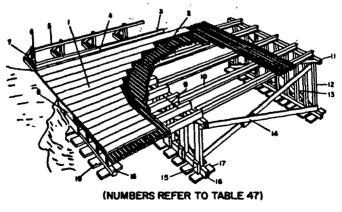


Figure 87. Timber trestle bridge.

154

Na.	Bridge Companents	Camman Sizes af References
1	Tread	2" x 10" x Randam Length
. 2	Open-laminated deck	Variable Size
3	Curb	6″ × 6″ × Randam Length
4	Curb riser black	6" x 10" x Randam Length
5	Handrail	2" x 4" x Randam Length
6	Handrail past	4" x 4" x 3'-0"
7	Handrail kneebrace	2" x 4" x Length ta Suit
8	End dam	Use tread material (1)
9	Timber stringers	See paragraph 82a
10	Steel stringers	See paragraph 82b
11	Cap	See paragraph 82c
12	Pasts	See paragraph 82c
13	Transverse bracing	2" x 10" ar 3" x 8"
14	Longitudinal bracing	4″ x 6″ or 3″ x 8″
15	Scabs	Use tread material (1)
16	Sill	Same size as cap (11)
17	Foatings	See paragraph 82c
18	Abutment sill	Same size as cap (11)
19	Abutment faatings	Same size as faatings (17)

Table 47. Bridge Campanents of Timber Trestle Bridge

See figures 87 through 92

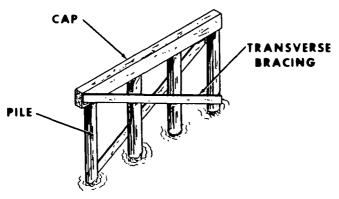
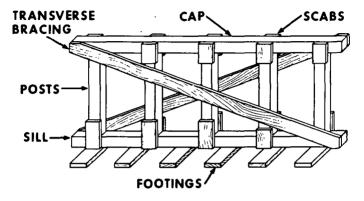



Figure 88. Pile bent.

156

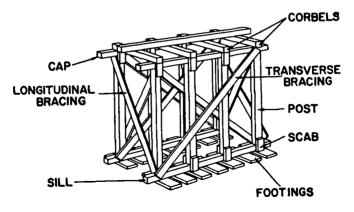


Figure 90. Timber trestle pier.

81. TIMBER TRESTLE FIELD CLASSIFICATION

a. Highway Bridge With Timber Stringers.

Count number of stringers (N) in ane lane of weakest span.
 (If weakest is unknown, use procedure for each span.)

(2) Measure width and depth of stringers in inches and span length in feet.

NOTE. Span length (L) measured fram center to center of caps.

(3) Entering table 48 with the width (b) af the stringer and the depth (d), read "m" which is the resisting moment of ane stringer. Determine "M," the total resisting moment, by the formula.

If the stringer size is not listed, compute "M" by the formula-

For rectangular $M = \frac{Nbd^2}{30}$ ar circular $M = \frac{N\pi d^3}{160}$ sections

(4) Mark this value of ''M'' on the left side of the graph in figure 93 and draw a horizontal line through this point.

(5) Draw a vertical line an the graph along span length (see bottom of graph).

(6) The intersection of the lines drawn in steps 4 and 5 gives the bridge class based on moment. If intersection falls between the two class curves, estimation should be used to determine class.

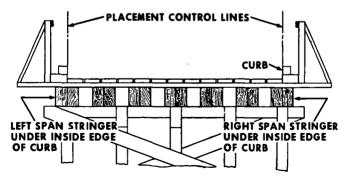


Figure 91. Placement of stringers on trestle bent.

Actual size, in. (breadth and depth)	m**	*	Maximum spon length, ft:	Actual size, in. (breadth and depth)	m**	*	Maximum span lonyth, ft.
4 × 8	8.53	1.42	12	12 × 20	160.0	10.67	30
*4 × 10	13.33	1.78	15	12 × 22	193.6	11.73	33
*4 × 12	19.20	213	18	12 × 24	230.0	12.80	36
6×8	12.80	2.13	12	14 × 14	91.5	8.71	21
6 × 10	20.0	2.67	15	14 × 16	119.5	9.96	24
6 × 12	28.8	3.20	18	14 × 18	151.2	11.20	27
*6 × 14	39.2	3.73	21	14 × 20	186.7	12.44	30
*6 × 16	51.2	4.27	24	14 × 22	226.0	13.69	33
*6 × 18	64.8	4.80	27	14 × 24	269.0	14.93	366
8 × 8	17.07	2.84	12	16 × 16	136 5	11.38	24
8 × 10	26.7	3.56	15	16 × 18	172.8	12.80	27
8 × 12	38.4	4.27	18	16 × 20	213.0	14.22	30
8 × 14	52.3	4.98	21	16 × 24	307.0	17.07	36
8 × 16	68.3	5.69	24	18 × 18	194.4	14.40	27
*8 × 18	86.4	6.40	27	18 × 20	240.0	16.00	30
*8 × 20	106.7	7.11	30	18 × 22	290.0	17.60	33
*8 × 22	129.1	7.82	33	18 × 24	346.0	19.20	36
*8 × 24	153.6	8.53	36	86	10.05	2.51	12
10 × 10	33.3	°4. 44	15	9 ₀	14.31	3.18	13.5
10 × 1 2	48.0	5.33	18	نب10	19.63	3.93	15
10 × 14	65.3	6. 22	21	116	26.1	4.75	16.5
10 × 16	85.3	7.11	24	12¢	33.9	5.65	18
10 × 18	108.0	8.00	27	13ϕ	43.1	6.64	19.5
10 × 20	1 33. 3	8.89	30	14ø	53.9	7.70	21
*10 × 22	161.3	9.78	33	1 6 ¢	80.4	10.05	24
*10 × 24	192.0	10.67	36	ب18	114.5	12.72	27
12 × 12	57.6	6.40	18	20 φ	157.1	15 71	30
12 × 14	78.4	7.47	21	22 φ	209.0	19.00	33
12 × 16	102.4	8.53	24	24¢	271.0	22.6	36
12 × 18	129.6	9.60	27	ll			

Table 48. Properties of Timber Stringers

* Lateral braces required at midpoint and ends of span.

** Section madulus may be found by solving 5 = 5 m.

φ Diameter at butt end.

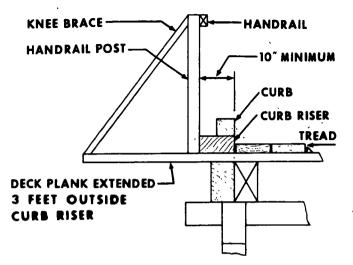


Figure 92. Curb ond hondroil system.

(7) Entering toble 48 with the width (b) of the stringer and the depth (d), read "v" which is the resistance to shear for one stringer. Determine V, the total shear resistance, by the formula.

If the stringer size is not listed, compute V by the formulo-

For For rectangular V = $\frac{2 \text{Nbd}}{45}$ or circular V = $\frac{N \pi d^2}{80}$

(8) Mork this value of V on the left side of the groph in figure 94 ond draw a harizantal line through this point.

(9) Drow o verticol line on groph olong spon length.

(10) The insection of the lines drown in steps 8 and 9 gives the bridge class based on shear.

785-094 O-66-11

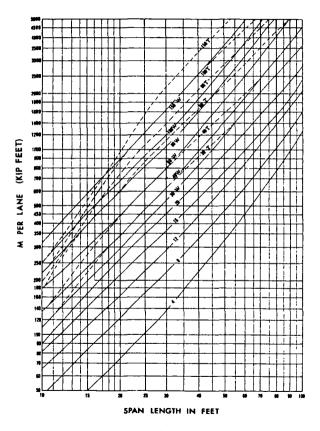


Figure 93. Moment graph for rapid field design method.

160

(11) The lawer af the classes abtained in steps 6 and 10 is the class af the bridge. Check capacity af intermediate supports.

NOTE. The closs found obove is the only number necessory for a one-lone bridge sign. For a two-lane bridge this is the two-way closs number placed on the left side of the sign.

To determine the one-woy closs number for a two-lone bridge, change steps 1 and 2 as follows:

- Step 1. Count TOTAL number of stringers in the weakest span. Measure width and depth of stringers, the span length and the width of roadway (table 29).
- Step 2. Multiply total number of stringers by

15

roadway width in feet

Steps 3 to 11. No chonge.

Example 1.

Given: One-lane bridge; wood stringers; 16-ft span; 7 stringers, each 6" x 12" (actual dimensians); 10-ft raadway width. Ta find bridge class: since there is anly ane lane, all seven stringers are effective in that lone. From table 48 far b=6" and d=12", read m=28.8. Therefare, M=7(28.8)=201.6. Mark this "M" an the left side af the graph in figure 93 and draw a line harizantally to intersect the vertical 16-ft span length line. Read class 25 fram curve. Fram table 48 read v= 3.20. Therefare, V=7(3.20)=22.4. Mark "V" an the left side af the graph in figure 94 and draw a line harizantally to intersect the vertical 16-ft span line. Read class 31 wheeled and tracked fram curve. Bridge is class 25, but because width is less than 11'-0" (table 29), a width restriction sign must be pasted directly under the class sign (see chapter 5).

NOTE. If bridge specifications do not comply with paragraph 82c, or if members are damaged, reinforcement or repair will be necessary prior to final classification.

b. Highway Bridge With Steel Stringers. Use same method as far timber stringers, a abave, except change steps 2, 3, and 7 as fallows:

Step 2. Measure width, depth, average flange thickness, and webthickness of stringers in inches and span length in feet.

Step 3. If the stringer is a beam listed in table 49, read "m" fram the table. Determine "M" by the farmula

If the stringer is nat listed or if daubt exists, campute "M" by the formula

$$M = 2Nd_1 (A_f + \frac{A_W}{6})$$
 (see example 2 belaw)

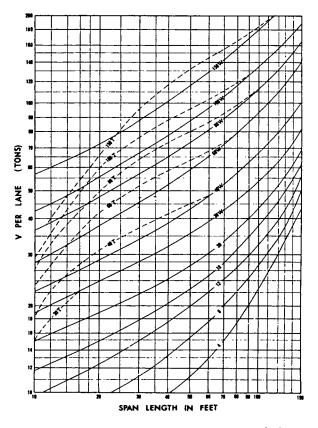


Figure 94. Shear graph for rapid field design method.

Step 7. If the stringer is a beam listed in table 49, read "v" from the table. Determine "V" by the formula

If the stringer is not listed or if doubt exists, compute ''V'' by the formulo $V=5Ndt_2$

Example 2.

Given: Two-lone bridge: steel stringers; 43-ft-spon; 4 stringers, each 30¼" deep, 10½" wide flonge, 1" thick flonge, and %" thick web; 24-ft roadway width.

To find bridge closs: roodway width limits two-way closs to closses 4 to 60. Number of stringers per lone = 2. Since table 49 does not list this stringer, find "M" and "V" as follows (fig. 95):

$$M = 2Nd_1 (A_1 + \frac{A_W}{6})$$

$$d_1 = d - 2t_1 = 28.25$$

$$A_1 = b \times t_1 = 10.5$$

$$A_W = d_1 \times t_2 = 17.66$$

$$M = (2)(2)(28.25)(10.5 + \frac{17.66}{6}) = 1519$$

$$V = (5)(2)(30.25)(\%) = 189$$

Two-way class: bridge is class 60 wheeled and class 48 tracked. One-way class: effective no. of Str.

$$= \frac{15}{\text{roodwoy width in feet}} \times \text{no. of Str.}$$

= $\frac{15}{24} \times 4 = 2.5$
M = 2(2.5)(28.25)(10.5 + $\frac{17.66}{6}$) = 1899
V = 5(2.5)(30.25)(5/4) = 236

Bridge is closs 85 wheeled and closs 63 tracked. Check copacity of intermediate supports.

٠

NOTE. If the bridge specifications do nat comply with paragraph 82c, ar if members are damaged, reinfarcement or repoir will be necessary priar ta final classification.

c. Copocity of Trestle Bents. In almost all coses the stringer is the most critical member of the bridge (figure 91). However, a check of the copocity of the posts may be made. To check post copocity of the weakest support:

Count posts ond meosure size of posts.

(2) Use toble 50 and determine maximum load per post, or use this formula: A_{n}

Mox. Lood (in tons) = $\frac{1}{4}$

A_p=Cross sectional area of post (sq. in.)

	164
Table 49.	Properties of Steel Beams

Naminal size	Actual depth d	Actual width D	Flange thick- ness t ₁	Web thick- ness 1 ₂	"Ì	•	Max span length	Max brac- ing space
² 51BU278	51-1/4	14	1-5/8	3/4	27 27	192	128	15
³ 39WF 211	39-1/4	11-3/4	1-7/16	3/4	1574	147	98	15
³ 37WF206	37-1/4	11-3/4	1-7/16	3/4	1472	140	93	15
36WF 300	36-3/4	16-5/8	1-11/16	15/16	2210	172	92	25.5
36W F 194	36-1/2	12-1/8	1-1/4	13/16	1327	148	91	14
36WF182	36-3/8	12-1/8	1-3/16	3/4	1242	136	91	13
36WF 170	36-1/8	12	1-1/8	11/16	1158	124	90	12
36WF160	36	12	1	11/16	1082	124	90	11.5
36 WF 230	35-7/8	16-1/2	1-1/4	3/4	1671	134	90	19.5
² 36WF150	35-7/8	12	15/16	5/8	1006	112	90	10.5
³ 36WF201	35-3/8	11-3/4	1-3/16	3/4	1374	132	88	16
³ 33WF 196	33-3/8	11-3/4	1-3/16	3/4	1274	125	83	17
33WF220	33-1/4	15-3/4	1-1/4	13/16	1481	135	83	20
33WF141	33-1/4	11-1/2	15/16	5/8	894	104	83	11
33WF130	33-1/8	11-1/2	7/8	9/16	810	93	83	10
33WF 200	33	15-3/4	1-1/8	3/4	1339	124	83	18.5
³ 31WF180	31-1/2	11-3/4	1-5/16	11/16	1 18	108	79	16.5
30wF124	30-1/8	10-1/2	15/16	5/8	709	94	75	11
30WF116	30	10-1/2	7/8	9/16	656	84.5	75	10
30 W F 108	29-7/8	10-1/2	3/4	9/16	598	84	75	9
³ 30WF 175	29-1/2	11-3/8	1-5/16	11/16	1028	102	74	17.5
³ 27WF171	27-1/2	11-3/4	1-5/16	11/16	942	94.5	69	18.5
27WF102	27-1/8	10	13/16	1/2	533	68	68	10
² 27WF94	26-7/8	10	3/4	1/2	486	67	67	9
³ 26WF157	25-1/2	11-3/4	1-1/4	5/8	814	79.5	64	19
24WF94	24-1/4	9	7/8	1/2	442	60.5	61	1 ii
24WF84	24-1/8	9	3/4	1/2	393	60	60	9.5
24WF100	24	12	3/4	1/2	498	60	60	13
24 120	24	8	1-1/8	13/16	502	97.5	60	12.5
24 106	24	7-7/8	1-1/8	5/8	469	75	60	12
24 80	24	7	7/8	1/2	348	60	60	8.5
24WF76	23-7/8	9	11/16	7/16	351	52	60	8.5

Table 49—Continued

.

Naminat size	Actual depth d	Actuał width b	Flange thick- ness t	Wob thick- ness 12	m ¹	•	Max span length	Max brac: ing space
³ 24WF 153	23-5/8	11-3/4	1-1/4	5/8	736	74	59	20.5
³ 24 134	23-5/8	8-1/2	1-1/4	13/16	564	96	59	15
³ 22 75	22	7	13/16	1/2	274	55	55	8.5
³ 21WF139	21-5/8	11-3/4	1-3/16	5/,8	622	67.5	54	24.5
³ 21 112 21WF73 21WF68 21WF62 20 85	21-5/8 21-1/4 21-1/8 21 20	7-7/8 8-1/4 8-1/4 8-1/4 7-1/8	1-3/16 3/4 11/16 5/8 15/16	3/4 1/2 7/16 3/8 11/16	440 301 280 253 300	81 53 46.5 39.5 69	54 53 53 53 53 50	14.5 9.5 9 8 11
³ 20 65	20	6-1/2	13/16	7/16	218	44	50	9
³ 20 WF 1 34 18 WF 60	19-5/8 18-1/4	11-3/4 7-1/2	1-3/16 11/16	5/8 7/16	552 216	61.5 40	49 46	23.5 9.5
³ 18 86 18WF55	18-1/4 18-1/8	7 7-1/2	1 5/8	11/16 3/8	290 196	62.5 34	46 45	13 8.5
³ 18 80 18WF50 18 55	18 18 18	8 7-1/2 6	15/16 9/16 11/16	1/2 3/8 1/2	260 178 177	45 34 45	45 45 45	14 8 7.5
³ 18WF122	17-3/4	11-3/4	1-1/16	9/16	576	50	44	23.5
³ 18 62	17-3/4	6-7/8	3⁄4	3/8	212	33	44	9.5
³ 18 77	17-3/4	6-5/8	15/16	5/8	250	55.5	44	11.5
³ 16WF112	16-3/4	11-3/4	1	9/16	400	47	42	23.5
³ 16 70 16WF50 16WF45 16WF64 16WF40	16-3/4 16-1/4 16-1/8 16 16	6-1/2 7-1/8 7 8-1/2 7	15/16 5/8 9/16 11/16 1/2	5/8 3/8 3/8 7/16 5/16	212 161 145 208 129	52.5 30.5 30 35 25	42 41 40 40 40	12 9 8 12.5 7.5
³ 16 50 16WF36	16 16 15-7/8	6 7	1/2 11/16 7/16	7/16 5/16	138 113	35 25	40 40	8.5 6.5
³ 16WF110 ³ 16 1 62	15-3/4 15-3/4	11-3/4 6-1/8	1 7/8	9/16 9/16	307 178	44.5 44.5	39 39	25 11.5

See footnotes at end of table.

.

Naminat size	Actual depth d	Actual width D	Flange thick- ness Ti	Web thick- ness T ₂	m ¹	•	Max span length	Max brac- Ing space
³ 16 i 45	15-3/4	5-5/8	5/8	7/16	134	34.5	39	7.5
³ 15WF103	15	11-3/4	15/16	9/16	328	42	38	24.5
³ 15 56	15	5-7/8	13/16	1/2	154	37.5	38	10.5
15 43	15	5-1/2	5/8	7/16	118	33.5	38	7.5
³ 14WF101	14-1/4	11-3/4	15/16	9/16	306	40	36	26
³ 14 40	14-1/4	5-3/8	5/8	3/8	106	26.5	36	8
³ 14 51	14-1/8	5-5/8	3/4	1/2	134	35.5	35	10
³ 14 70	14	8	15/16	7/17	182	30.5	35	18
³ 14 57	14	6	7/8	1/2	136	35	35	12.5
³ 14 40	14	5-1/2	5/8	3/8	108	26	35	8
14WF34	14	6-3/4	7/16	5/16	97	22	35	7.5
14WF30	13-7/8	6-3/4	3/8	1/4	84	17.5	35	6
³ 14WF92	13-3/8	11-3/4	7/8	1/2	264	33.5	33	25.5
³ 14 46	13-3/8	5-3/8	11/16	1/2	112	33.5	33	9
³ 13 35	13	5	5/8	3/8	76	24.5	33	8
313141	12-5/8	5-1/8	11/16	9/16	96	35.5	32	9.5
12WF36	12-1/4	6-5/8	9/16	5/16	92	19	31	9.5
³ 12 65	12	8	15/16	7/16	162	26	30	21
12WF27	12	6-1/2	3/8	1/4	68	15	30	7
12 50	12 12	5-1/2 5	9/16	11/16	101 72	41 22.5	30 30	10 7.5
³ 12 34	11-1/2	4-3/4	5/8	7/16	72	25	29	8.5
311WF76	11-1/2	11	13/16	1/2	108	27.5	28	27
³ 10 29		1					20	8.5
10 T 29	10-5/8 10-1/8	4-3/4 5-3/4	9/16	5/16	60 53	16.5 12.5	25	8.5
3 ₁₀ 40	10-1/0	6	11/16	3/8	82	19	25	14
10 1 40	10	ŝ	1/2	5/8	58	31	25	8
10 1 25	10	4-5/8	1/2	5/16	49	15.5	25	7.5
10WF21	9-7/8	5-3/4	5/16	1/4	43	12.5	25	6.5
³ 10WF59	9-1/2	9-1/2	11/16	7/16	118	21	24	23

.

.

Toble 49—Continued

Naminal size	Actual depth d	Actual width D	Flange thick- ness t _i	Web thick- ness t ₂	^m 1	v	Max span length	Max brac- ing span
³ 9 25	9-1/2	41/2	1/2	3/16	46	15	24	8
³ 9 50	9	7	13/16	3/8	92	17	23	21
³ 8 35	8	6	5/8	5/16	58	12.5	20	15.5
³ 8 I 28 8WF 31	8	5 8	9/16 7/16	5/16 5/16	44 55	12.5 12.5	20 20	11.5 14.5
³ 8WF 44	7-7/8	7-7/8	5/8	3/8	72	15	20	21
37WF 35	7-1/8	7-1/8	9/16	3/8	52	13.5	18	18.5
³ 6WF 31	6-1/4	6-1/4	9/16	3/8	40	11.5	16	18.5
² Function	LEGEND adulus may al campanen minal sizes	t beams (T	M 5 - 302).	1.	<u> </u>		

(3) Multiply moximum lood per post by number of posts. (Result is moximum laad support will carry.)

(4) Add the lengths of the spons which are supported by the trestle bent.

(5) For a one-lane bridge or the ane-woy closs of o two-lone bridge, use the values abtained in steps (3) and (4) in the graph in figure 94, to determine the closs of the trestle bent. For the two-woy closs of o two-lane bridge, divide the value abtained in step (3) by twa ond use this value in the groph in figure 94.

(6) Campore this result with the stringer class and use the smoller value os the bridge class. See chapter 5 for classificatian signs.

NOTE. If bridge specifications da not camply with poragraph 82c, ar if members are damaged, reinforcement and/or repoir will be necessory prior to final clossification.

I	Rectongulo		Round			
Size, in.	Mox. Lood, tons	Height,* ft.	Size, in.	Mox. Lood, tons	Height,* ft.	
6 × 6	9	18	8	12	22	
6 x 8	12	18	9	15	24	
8 × 8	16	24	10	19	27	
8 × 10	20	24	11	23	30	
10 x 10	25	30	12	28	32	
10 x 12	30	30	13	33	35	
12 x 12	36	36	14	36	38	

Toble 50. Copacities of Posts ond Piles

*Maximum unbraced height—see page 82d.

82. TIMBER TRESTLE DESIGN

o. Design Procedure for Timber Stringers.

(1) Moment design.

(a) Determine the volue of M from the moment graph (fig. 93) by entering the graph with the spon length and drawing the line verticolly to the desired closs curve. From there draw a line horizontally to the left and intersect the volue of M.

(b) Determine "m" from toble 48 by entering the toble with the stringer dimensions b ond d.

(c) Compute the total number of stringers required from the formula:

$$N_s = \frac{M}{m} \times N_L$$

where NL is the number of lones.

NOTE. If the stringer size is nonstandard, and "m" cannot be obtained from table 48, then the total number of stringers can be computed from the following formula for rectangular sections:

$$N_s = \frac{30 M}{bd^2} \times N_L$$
 (M in kip-feet)

(2) Sheor design.
 (a) If the rotio L x 12/d is less than 13, shear will probably be

criticol. If $\frac{L \times 12}{d} > 13$, then shear design is omitted.

(b) Compute the value of sheor (V) that will accur in the span by entering the shear chart (fig. 94) with the span length and draw a line vertically to the desired closs curve. Fram this paint draw a line horizontally to the left, intersecting the value of shear (tans) occurring in a lane of the bridge.

(c) Determine the volue of "v" from table 48 for the particular size of stringer being used.

(d) Campute the total number of stringers required from the formula:

$$N_{\rm S} = \frac{V}{V} \times N_{\rm I}$$

NOTE. If the stringer is a nonstandard size and cannot be obtained from table 48, then compute the number of stringers from:

For rectangular N_S = $\frac{.22 \text{ 5V}}{\text{bd}}$ × N_L (V in tans) sections For circular N_S = $\frac{.80V}{.\pi d^2}$

b. Design Pracedure for Steel Stringers

(1) Mament design.

(a) Determine the volue of $M_{\rm R}$ fram the mament graph (fig. 93) in the same manner as far timber stringers.

(b) Determine "m" by extrocting the value from table 49. If the stringer size is not listed in table 49, then the value of "m" can be camputed fram the farmula:

m = 2S (S = section modulus = $\frac{1}{2}$ m)

(c) Campute the total number of stringers required in the same way os for timber stringers (o(1)(c) obove).

(2) Shear design.

(o) If the ratia $\frac{L \times 12}{d} < 10$, then shear will probably be critical rather than moment. If the ratia is equal to or greater than 10, the shear design is omitted.

(b) Determine the volue of shear (V) in the spon by following the pracedure far the timber stringers (a(2)(b) obove).

(c) Determine ''v'' by taking the proper volue fram table 49 far the stringer size being used. NOTE. Should the stringer in question not be listed in table 49, then the total number of stringers required is computed from the formula:

$$N_s = \frac{V \times N_L}{5dt_2} t_2 = web thickness$$

d=depth of beam

c. Rules of Thumb.

I

(1) Posts. Maximum c-to-c spacing is 5 times depth of cap or sill. C-to-c distance of outside posts equals the distance face-to-face between curbs. Maximum unsupported length of rectangular posts is 36 times least dimension. Maximum unsupported length of a round post is 32 times its diameter. The total number of pasts required is computed as follows (fig. 96):

V is taken fram figure 94 after computing $L_e = L_1 + L_2$. In figure 96 this would be 35 feet. By using figure 94, V would be 47 tons. The value af cap/post is taken from table 50.

(2) Caps and Sills. With round timber, diameter must be at least 2 inches greater than that af post. Hew timber ta fit at top and jaints. With rectangular timber, use at least same size timber as posts with larger dimensions vertical, 6 inches x 8 inches minimum.

(3) Bracing. If bents are mare than 4 feet high, use transverse cross bracing on all bents and longitudinal bracing between bents in every other span. Transverse bracing on pile bents may be amitted if pile is exposed less than 11 feet above ground line. The minimum size of bracing material is 2 inches x 10 inches (see table 50).

(4) Faatings. Maximum length is 8 times thickness for SBC less than ar equal to 4 tons per square foot and 6 times thickness far SBC over 4 tons per square faat (see table 51 far SBC).

(5) Flaoring. Thickness exclusive of tread is c-to-c stringer spacing divided by 8. Use a minimum of 3 inches.

(6) Tread. At least 2 inches thick.

(7) Curb and handrail. For specification, see figure 92.

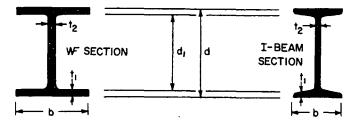


Figure 95. Beom cross section dimensions.

d. Substructure Design With o Pile Bent.

 Use horizontal braces at midpoint of piles when pile height exceeds that shown in table 50.

(2) For a bent under adjacent spans, add the adjacent span lengths to find the effective span length (Le). Using "Le" find "V" from the shear graph figure 94.

(3) Determine copocity of one post from toble 50. If post is not listed,

 $cop/post = \frac{A_p}{4} (tons)$

where $A_p \equiv cross$ section of post, square inches.

Soil description	Bearing values, tons per sq ft.		
Hardpan overlaying rack	12		
Very compact sandy gravel	10		
Laase gravel and sandy gravel, compact sond and gravelly			
sand, very campact sand-inarganic silt soils	6		
Hord, dry consolidated clay	5		
Laase caarse-to-medium sand; medium compact fine sand	4		
Compoct sand clay	3		
Loose fine sand, medium compact sand-inarganic silt			
sails	2		
Firm or stiff clay	1.5		
Laase saturated sand-clay soils, medium soft-cloy	1		

Toble 51. Soil Beoring Copocities (SBC)

(4) Determine the ollowable lood (P) for o skin friction pile by ane af the fallowing:

.. ..

For piles driven by

	Drop ho mm o r		рлес	le-octing umatic or n hammer	Double-acting pneumotic, steam, or clased end diesel hammer		
Timber	P =	$\frac{2W_dh}{(S+1)}$	P =	$\frac{2W_{r}H}{(S+0.1)}$	P ==	$\frac{2E}{(S+0.1)}$	
Steel	P =	$\frac{3W_dh}{(S+1)}$	P=	$\frac{3W_{r}H}{(S+0.1)}$	P ==	$\frac{3E}{(5+0.1)}$	
Where:	P == W _d == W _r == h == S == E ==	estimoted safe copocity of pile (lb) weight of drophammer (lb) weight of ram of steom or pneumatic hommer (lb) overoge height of fall of drophammer for last o blaws (ft) stroke of rom (ft) ' overoge pile penetrotian, in inches per blow, for last o blows of o draphommer or lost 20 blows of steom or pneumatic hammer driving energy (ft-lbs/blow), steam ar pneumatic					

(5) Determine number of effective piles required

Np.e. = $\frac{V \times 2000 \times N_L}{capacity \text{ per pile}}$ where $\frac{capacity}{pile}$ is the smallest af the values found in d(3) ond d(4).

(6) Determine
$$\frac{S_p}{D} = \frac{W_R \times 12}{(Np.e. - 1)D}$$

 $W_R =$ width af roodway—ft D = diometer af pile

(7) Using the pile chart, figure 97, determine Np. (Minimum number of piles per bent = 4.)

(8) Moximum pile Sp.=5 x d_{cap} is depth of cap, in. Example 3.

Given: $L_1 = 20'$, $L_2 = 30'$, Class 60, Hp = 15', cap 12" x 12", 10" Ø pile, = 10', W_d = 2000 lbs., penetration for lost 6 blows = 6", W_R = 14'. (1) $H_{\rm p}\!=\!15'$ which is less than 27', therefore no mid-point bracing is required.

(2)
$$\text{Le}=\text{L}_1+\text{L}_2=20'+30'=50'; V=63$$

(3) $\text{Capacity/pile}=19.6 \times 2000=39,200$
(4) $P=\frac{2W_dh}{S+1}=\frac{2 \times 2000 \times 10}{(-\frac{6}{6}+1)}=20,000 \text{ lbs.}$
(5) $\text{Np.e.}=\frac{V \times 2000 \times \text{NL}}{cap/pile}=\frac{63 \times 200 \times 1}{20,000}=6.3$
(6) $\frac{\text{Sp}}{d}=\frac{W_R \times 12}{(\text{Np.e.}-1)d}=\frac{14 \times 12}{(6.3-1)10}=3.2$
(7) $\text{Np}=8$
(8) Actual $\text{Sp}=\frac{W_R \times 12}{(\text{Np}-1)}=\frac{14 \times 12}{(8-1)}=24''$
(9) $5 \times d_{cap}=5 \times 12=60$ Therefore, Sp is all right.

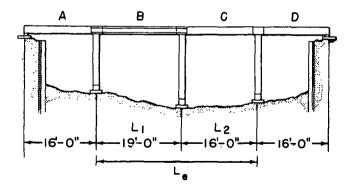


Figure 96. Example bridge spans.

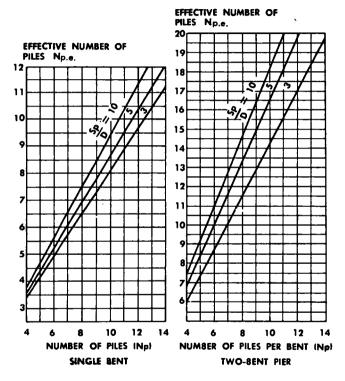


Figure 97. Pile design charts.

174

Section II. Ponel Bridge, Boiley Type, M2

83. INTRODUCTION

o. The ponel bridge, Bailey type, M2 (fig. 98) is o through-truss bridge supported by two main trusses farmed from 10-foot steel "ponels."

b. Panel bridge ports may be transported on twenty-five 5-ton dump trucks and 8 pole trailers. The loading plan is based an the experience that the dauble-single truss assembly provides far most bridging problems which require the ponel bridge, Bailey type, M2. The loads have been orranged on the basis of the above vehicles copable of corrying all parts issued for a 130-foot DD bridge, including spares. The engineer panel bridge campony is the TOE unit designated to carry one bridge set and provide technical personnel and equipment to transport and supervise erectian af panel bridging. Two 80-foot DS bridges or one 130-foot DD bridge may be constructed fram one bridge set. Each bridge set has 126 panels (weighing 577 pounds each), 56 transams (618 pounds each), 96 stringers (230 ta 267 pounds each), 48 ribonds (215 paunds eoch), 48 ramps (338 ta 349 paunds each), and chess, end posts, brocing and erectian equipment.

84. CONSTRUCTION DATA

o. Organization of assembly crews is given in table 52.

b. Figures 99 and 104 depict roller loyout and suggested equipment loyaut.

c. Other doto is shawn in tobles 53 through 58.

85. CLASSIFICATION

Toble 59 gives the dual clossification, by type of construction, type of crassing, and span length of the M2 panel bridge.

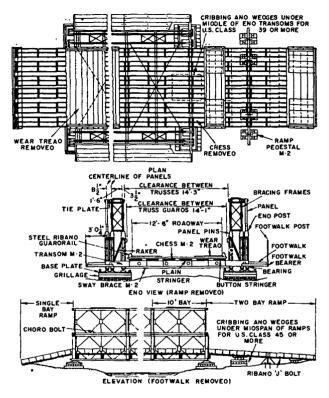


Figure 98. Steel panel fixed bridge, Bailey type, M2

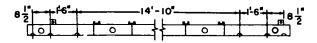


Figure 99. Transam used as templote.

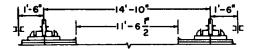


Figure 100. Plain roller, SS, DS, bridges.

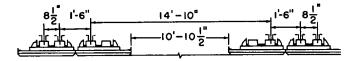


Figure 101. Ploin raller, TS, DD, TD, DT, TT, bridges.

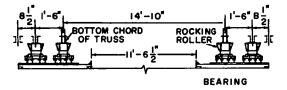


Figure 102. Layout of rocking raller template.

.

		••		NO.	OF NC	AND E	A							
	Type of bridge													
	Single- single	Double- single	Triple- single	Doubl e- daubi e	Triple- dauble	Double- triple	Triple- triple	Double- tripie	Triple- triple					
			Construc	tian by mo	npower a	inly	I.,	Using 1	crane*					
CRANE								0-3	0-3					
Truck driver								(1)	(1)					
Crane aperator								(1)	(1)					
Hoak mon								(1)	(1)					
PANEL	1-14	1-14	2-28	2-32	350	3-50	3-68	3-30	3-30					
Corrying	(12)	(12)	(24)	(28)	(44)	(44)	(60)	(24)	(24)					
Pin	(2)	(2)	(4)	(4)	(6)	(6)	(8)	(6)	(6)					
TRANSOM	1-9	1-10	1-10	1-10	1-10	2-28	2-28	2-20	2-20					
Carrying	(8)	(8)	(8)	(8)	(8)	(24)	(24)	(16)	(16)					
Clamp	(1)	(2)	(2)	(2)	(2)	(4)	(4)	(4)	(4)					
BRACING	1-4	1-6	18	1-12	1-20	1-32	1-40	1-32	1-38					
Sway brace	(2)	(2)	(2)	(2)	(2)	(6)	(6)	(6)	(6)					
Raker	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)					
Brocing frame		(2)	(2)	(4)	(4)	(8)	(8)	(10)	(8)					
Chard bolt				(4)	(8)	(10)	(14)	(10)	(14)					
Tie plate			(2)		(4)		(4)	1	(4)					
Overhead supp't	1					(6)	(6)	(4)	(4)					
DECKING	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12					
Stringer	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)					
Chess and riband	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)					
Totol	4-39	4-42	5-58	5-66	6-92	7-122	7-148	7-97	7-103					

Table 52. Organizatian af Assembly Crews—Bailey Bridge

*Nomolly, a crane is not used for single- ar double-story assembly.

Bri	Bridgs No. of bays in noss Distance of links Regulared distances		Bri	dgs	No. of	beysin	-		Required distance				
Typs	Sepan Ít.	ss	D5	DD	from the of noise it.	behind rocking rollsrs, ft	Typs	Seron Ít.	55	D5	DD	from tip of nose	behind racking rallsrs, ft.
	30 40 50 60	233				35 43 47 55	DD (*)	150 *160 *170 *180	6 •6 •7 •7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		40 40 10 & 40 20 & 40	106 106 113 117
SS	70 80 90 •100	5 5 6			20 20 30 30	63 67 75 76	TD	110 120 130 140	6 7 6 5	23		20 20 30 30	77 84 90 96
DS	50 60 70 80 90	3 4 5 6			10 10 20 20 20	45 52 57 64 71		150 *160 *170 *180 *190	5 •5 •7 •7	4.4.4		40 40 10 & 40 10 & 40 20 & 40	103 106 112 125 126
	100 100 120 130 *140	6 7 8 8			30 40 10 & 40 10 & 40	76 83 90 95 96	DT	130 140 150 160 *170	5 5 5 5	3 4 5 5		30 30 30 40 40	91 96 102 109 112
	80 90 100 110	5 6 7			20 20 20 30 30	63 70 74 81		*180 *190 *200 *210	•5 •6 •7 •7	•5 •5 •5		40 10 & 40 20 & 40 30 & 40	116 131 132 135
тs	120 130 140 *150 *160	7 8 9 •9 •9			40 10 & 40 20 & 40 20 & 40	86 93 100 101 106	ап	*160 *170 *180 *190 *200	*5 *6 *6 *6	.5 .6 7 .6 .6	22.4	40 40 40 10 & 40 20 & 40	941 961 1027 1121 1157
DD	100 110 120 130 140	6 7 7 8 7	,		20 20 30 30 40	74 81 86 93 100			ans to stimete	unchsd ud.	*6 Incom	30 & 40 plata. See faflowin	117t g tobls.

Toble 53. Bailey Bridge Lounching Construction

LAUNCHING TT BRIDGES 1 Lounch until near-bank rocking rallers are under last TT bay of initial construction. 2 Add up to sux bays TT bays to tail of initial construction. This completes all but 210-loar span. 3. Continue lounching until near-bank rocking rollers are under last TT bay addad in step 2. 4. Add reminder of TT bays to complete stradge (210-loar span only). 5. Add live bays D5 mass-type construction to tail of thride 6 Lounch lorward until first three DT bridge bays are beyond far-bank rollers. 7. Complete lives three bridge bays by converting to TT and adding transmes. B. Pull bridgs back to ling loaguing, near space botto and and and adding transmes. Bridge bays by converting to TT and adding transmes. B. Pull bridgs back to ling loaguing, near space 50 tail, add deking where sneeded, and lock down.

Туре	Span, ft.	No. af bays, decking & stringers	Omitted of top story
SS	100	4	
DS	140	6	
TS	1 <i>5</i> 0 160	6 10	
DD	160 170 180	7 7 12	2
TD	160 170 180 190	3 10 All All	31/3
DT	170 180 190 200	3 8 All All	3
	210	ALL	3 5
		in ini	ridge bays tiol can- ction *
тт	160 170 180 190 200	3 6 Ali Ali	14 14 14 15 14
	210	All	13
* *			

Table 54. Bailey Bridge Spans Launched Incamplete

* First three bridge bays ore constructed DT with only one transom per bay. Lost bridge bay is constructed DT because of staggered constructian necessory when odding subsequent bays.

`

Туре	Span, ft.	No. of jocks needed at each end of
SS	30 - 100	2
DS	50-140	4
TS	80-140 150-160	4
DD	100 - 120 130 - 180	4
TD	110°-140 150-190	6 8
TD	130 140 - 180 190 - 210	6 8 10
тт	190 - 210 160 - 170 180 - 210	10 10 12

.

Table 55. Number of Jacks Needed at Each End af Bailey Bridge

•

Table 56. Number af Racking Rallers Needed far Bailey Bridge

Туре	Span, ft.	Near bank	Far bank
SS .	30-100	2	•
DS	50 -80 90 -100 1 10 -140	2 2 4	• 2 2
TS	80 - 160	4	2
DD	100 - 130 140 - 180	4	2 4
TD	1 10 - 120 130 - 190	4	2 4
DT	130-210	4	4
ŢΤ	160-210	4	4

* Use two ploin rollers

Canstructian	Waights per boy, tans
BRIDGE	
SS	2.76
DS	3.41
TS	4.0,1
DD	4.66
TD	5.88
DT	6.46
ΤΤ	8.29
LAUNCHING NOSE	
SS	1.00
DS	1.64
DD	2.90
DECKING	
Stringers anly	0.79
Chass and steel ribands	0.66
FOOTWALKS	0.17
DVERHEAD BRACING	
Supports, transoms, sway bracing, and chard bolts	0.54
WEAR TREAD AND TRUSS GUARDS	0.35
NOTE: Footwalks, wear traads, and truss guards not includad. included an DT and TT.	Overhead bracin

Toble 57. Weight per Bay of Boiley Bridge

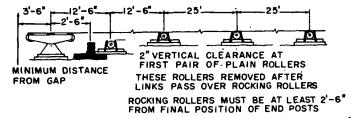
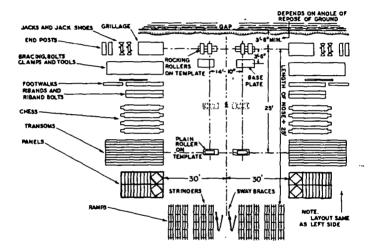



Figure 103. Vertical clearance necessary for removing first pair of near shore plain rallers after links pass racking rallers.

.

.

Figure 104. Layout of equipment at bridge site for training purposes.

Table 58. Criticol Dimensions of Bailey Bridge

Rood width between steel ribands	12' 6''
Rood width between timber truss guords	13'9"
Loterol distonce between centerlines of trusses:	
Inner trusses	14' 10''
Middle trusses	17' 10''
Outer trusses	19' 3''
Lateral distance between centerlines of base plates:	
S truss bridge	14' 10''
D truss bridge	16' 4''
T truss bridge	17' 35/''
Lateral distonce between autside edges af base plotes:	
Struss bridge,	19' 5"
D truss bridge	20' 11''
T truss bridge	21' 10%''
Loterol distance between measuring lugs of rocking roller templotes	11' 6½''
Loterol distance between measuring lugs of plain roller templotes:	
SS, DS bridges	11'6½''
TS, DD, TD, DT, TT bridges	10' 10½''
Longitudinal spocing between plain rallers	25'
Height from bose of bose plote to top of chess	28 5/16"
Height from base of rocking roller template to top of rocking roller	16 5/16"
Height from base of plain roller templated to top of plain roller	8 15/16"
Height from base of ramp pedestol to tap of ramp chess	17 1/17
Height from bottom of holf round lug under sloping end of ramp to	
top of ramp chess	5 7/8"
Height from top of chess to overhead bracing:	
Normal	14'7''
Expedient	12' 3'
Height from base of bearing to bottam of ponel	5 17/32''
Height from bottom of ponel to top of chess	20 11/16"
Height from bottom of holf round lug of end post to top of chess	22 13/32"
Height from base af rocking roller bearing to top af rocking roller	13 5/16"

SPAN IN		INGL			OUB			RIPL						RIPL OUBI			OUB			RIPL	
FEET	N	C	R	N	C	R	N	C	R	N	C	R	N	C	R	N	C	R	N	C	R
30	" "	%;	*%																		
40	24	38/4	ş																		
50	24	沜	3%5	73%	*	₹															
60	20	‰	*	%	\mathcal{K}_{s}	፟፟፟፟															
70	20	24	3%	ŝ	*	18/15															
80	16	20	24	3%	% •	55/	5%	3%													
90	12	16	19	49/5	%	⁵⁵ / ₅₅	%	14/5	82/82												
100	8	12	14	坺	3%	2/4	×5	57/60	*6	° %	5 %	⁵‰									
110				20	3%	ير ا	33/40	41/49	%	\$‰	12/18	⋧	%	19	100-						
120				16	23	‰"	3%	*	43/45	⁴⁵ / ₅₅	51/	*	75/80	Ж.	泼.						
130				12	18	21	20	<u>%</u>	"∕₃	3%	‰	X	55%	%	74/80	70×30	%	Х.			
140	•			8	14	17	16	24	2%	⅔,	%	44	*%55	5%	%	1%	×.	Ж.			
150							12	18	22	24	32/35	3 / 3	35/45	⅔1	58	% **	1%	1%.			
160							8	15	17	16	25	³ ‰	3%	31/1	45/48	%	⁶⁹ / ₁₈	‱	%"	192	102.50
170							4	10	13	12	19	24	20	‰	3×3	%	5%	%	Ж	*	99- 30
180										8	15	18	16	24	2%	35/	1%	⋧	5×8	%	%
190													12	18	22	%;	3%	4%	⁴⁵ ⁄55	59 / 64	%⊓
200																20	12/38	*	3%	%	3%
210																16	25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24	%	1%

Toble 59. Dual Classification by Type of Construction and Crossing-Bailey Bridge

* Limited by roadway width.

.

.

.

Section III. Mosonry Arch ond Reinforced Cancrete Bridges

86. MASONRY ARCH BRIDGE

To obtain the bridge classification number for a masonry arch bridge, a pravisianal closs number based an the crawn thickness and span length is determined; this provisianal class number is then adjusted by applying factors based an the moteriols ond the condition of the bridge.

Step 1. Provisianal class number.

(a) Mark span length (S in fig. 105) on col. A of figure 106.

(b) Mark totol crown thickness (t + D in fig. 105) on col. B of figure 106.

(c) Drow o stroight line through the points marked in steps (a) ond (b), and where this line intersects col. C, read the provisionol closs number.

Step 2. Profile factor.

(o) Divide spon length (S in fig. 105) by the rise (R in fig. 105) ond mark the result at the bottam af figure 107. If the result is 4 ar less, profile factor is 1. Otherwise—

(b) Draw a vertical line fram the mark made in (o) obave ond mork the paint where it intersects the curved line.

(c) Draw a harizontol line from the mork mode in (b) obove to the left edge of figure 107 and read the profile factor at this point.

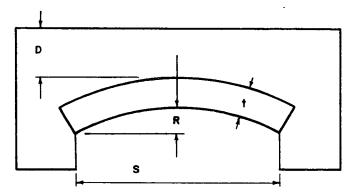
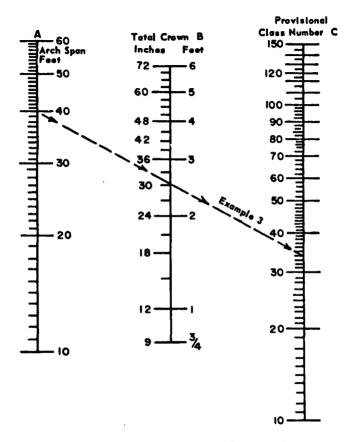
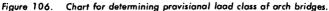




Figure 105. Mosonry orch bridge.

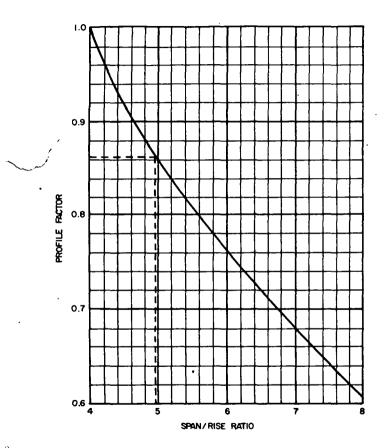
Step 3. Other factors (see table 60). Select the material, joint, deformation, crack, abutment size, and abutment fault factors from the table. Use only those factors which apply.

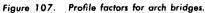
Step 4. Actual class number. Multiply the provisional class number by each of the various factors found above. The result is the bridge classification number.

Exomple 4.

Given: Mosonry orch bridge; spon (S), 40 ft; rise (R), B ft; arch ring thickness (t), 1B in.; depth of fill ot crown (D), 12 in.; roodwoy width, 15 ft; moterial, limestone in good condition; joints, mortor, some deterioration, smoll voids, close joints; crocks—lorge longitudinol crock in orch under one paropet woll; obutments—one approach up o norrow embonkment.

Find Bridge Closs—Solution: Roodway width limits bridge to one lone. Totol crown thickness (t = D, see fig. 105) = 18 in. + 12 in. = 2.5 ft. Using figure 106, line up stroight edge at spon of 40 ft. (Col. A) and total crown thickness of 2.5 ft. (col. B). At the intersection of stroight edge and Col. C, read provisional class number, 34. Determine the profile factor. Span /rise rotio = 40/B = 5. Enter the bottom of figure 107 with the span-rise rotio and drow a vertical line. At the intersection of this vertical line and the curved line on the graph, pivot (going horizontally) to the left edge of the chart. Read the profile factor os 0.86.

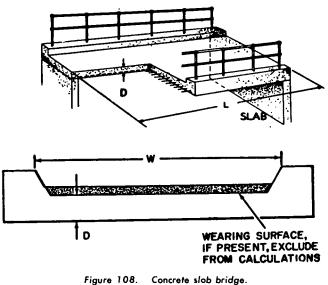

Materiol foctor for limestone in good condition is 1.0. Joint foctor is between 0.80 and 0.70, say 0.75. Crack foctor for one crack at the edge of the ring is 0.90. Abutment foctor for one unsatisfactory abutment is 0.95 (table 60).


Determine octuol closs number by multiplying provisional class number by factors found above.

Actual class number = $34 \times 0.86 \times 1.0 \times 0.75 \times 0.90 \times 0.95 =$ Class 19.

B7. REINFORCED CONCRETE BRIDGE

o. Introduction. Due to wide voriotions in design criteria, it is not possible to colculate the exact copacity of a reinforced concrete bridge based only on the measurable external dimensions. Therefore, when information is available pertaining to the design loading or civil load roting for the bridge (from a local agency or from intelligence reports), the class will be obtained by correlation if charts are available.¹ Civilian design load is equated to the military class for various span lengths. When the necessary information is not available for classification by correlation, the expedient methods shown may be used.


	Material Fector
	Granite, whitestane, and built-in-caurse masonry
	Cancrete ar blue engineering bricks
	Goad limestone masanry and building bricks
4.	Paar masanry ar brickwood (af any kind)
	Jaint Factors
1.	Thin jaints, 1/10 in ar less in width
2.	Narmal jaints, with width up to ¼ in
3.	Ditto, but with martar unpointed
	Jaints over ¼ in wide, irregular gaad martar
5.	Ditta, but with martor cantaining vaids deeper than
	1/10 of the ring thickness
6.	Jaints ½ in ar more wide, poar martar
-	Deformation Factors
1.	The rise aver the affected partian is
	always positive Apply span-rise ratia af affected portian ta
I.	the whale arch.
2.	Flat section of profile Max class: 12
3.	A partion of the ring is sagging Max class: 5, if fill at crown exceeds 18 in.
	Crack Factors
1.	Crack Factors Small cracks within 2 ft of the edge1.0
2.	Large cracks within 2 ft af the edge
3.	Langitudinal cracks in center third af bridge
i i	ane small crack
	ane large crack or several narraw cracks
	Small lateral and diaganal cracks
5.	Large lateral and diagonal cracks Max class: 12, ar figure derived
L	by using the other factors.
6.	Cracks between the arch ring and parapet wall due
\sim	ta lateral spread of the fill
7.	Cracks between the ring and spandrel, due ta a
	dropped ring Reclassify fram the nomagraph,
	on assumption that crawn thickness is that of ring alone.
	Abutment Size Factors
<u>]</u> 1.	Bath abutments satisfactory
	One un satisfactary abutment
3.	Bath abutments unsatisfactory
4.	Bath abutments massive, clay fill suspected
5.	Arch supparted an 1 abutment and 1 pier
6.	Arch supported an 2 piers
	Abutment Fault Factors
1.	Inward mavement of 1 abutment
2	Outward spread af abutments
3	Vertical settlement of 1 abutment

.

~

b. Slob Bridges. Meosure the spon length from center-to-center of supports in feet, the roodway width (W) in feet, and the depth (D) of the concrete slob, exclusive of any wearing surface or fill, in inches (fig. 108). Enter figure 109 with the spon length, drawing o vertical line until it intersects the curve representing the depth (D) of the slob and estimating when necessary where this point should be. From this intersection draw o horizontal line to read the value of "m." Determine "M" by the formula

in which W_L equals the width of one lone in feet. Enter the graph in figure 93 with this value of ''M'' and the span length to obtain the closs of the bridge.

785-094 O-66-13

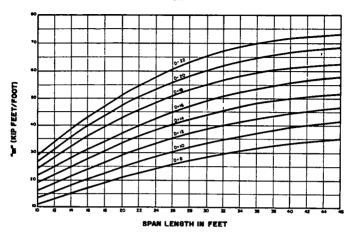


Figure 109. Mament far reinfarced cancrete slab bridges.

Example 5.

Given: Twa-lane cancrete slab bridge; 20-ft span length; $D = 16^{\prime\prime}$; 22-ft roadway width. Ta find bridge class: raadway width limits twaway class to classes 4 ta 30. Fram chart in figure 109, m = 37. The width af ane lane is 11 feet, therefare, $M = W_L m = 11$ (37)=407. With this value af "M" and the span length, abtain class 52 wheeled and class 36 tracked fram the graph in figure 93.

Twa-way Class: Bridge is class 30 as limited by raadway width.

One-way Class: Effective width af roadway is 15'. Therefore, M=15 (37)=555. Bridge is class 75 wheeled and class 54 tracked.

c. T-Beam Bridges. Make the necessary measurements as shawn in figure 110 and find L, the span length fram center-ta-center af supports. All dimensions are in inches except L which is in feet. Calculate "M" by farmula:

M=N 158+D(1.07T+0.34L+0.77b-24.1)+0.08L² Enter the graph in figure 93 with this value of "M" and the span length ta abtain the class of the bridge.

Example 6.

Given: Twa-lane cancrete T-beam bridge; 32-ft span length; 7 Tbeams, S = 48'', D = 30'', b = 12'', T = 6''; 24-ft roadway (see fig. 110). Ta find bridge class: Raadway width limits twa-way classes $\overline{4}$ ta 60. Number af stringers per lane = 3.5.

$$\begin{array}{l} \mathsf{M} = 3.5 \; [158 + 30 \; (107 \; \{6\} \; + 0.34 \; \{32\} + \\ 0.027 \; \{48\} \; + \; 0.77 \; \{12\} \; - 24.1\} + 0.08 \; (32)^2 \\ \mathsf{M} = 3.5 \; [158 + 30 \; (6.42 + 10.88 + 1.30 + 9.24 \\ \; - 24.1\} + 82 \end{array}$$

M = 3.5 [158 + 30 (3.74)] + 82 = 3.5 (158 + 112.2) + 82 = 1028With this value af ''M'' and the span length, abtain the class fram the graph in figure 93.

Twa-way class: bridge is class 60 wheeled as limited by raadway width and class 50 tracked.

One-way class:

Effective Na. af Str. =
$$\frac{15}{raadway width in feet} \times$$

Na. of Str. $=\frac{15}{24} \times 7 = 4.375$

M = 4.375 (158 + 112.2) + 82 = 1264

Bridge is class 95 wheeled and class 63 tracked.

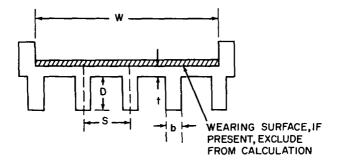


Figure 110. Crass section of RC T-beam bridge.

Section IV. Miscelloneous Bridging

88. LIGHT SUSPENSION BRIDGE DESIGN

The suspension bridge (fig. 111) is used for long spons high obove obstacles. The floor system is suspended fram cables, which ore supported on towers ond onchored ta obutments.

a. Doto. See information in table 61 ond figure 111.

b. Example of Moin Cable Design. Determine tension in main cobles for a 200-faat-spon suspension bridge with a suspended weight of 10 tons. Assume a 10-percent sag rotio ond o 4-ton line laad.

Suspended weight.													20,000 Ib
Line lood													
Impact		•				•				•	•		8,000 lb
Totol													36,000 Ib

Maximum totol tensian in moin cobles for o 10-percent sag rotio = $36,000 \times 1.35 = 48,600$ pounds. If two moin cobles are used, each must have o tensile strength of 24,300 pounds.

89. THREE-ROPE BRIDGE

The three-rape bridge is used to carry personnel with full field pock; maximum of 7 men ot 5-poce intervol. Maximum length is 150 feet. Canstruction procedures fallow:

a. Canstruct stringers or support for tread rope and hand ropes on near and for shore.

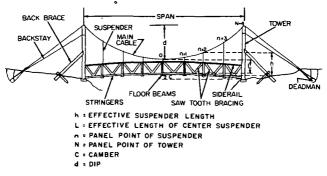


Figure 111. Light suspension bridge.

Table 61. Light-Suspensian Bridge Design Data

ltem		Doto											
Ponel length	10 to 15 ft.												
Comber	Approximotefy 2	pproximotefy 2 ft.											
Stringer design	See porogroph 82	la											
Floor beoms	6" x 6" for 1/4-	4″ x 4″ for foot troops or pock onimols. 6″ x 6″ for ¼-ton truck. 8″ x 8″ for ¾-ton truck.											
Stress in suspenders	Design for deod lood of one ponel, live lood ond 100% of li lood for impoct. See toble 81 for coble strength.												
Length of suspenders	$h = l + \left(\frac{n}{N}\right)^2$	(C+d) See figure 111 fo	r meoning of symbols.										
Sag rotio	5% for foot bridges to 10% for onimol ond light vehicle bridge												
	Sog rotio %	Mox total tension in main cobles, in ports of total suspended weight of bridge and load	Length of cobfe between towers, in ports of spon length										
Moin-cobfe design	7 8 9 10 11 12½ 16⅔	1.94 1.57 1.46 1.35 1.23 1.12 0.90	1.012 1.018 1.022 1.026 1.033 1.041 1.070										
Towers	truck. 6″ to 8″ rope side ond bo	ond cops wift toke loog timber side, bock, ond ck guys. I to I slope f col slope for back guys.	forebroces. 1/2" wire-										
Anchoroge	Deodmon or other cobfe.	r onchorage must hold ma	oximum tension of moin										
Foctor of sofety	Wire rope = 2 Cordoge = 3.5												

.

b. Loy out tread rope and hand ropes parallel and one pace aport on near share. Minimum diameters $= 1^{"}$ for tread ropes and $\frac{3}{4}^{"}$ far hand ropes.

c. Cut suspender rape 12 feet long, center on tread rape (two poces opart) ond tie with a clave hitch on battam.

d. Lift hand rape elbow high ond tie suspenders with girth hitch on inside.

e. Haul bridge over gop with smoll diameter (½ inch) rope ond secure on for shore with a round turn ond a bawline.

f. Pull near share rope tight (5 percent sog) ond secure.

g. Send ane man onto bridge to make finol odjustments of suspender rapes.

h. Complete details are given in TM 5-270.

90. FOUR-ROPE BRIDGE

The four-rape bridge is used to carry pack animals and persannel. Maximurn length is 100 feet. Moximum copocity is 5 men with full field packs spaced 5 poces oport or one pock onimol with handler. The bridge is constructed the same as the three rape bridge (poro 89) except:

o. Cross members (minimum 3" diometer) ore tied to treod ropes, one pace oport, with suspender ropes using clove hitches.

b. After erection, decking is loshed to the cross members ond covered with twigs, leaves, and light brush to pravide o walking surface.

91. TRUSS BRIDGE CLASSIFICATION

Far expedient clossificatian of truss bridges, assume that the stringers are the critical members. Consider the c-ta-c distance between ponel points (fig. 112) is the span length of the stringers and colculate stringer copacity as far the trestle bridge. If, an inspection, domage to a truss section ar obviaus domage to the substructure is indicated, the expedient clossification should be drastically reduced pending camplete analysis.

92. ARMORED VEHICLE LAUNCHED BRIDGE

This bridge is a class 60 bridge which is designed to be transparted, lounched, ond retrieved by o modified turretless medium tonk. The bridge falds at midspan and is transparted an tap of the louncher by means of a lounching mechanism and corrying rock. It is a conventional, girder type bridge af oluminum olloy and may be launched or retrieved from either end. Its length, while being tronsported, is 31 feet 6 inches; when unfolded, it is 63 feet. The bridge hos a cleor span of 60 feet. Eoch clear treodwoy width is 4 feet 11 inches, and

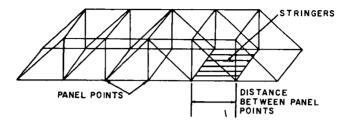
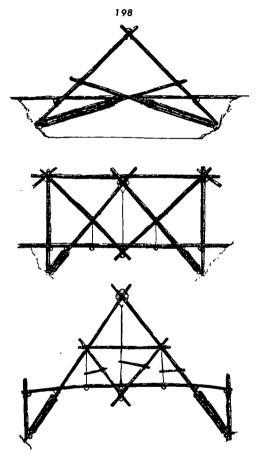


Figure 112. Truss bridges.

a single treadway will cross a ¹/₄-tan vehicle. With both treadways. larger vehicles (including medium tonks) con crass this bridge. The usoble tread width is 12 feet 6 inches: the overall width is 13 feet 5% In launching this bridge, bonk conditions must inches with tie rods. support the lounching vehicle and pravide sufficient bearing to allow the bridge to support its rated lood ofter lounching. The bridge can be lounched and recovered on o moximum uphill grade af 28 percent. moximum downhill grade of 19 percent and maximum transverse grades of 11 percent. The method used to ossemble the bridge depends on the state of disassembly of the bridge for transporting; i.e., it would be completely disassembled for transparting an bridge trucks, or it may be separated lengthwise for rail or low-bed troiler shipment (TM 5-216). For a normal span up to 60 feet, the bridge has a normal rating of closs 60, a cautian roting of class 65, and a risk roting of closs 75. With the bridge in travel position, the launcher has the mobility oppraximately that of a medium tonk and can maintain the rate of morch af both administrative and tocticol movements. Hawever, in plonning a raute, the added weight (closs 60), width (13 feet 6 inches), and overhead clearance (13 feet 3 inches) required must be considered. An escort reconnaissance vehicle should precede the launcher and bridge through built-up greas.

93. EXPEDIENT LOG BRIDGES

Figure 113 illustrates six suggested configuratians far expedient wooden bridges. Capacities cannot be occurately determined, as with standard bridges. They depend on the size and conditian af the timber and the strength of the loshings.



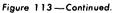


Figure 113. Expedient wooden bridges.

CHAPTER 8

CONCRETE CONSTRUCTION

94. EXCAVATION

Final excavation should be done by hand. If too much moterial is removed, it is recommended that the material removed never be put back. Fill the void with concrete or rock. See table 62 far time estimates by hand.

95. FORMING

a. The overage corpenter con erect about 10 square feet af waaden forms per haur.

b. Steel raad forms can be set by 4-man teoms at the rate af opproximately 50 lineor feet per hour.

c. Waaden farms (see fig. 114).

(1) Sheothing. Sheathing forms the surface of the cancrete. It should be watertight and as smooth as possible, especially if the finished surface is to be exposed. Since the concrete is in a plastic state when placed into the form, the sheathing must be free from cracks or holes. Tangue and groove sheathing gives a smooth watertight surface. Plywood or mosonite can be used for special work.

		С	ubic yo	ords per	man-hour		
Type of moteriol		ivation v vel to de		Loosening eorth —	Laoding in trucks or wagons—		
	0 to 3 feet	0 to 5 feet	0 ta 8 feet	0 to 10 feet	man with pick	one mon with shovel ond loose soil	
Sand	2.0	1.8	1.4	1.3		1.8	
Silty sond	1.9	1.6	1.3	1.2	6.0	2.4	
Gravel, loose	1.5	1.3	1.1	1.0		1.7	
Sondy silt-cloy	1.2	1.2	1.0	.9	4.0	2.0	
Light cloy	.9	.7	.6	.7	1.9	1.7	
Dry clay	.6	.6	.5	.5	1.4	1.7	
Wet cloy	.5	.4	.4	.4	1.2	1.2	
Hordpan		.4	.4	.3	1.4	1.7	

Table 62. Earth excavation by hand

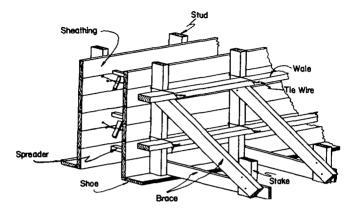


Figure 114. Farm for a cancrete wall.

(2) Studs. The weight of the plastic cancrete would cause sheathing to bulge. Studs run vertically ond odd rigidity to the woll farm. They are mode from 2-inch \times 4-inch or 3-inch \times 6-inch moterial as a rule.

(3) Wales. Studs also require reinfarcing when they extend over faur or five feet. This reinfarcing is supplied by wales. Wales olso serve to tie prefabricated panels together and keep them in a stroight line. They run harizantolly and are lapped of the carners af the forms ta odd rigidity. They ore usually the some material as the studs.

(4) Braces. There are mony types of braces which con be used ta hold forms in place. The mast common types are diagonal members nailed fram a stake ta o stud ar wale. They should make a 30° angle with the horizontal. Additional bracing may be added to the form itself by placing vertical members behind the wales (strongbacks) or by placing vertical members in the carner tarmed by intersecting wales.

(5) Shae plates. The shae plate is nailed into the faundation or footing ond is placed carefully sa as to give the correct wall dimension. The studs are tied into the shae and spaced according to the correct design.

(6) Spreoders. In order to mointoin proper distonce between farms, small pieces of wood are cut to the same length as the thickness of the wall and are placed between the forms. These are called spreaders. When the concrete is placed into the form, enough pressure is opplied on the form by the plastic concrete to allow the spreaders to be remayed. The spreaders must be remayed before the concrete hardens.

(7) Tie wires. Tie wires hold the ponels against the spreaders. Use No. 9 anneoled wire or similor.

(8) Calumn yokes ond sheathing. In calumn farms, sheathing runs vertically to save an the number of sow cuts required. Use only harizontal bracing.

d. All forms shauld be oiled befare concrete is ploced. This is to aid in removing farms after the concrete has hordened.

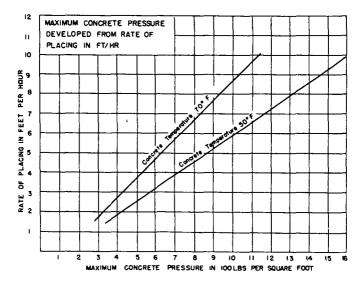


Figure 115. Moximum concrete pressure graph.

96. FORM DESIGN

 Determine Rate of Placing Concrete. Rate of placing concrete in form equals mixer capacity (cu ft/hr) divided by the area that the form covers:

b. Determine Maximum Cancrete Pressure. Enter figure 115 with the rate af placing cancrete and the temperature at which the cancrete will be placed. Determine the maximum cancrete pressure.

c. Determine Maximum Stud Spacing. Ta determine the maximum stud spacing, enter figure 116 with the maximum cancrete pressure. Draw a line vertically up until it intersects the carrect sheathing curve. Read harizantally ta the side of the chart and determine the maximum stud spacing.

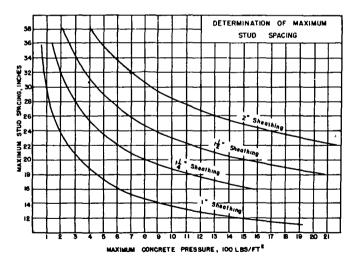


Figure 116. Maximum stud spacing graph.

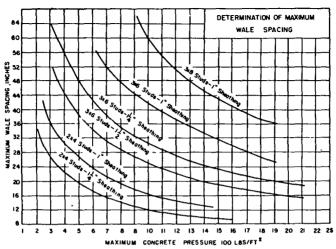


Figure 117. Moximum wole spocing groph.

d. Determine Moximum Wole Spocing. Enter figure 117 with the known moximum concrete pressure ond reod up until the stud-sheoth curve is intersected. Reod to the left for the moximum wale spocing.

e. Column Forms (see fig. 118). Enter toble 63 with the height of the column desired. Reod ocross to the lorgest cross-sectionol dimension of the form. This is shown as L in the sketch. This will give the vertical distance between each yake, storting from the bottom of the form to the top.

Example: Whot is the yoke spocing for o 9-foot column whose lorgest cross-sectional dimension is 36 inches?

Answer: storting from bottom of form to the first yoke 8''-10''-11''-12''-15''-17''-17''-17''.

97. IMPORTANT FACTORS

The important considerations in mixing good concrete are:

 Plostic Mixtures. For plostic mixtures, use sound, clean sond, coarse oggregote, and adequate placement procedures. The strength

204

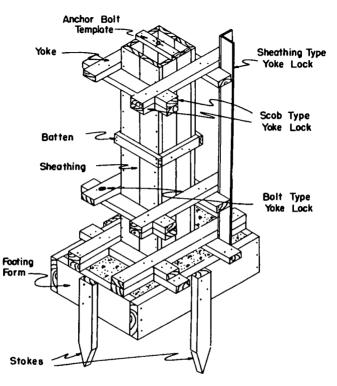


Figure 118. Farm far a cancrete calumn.

af cancrete under given jab canditians depends upan the net quantity af mixing water used per sack af cement.

b. Sand and Aggregate. Assuming that proper cement is available the first item of importance for a concrete jab is the availability of suitable sand and coarse aggregate. The sand shauld be free of clay and silt and the aggregate shauld be hard and strang.

LARGEST DIMENSION OF COLUMN IN INCHES-L								s-'Ľ
	16"	18"	20"	24"	28"	30"	32"	36"
l'			- 5	- 33-		50"	<u> </u>	<u> </u>
2'	Ē	62 	~ 			-+		
3'	-+	+	- 2e	_ !::]	5	\$ 5	<u>6</u>	
4'		58	~ 		- 02	- ē -	- 8 -	- 4
5'				- 8 -	ă —	+-		-12-
6'			- 5	╞╼╉─	- @			- <u>a</u>
7'	30			- 8	_	- <u>a</u>	_ <u>n</u>	
8'	4		8	1 +	15	- ∔•		
9'	 5.	- 9	+	- <u>ie</u>	5	-21	<u>o</u>	01.8
10'		- 2 -	<u></u>	4	12	-0	<u>_</u>	
11'	- 5			<u> </u>	-0			_11
12'	5	[<u></u> <u></u> <u></u> <u></u> <u></u>	1 1	<u>_</u>	6	- <u>6</u> 	8	
13'		+			6.6	8	<u>.</u> ;+_	_ <u></u>
14'	-+	- [º]	4	0	60	7,7,7,8,8	<u>, 1</u>	<u> </u>
15'	- e		12	6	788			
16'	<u></u>			<u></u>		<u>.</u>		
17'		<u></u>	<u> </u>	6.8				
18'		<u>8</u>		8 - 8	I	<u>~</u>		
19'	_+_	王				H	L	TIN
20'	- <u>in</u> -	=	- <mark> -</mark> -					
	- <u>1</u>					-		

Table 63. Column Yoke Spacing

c. Strength. Factors affecting the strength of a cancrete mix depend an the water-cement ratia. The type, gradatian, cleanliness, and shape af the aggregate particles definitely aid in strength, but not to the extent that the water-cement ratia daes.

d. Mix. The amount of sand and coarse aggregate required for each batch shauld be carefully measured by weight ar valume.

e. Water. Water far mixing cancrete shauld be free af fareign matter such as silt, decayed matter, alkali, sulphates, ar salt.

98. ESTIMATING VOLUMES OF MATERIALS STORAGE

a. Farmulas.

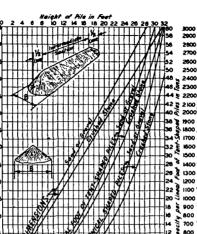
(1) A goad formula by which ta estimate the weight and valume of aggregate in a cane shaped pile is:

 $valume = 0.2618 \times height \times diameter$ (squared).

(2) The graph in figure 119 gives the method of estimating both valume and weight of aggregate in a pile or starage.

b. Starage Capacity. An explanation for using abave three pairs of curves in figure 119 cansiders the fallowing:

(1) The capacity of the canical-shaped piles is determined fram the two curves on the far right and the vertical calumn on the autside right. It cauld be determined far example, that a stackpile of crushed stane 30 feet high has a capacity of 2,010 tans.


(2) In determining the capacities per lineal faat af tent-shaped piles, note that the twa ends of these are equivalent to ane canical pile, and their capacity can be determined in the manner described in a abave. The capacity of the intermediate section for various heights is determined by using either af the twa curves in the middle of the chart and the vertical calumn on the inside right. For example, a stackpile of gravel 19 feet high has a capacity of 24 tans per lineal faat. The capacity of the twa end sections is 630 tans, therefore the total capacity of a stockpile with a 50-faat-lang intermediate section would be $24 \times 50 + 630$, or 1,830 tans.

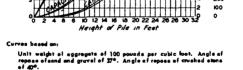
(3) The vertical calumn of figures an the left gives the diameter ar width (B) of canical ar tent shaped stackpiles of various heights. Far example, a 17-foot high tent-shaped pile of crushed stone has a base width of anly 41 feet.

99. CONCRETE MIXING BY HAND

a. Hand-Mixing Cancrete. Hand mixing must be carefully and tharaughly dane. It is efficient anly far a few, small batches of na larger than 1 cubic yard each.

785-094 O-66-14

3


3

10

0050

B

10

i0 じ 500 a 400

> 300 200

Figure 119. Storoge capacity curves.

b. Equipment. Equipment required includes o wotertight metal or wooden plotform (about 10 feet \times 12 feet) two shavels, 1-cubic-foot measuring baxes, mortor haes, and pails for measuring water.

c. Mix Sand and Cement Dry First. If the botch consists of two sacks of cement, 5.5 cubic feet of sond, and 6.4 cubic feet of coarse aggregate, 3 cubic feet of sond is dumped on the platform first. Lay the sond out flot, and spread a sock of cement evenly over it. Then lay the rest of the sond and the other sock of cement similarly on the pile. Turn this mix two or three times until the moterial is a uniform color. After the cement and fine aggregate are mixed, the pile is leveled off and the 3 cubic feet of coarse aggregate is measured and spread aver it. Then turn this botch two or three times and "trough" the center. Pour water, corefully measured, into the trough. Turn the dry materials, into the water and mix until consistency is uniform.

100. DESIGN OF CONCRETE MIXES

o. Woter-Cement Rotio.

(1) The omount of woter in mixing concrete is of mojor importance. It can be expressed in terms of gallons per sock of cement, or in terms of weight of woter per sock of cement. Table 64 gives the quantities of water for concrete of given strengths.

(2) Where strength and economy are important, tests for strength should be made with materials under job conditions. These tests should include at least three different water contents. The 15 percent sofety foctor used with table 64 should be used here.

(3) The gollons of woter per sock of cement to moke durable concrete for vorious conditions is shown in table 64.

b. Slump (Consistency).

(1) Consistency is measured by slump test.

(2) The procedure for determining the slump of concrete is os follows:

(o) Construct slump cone os shown in figure 120.

(b) Moisten cone and place on a waterproof surface such as a piece of tin or plastic. Do not place an concrete or wood unless thoroughly maistened.

(c) Completely fill cone in three loyers, each layer consisting of opproximately 1/3 of the volume of the cone.

Proboble overoge strength, psi				
7-doy strength	28-doy strength			
4,400	6,000			
	5,000			
	4,000			
	3,300			
	2,800			

Toble 64. Relations Between Mixing Water and Compressive Strength of Concrete*

*A sofety factor of 15 percent should be allowed when selecting the water content required. If 2,800-psi concrete at 28 days is required, a water content corresponding to a strength of 3,200 psi should be selected. (d) As each layer is placed it must be radded with a %-inch tamping rad 25 times. Each strake of the rad should penetrate the layer of concrete below the layer being tamped, with the bottom layer being radded throughout its entire depth.

(e) When the cone is full, strike off excess concrete.

(f) Corefully remove the cone ond ploce next to the concrete. Meosure the slump of the concrete os shown in figure 120.

101. CONCRETE ESTIMATION (3/2 RULE)

a. Determine volume of concrete needed in cubic feet.

b. Multiply volume of concrete needed by 3/2. This gives the totol omount of dry loose moteriol needed.

c. Assume o volumetric proportion of cement, sond ond grovel. This con be done by octuol test or by ossuming o 1-2-3 mix.

d. Compute total volume of each material needed. Take the desired proportional mix decided on in paragraph c above and add up (i.e

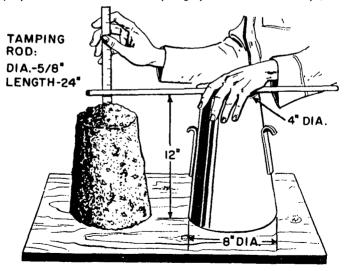


Figure 120. Meosurement of slump.

1-2-3=6). Determine the amount of cement, sand ond gravel needed by multiplying the volume of dry material needed, found in paragraph b by the proportianal amount of the tatal mix.

Example: Cement = $1/6 \times \text{tatal valume}$ Sond = $2/6 \times \text{total volume}$ Gravel = $3/6 \times \text{tatal volume}$

e. Add lass foctar due to handling by using rule of thumb: 10% loss far jobs up to 200 cubic yords of dry loase material needed and 5% lass for jabs aver 200 cubic yords. (Note: Round aff ta nearest whole number.)

f. Exomple: Determine the amount of moteriol needed to place o concrete wall. The size hos been determined to be 10 feet long, 3 feet high ond 1 faat thick.

Valume (cubic feet)= 10 feet x 3 feet x 1 foat= 30 cu ft Dry loose material required= 30 cu ft x 3/2=45 cu ft Assumed propartianal mix=1-2-3=6 Amaunt af material required: Cement=45 cu ft x 1/6=7.5 cu ft=7.5 bogs Sand =45 cu ft x 2/6=15 cu ft Gravel=45 cu ft x 3/6=22.5 cu ft Amount required is less than 200 cubic yords. Assume 10% handling lass. Therefare, total mount required equals: Cement=7.5 bogs+10%=.75+7.5=9 bags Sand =15 cu ft+10%=1.5+15=17 cu ft Gravel=22.5 cu ft+10%=2.25+22.5=25 cu ft

102. CONCRETE MIX DESIGN (TRIAL BATCH METHOD)

a. It is recommended, that to praperly design o cancrete mix, the testing equipment and pracedures outlined in TM 5-742 be used. If this is nat avoilable, the procedure given in this manual will be satisfoctary. Far large prajects, it may be mare canvenient ta use o mixer far trial batch, but far small prajects mixing by hand may be better. The methad given here, is for trial mixing dane by hand.

b. Canstruct a measuring bax which has the inside dimensions of 6-inches x 6-inches x 6-inches. This will give a cantoiner which will hold 0.125 (%) cubic faat af moterial.

c. Determine the omount of water that is to be odded to the cement by using table 64.

d. Determine the slump required by referring ta toble 65. Be sure to pick ane particulor slump instead of o ronge.

	Slump			
Type af Canstructian	Moximum	Minimum		
Reinfarced faundation wolls and footings	5	2		
Plain faatings, caissans, and substructure wolls.	4	1		
Slabs, beams, reinfarced woll	6	3		
Building columns	6	3		
Povements	3	2		
Heovy mass construction .	3	1		

Table 65. Recammended Slumps for Variaus Types of Canstructian*

*With high-frequency vibratars, reduce the table values by one-third.

e. Using the measuring box, measure out one bax af cement, twa baxes af sond ond three baxes af grovel. Ploce on a surface which will nat absarb maisture. Mix the cement, sand ond grovel until evenly mixed. Place the mixture in a maund and farm o depressian in the middle.

f. Measure aut $\frac{1}{20}$ of the required water for one sack af cement ond pour slawly into the cement-sond-gravel mixture. Mix well until oll sand and gravel is coated with cement.

g. Test slump ta campare ogoinst what is required.

h. If slump is mare than required repeat the trial mix using mare sand-gravel. If slump is less than what is desired, it is permissible ta reduce the sand-gravel cantent. Cautian: Never increase only water cantent to get mare slump.

 After the proper triol mix hos been determined, multiply the amounts used by 8. This will give the omount of sand ond gravel to mix with one bag of cement.

j. Example: It is required to place concrete which will have a 7-day strength af 3,500 psi. The cancrete will be used for faotings.

(1) Woter to be added equals 4 gollons.

(2) Slump required is 3 inches.

(3) After the trial batch it was found that to obtain a 3 inch slump 1 box (½ cu ft) af cement, 2 baxes (½ cu ft each) af sand and 4 baxes (½ cu ft each) af gravel were needed.

Therefare for o one bag mix:

Cement=1 x $\frac{1}{6}$ cu ft x 8=1 cu ft=1 bag Sand =2 x $\frac{1}{6}$ cu ft x 8=2 cu ft Gravel =4 x $\frac{1}{6}$ cu ft x 8=4 cu ft

103. BATCHING

a. Once a design mix has been determined and a ane sack mix is camputed the praject site must be laid aut and arganized ta facilitate quality cantral af the batch (charge) which will ga into the mixer.

b. A recammended layaut is to place cement, sand, gravel and water as clase to skip (laad bucket) of the mixer as passible. When the charge is being placed in the skip, gravel shauld be placed in the skip first. This allows the material to flaw freely and keep the skip clean. Cement is placed next and cavered with sand. This prevents the cement fram being blawn away. The exact amount can be cantralled by canstructing measuring baxes which have an inside dimension of 1 foot x 1 faot x 1 faat and all sand and aravel being measured as it is placed in the skip. Water can be placed into the mixer either by the use of a metering device which may be a part of the mixer, or by hand, the water is placed by hand it shauld be measured into containers which will not leak and care shauld be taken that the water is not spilled as it is placed into the mixer. Water may be added through the discharge end of the mixer (discharge chute up) after the dry materials are in the Avaid spilling water into the skip as it has a tendency to make drum. the materials stick.

104. MIXING

The actual mixing time will depend an the means available to discharge the mixer. If discharge is direct into the farm, the mixing time should be at least ane minute far any mix ar ane minute far each cubic yard af mix. The time is increased by 15 secands far each additional ½ cubic yard. If discharged into small containers, the mixing time will be langer due to the additional time required to empty the mixer drum.

105. CONCRETE PLACING

a. Cancrete should nat be allawed ta fall inta farms at heights greater than three ta five feet unless suitable drap chute, baffles, ar vertical pipes are pravided.

b. As cancrete is being placed, it shauld be campacted by vibratian, spades ar rads. Care shauld be taken nat ta aver vibrate. This will cause the cancrete ta segregate, making the cancrete weaker. (Segregatian is when the large stanes sink ta the bottam of the mix.)

c. Curing and protection methods are as fallows:

(1) Maist curing. The lass af maisture must be prevented during hydratian. Keep the expased surface maist by spraying ar panding, ar cavering with earth, sand, ar burlap, maintained in a maist canditian.

(2) Curing compaunds. Sproy on the compound in one caot. Do not use the campounds if the air temperature is above $100^{\circ}F$ and the oir is dry.

(3) Protectian against law temperatures. Da not let fresh cancrete drop belaw 40°F in temperoture.

106. MIXER CLEANING

Cleaning of the mixer should be perfarmed after every use. Ta clean o mixer, all cement paste shauld be washed aff the outside af the mixer. The inside af the drum shauld be cleaned. This can be dane by plocing water and small stanes in the drum and allawing the mixer ta ratate to dean and flush aut oll cancrete from the drum. After cleaning, a light caot af ail on the autside of the mixer will prevent cement and cancrete from sticking ta the mixer during the next aperatian.

.

CHAPTER 9 MILITARY ROAD CONSTRUCTION

107. MINIMUM DESIGN REQUIREMENTS

Table 66 gives a summary of military road specifications.

108. TYPES OF SURFACES

o. Eorth Raads. Eorth roods cansist of notive fine-groined soils, groded and droined ta farm o surface far carrying traffic. Their use is limited ta dry weother and light traffic. In cambot areas, these raads are used where necessity demands speed of canstruction with limited equipment and personnel.

b. Oiled Earth Roods. Oil is spread an earth roads to prevent dust and help woterproaf the surface. It is successful with silt or clay. The omount of oil used vories from obout 1/2 to 1 gallon per squore yard applied in two or three increments, depending upon the soil and the type of oil used.

c. Soil-Stabilized Surfaces. Bituminaus sail-stabilized mixtures and sail cement may be used as road surfaces as an expedient for relatively shart periods and to corry light troffic.

d. Sandy-Clay Raads. This type af raad has a natural ar artificial mixture of sand and clay, graded and drained ta farm a raad surface. Usually fine gravel added ta it will give stability. These raads serve well far light troffic, and will corry heavy troffic except in adverse weather, although they withstand such conditions better than earth raads.

Characteristic	Specification				
Width	· · · · ·				
Traveled way (single lane)	Min—11.5 ft (3.5 meters)				
Traveled way (two lanes)	Min-23 ft (7.0 meters)				
Shaulders (each side)	Min-4 ft (1.5 meters)				
Clearing	Min—6 ft (2 meters) an each side af roadway				
Grades:					
Absalute maximum	Lawest maximum gradability af vehicles far which raad is built				
Normal maximum	10%				
Desirable maximum	Tangents and gentie curves, less than 6%; sharp curves, less than 4%				

Toble 66. Military Rood Specificotians

216 Table 66.—Cantinued

Choracteristic	Specification
Horizantol curve rodius Verticol curve length:	Desired min—150 ft (45 m) Absolute min—80 ft (25 m)
Invert curves	100-ft min (30 m) for each 4% olgebraic difference in grodes
Overt curves	125-ft min (40 m) for each 4% algebroic difference in grodes
Sight distance:	
Nanpossing	Absolute minimum—200 ft (60 m)
Possing	Absolute minimum350 ft (110 m)
Load capacity	
Rood proper	Sustain 1B,000 lb wheel load
Bridges	Accommadate using traffic
Slopes	· · · · · · · · · · · · · · · · · · ·
Shoulders	3/₄ in perft to 11/₂ in perft
Crown (grovel and dirt)	1∕2 ta 3⁄4 in per ft
Crown (paved)	¼ ta ½ in per ft
Superelevotion	1/4 to 11/4 in perft
Cut	Voriable
Fill	Voriable
Oroinage Goad	Adequate crown or superelevation with adequate ditches and culverts in gaad candition. Take full odvontoge of natural droinage. Try to locote road at least S ft obove the ground-water table
Miscelloneous	
Overhead clearonce	Min-14 ft (4.3 m)
Troffic valume	2,000 vehicles per doy
Turnouts (single lone)	Min-–every 1∕4 mile

e. Gravel Raads. Gravel raads are a campacted layer af well graded gravelly sail which meets the plasticity requirements far mechanically stabilized sails. Grading requirements far this type af surface are given in table 67. Natural pit- ar bank-run gravel may meet these requirements with anly screening. Other pit- ar bank-run gravel may require bath screening and washing. River gravels narmally require the additian af binder sail. The capability af gravel raads ta carry heavy, sustained traffic depends an the strength and hardness af gravel,

Table 67. Suggested Groding Requirements for Grovel and Composite Type Surface Courses of Processed Materials

Sieve designation	% possing, by weight			
1 in	100			
3/4 in	85 - 100			
3/8 in	65 - 100			
No. 4	55 - 85			
No. 10	40 - 70			
No. 40	25 - 45			
No. 200	0 - 10			

the cohesiveness of cloy binder, the thickness of the loyer, ond the stobility of the subgrade. These surfaces make an excellent base for later povements.

f. Roods of Processed Materials. Processed materials are prepared by crushing and screening rock, gravel, or slag. The information on gravel roods is applicable to these roods. They should meet the grading requirements set forth in table 68.

g. Use of Colcium Chloride ond Sodium Chloride.

(1) Colcium chloride is widely used in construction (ond mointenonce) of mechanically stabilized soil surfaces, gravel roads, and roads made with composite type processed moterials. Colcium chloride ottrocts and retains moisture from the air. Use 0.5 pound per square yord per inch of compacted mixture when mixed-in-place construction is used. If the mixture is prepared at a central plant, the mixture should be 10 pounds of colcium chloride per tan of mixture. It is recommended that 1 pound per square yord be applied when the surface is complete.

(2) Sodium chloride (generolly rock salt) moy be used in much the some woy os obove. Use about 1 ton per mile per inch of compacted surface 20 feet (6 meters) wide.

Toble 68. Suggested Grading Requirements for Fine-Groded Type Surfoce Course of Processed Moteriols

% passing, by weight
100 70 - 100
35 - 80
25 - 50 8 - 25

h. Other Aggregate Materials.

(1) Caral. Caral requires cansiderable maintenance because it will scar and rut when given hard usage, causing water ta pand and saften the base. Surfaces must be periadically shaped with a grader. Traffic will also praduce a fine dust, which requires periadic sprinkling, preferably with salt water.

(2) Caliche. The life af caliche (a hard pan, cemented by mineralizing salutians) is greatly increased as a surface when bituminaus treatment is applied.

(3) Tuff. Tuff (depasits af fine minerals ejected by valcances) is dusty when dry and slippery when wet. Regrade and rall the surface after a rain ta hald surface maisture and close cracks. An asphalt seal cart will prevent infiltratian af water.

i. Ice Surfaces. In narthern latitudes, vehicles and aircraft may use the surfaces af fresh-water ice an lakes and rivers, ar salt-water ice an seas ar alang caastlines.

(1) Fresh-water ice breaks up in the spring. During the winter the strength of this ice exceeds that of young sea ice. The strength of sea ice increases with time, and has a use equal to fresh water ice when thick enough.

(2) Ice strength is affected by temperature and its canditian. Inspect the canditian af ice carefully far haneycamb, ratting, ar melting befare impasing heavy laads.

(3) Snaw and ice raads are satisfactary far traffic use where the snawfall reaches a minimum of 2 feet and the temperature falls ta belaw 20°F far at least 3 manths. Faur types af snaw and ice roads are: pianeer, traugh, and wide and narraw rut. See TM 5-349 far their canstruction. A pianeer snaw road carries carga vehicles ar snaw tractars with grass weights up ta abaut 5,000 paunds. A traugh road supparts $2\frac{1}{2}$ tan trucks and medium track type tractors with sled trains. A wide-rut raad supparts 6-tan trucks and heavy track type tractars with sled trains. Hawever, aver ice, the beairng capacity depends an the ice thickness. Table 69 is a rule-af-thumb guide ta the load capacity af ice. Ice recannaissance is mandatary ta determine thickness and canditian af the ice.

i. Partable Raad Surfaces. During aperatians in the field, it is aften necessary ta make temparary use af metal mesh, metal landing mats, waod mats, ar variaus types af treadways. These materials are rapidly transported and assembled aver mud, swamps, beaches, ar ather unstable sails. TM 5–337 gives the details af constructing partable surfaces.

109. CROSS-SECTIONS

See figures 121 through 125 for typical military road cross-sections.

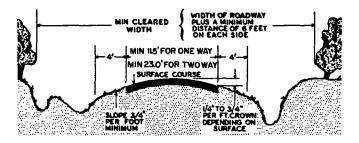


Figure 121. Typical cross section illustroting rood specifications.

Figure 122. One-way earth rood.

.

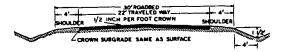


Figure 123. Two-way rood using single course construction.

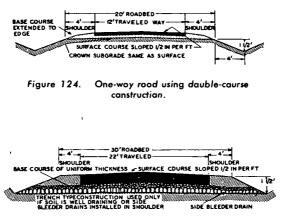


Figure 125. Two-way road using double-course, trench-type construction.

110. CENTERLINE STAKES

a. Generol. Centerline ar alinement stokes are ploced on the centerline of o raod ar airfield ta indicate its alinement, locotian, ond direction. These stokes are the first stokes to be placed ond ore usually placed at 100-foot intervals. On raugh ground ar an sharp harizontal and vertical curves, the stokes are placed closer together. See figure 126.

b. Placement and Morking.

(1) Plocement. Stokes ore placed with the brood portian af the stake perpendicular to the centerline. The side af the stoke which foces the starting point (stotion 0+00) is colled the frant of the stake.

(2) Marking. The frant of the stoke is morked with o & which means centerline, and the statian number ar the distance from the starting paint. As an exacemple 78+00 means 7800 feet from the starting point. On the reverse side, or bock side of the stoke, is placed the omaunt of cut or fill, in feet, required at this statian.

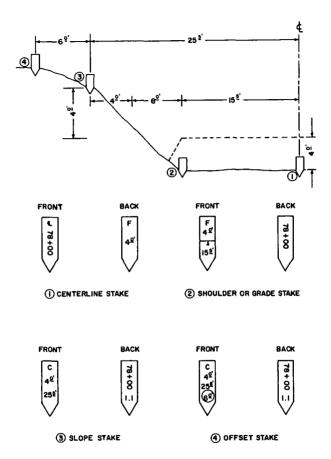


Figure 126. Construction stake markings.

Lood	Minimum thickness of ice, in	Minimum interval ft
Single riflemon on skis or snowshoes	11/2 (40 mm)	16 (5 m)
Troops in single file, 2-poce distonce	3 (80 mm)	*23 (7 m)
Troop column, single horses, motorcycles, unlooded		
sleds, or motor-toboggans	4 (100 mm)	*33 (10 m)
Single light ortillery piece, ¼-ton truck, 4 x 4	6 (150 mm)	49 (15 m)
Light ortillery, possenger cors, medium 1½-ton trucks		
with gross weight of 3½ tons	8 (200 mm)	65 (20 m)
2½-ton trucks, light loods	10 (250 mm).	82 (25 m)
Closed columns of oll orms except ormored force ond		
heavy artillery	12 (305 mm)	*98 (30 m)
Armored scout cars, light tanks	14 (355 mm)	115 (35 m)
20-ton vehicles	16 (405 mm)	131 (40 m)
45-ton vehicles	24 (60 cm)	164 (50 m)

222 Table 69. Load Capacity of Ice

* Minimum interval between files or columns.

111. SHOULDER STAKES

a. General. Shoulder stakes are set an the inside edge of the shoulder and are used as guides far the operator ta determine the width af the road. See figure 126.

b. Placement and Marking.

(1) Placement. These stakes are set at right angles to the centerline opposite each centerline stake.

(2) Marking. Markings can be the same as those far raugh grade stakes (par 114) ar the stake can be simply a plain, unmarked piece of wood that marks the inside edge af the shoulder.

112. SLOPE STAKES

a. General. Slope stakes define the limits of grading wark. Usually the area ta be cleared extends 6 feet beyond the slope stakes. See figure 126.

b. Placing and Marking.

(1) Placing. Slope stakes are set an lines perpendicular to the centerline (one an each side), at the points where the cut and fill slopes intersect the natural ground surface. If there is cut or fill to be performed, the stake is placed in the ground at an angle, leaning away from the centerline. Slope stakes are placed at 100-foat intervals on tangents and at 50-foot intervals on horizantal or vertical curves.

(2) Morking. The front of the slope stoke is the side focing the centerline. This side is morked with the omount of cut or fill te be done, in feet, from the stoke to the outside edge of the ditch line ot o point even with the final grade of the rood ot the shoulder. The second figure on the stoke represents the distance from the stoke to the centerline of the rood. The back of the stoke contains the stotion number ond the slope required for the cut or fill.

113. OFFSET STAKES

o. Generol. As soon os work is storted on o cut or fill, the centerline ond slope stokes may be destroyed. In order to eliminate resurveying to replace these stokes, offset stokes are placed beyond the limits of construction for the purpose of relacating the original stokes. See figure 126.

b. Morking. The offset stoke will contain all the information found on the original slope stoke plus the harizantal distance from the ariginal slope stoke to the offset stoke. This distance is marked on the front of the stoke and is circled to indicate that it is an affset distance.

114. GRADE STAKES

o. Rough Grode Stokes.

(1) Generol. Rough grode stokes ore ploced on centerlines, shoulder lines, or slope lines ofter groding hos begun. These stokes ore ploced to show the operator the amount of cut or fill remaining and ore not considered a permanent reference.

(2) Plocement ond Marking.

(o) Plocement. The rough grode stoke is ploced at either o point of cut or a point of fill to show how much earth is left before final grode is obtained.

(b) Morking. The front of the stake (the side of the stake facing the centerline) is morked with the letter F or C, indicating fill or cut, a reference line with a "crow's foot" and the distance from the stake to the centerline. To eliminate confusion, the surveyor who put in the grade stakes should explain how he used the reference line found on the stake. Some surveyors use this line as final grade and others use this line as a reference line (to measure the amount of fill or cut from the back of the stake containing the station number).

b. Finol Grode Stokes.

(1) Generol. Normally these are 2×2 -inch wooden stakes driven into the ground until the top of the stake is at a level to represent final elevation.

(2) Placement and Marking.

(a) Placement. These stakes are placed wherever it is felt a reference ta final grade shauld be made such as an centerline statians.

(b) Marking. There are no markings an these stakes ather than the blue ar red taps. The setting af the tap af the stake cauld represent the exact finish grade ar a certain standard distance abave exact grade.

115. SOILS

a. Field Expedients far Soil Analysis. The fallawing field tests may be of value in sail analysis. (Far camplete infarmatian see TM 5–530.)

 Feel. Sand has gritty feel when rubbed between the fingers. Dry silts have a smaath, silky, flaury feel. Same wet clays feel slick or saapy.

(2) Shine. When rubbed with fingernail ar knife blade, inarganic clays remain dull, high plastic clays became shiny.

(3) Taste. Fine-grained sail will tend to stick to tangue.

b. Drainage Characteristics. Sails may be divided into three general graups an the basis of their drainage characteristics:

(1) Well-draining sails. Clean sands and gravels fall into this classificatian. They may be readily drained by gravity systems. For raads ar airfields, open ditches may be used in these sails to intercept and carry water.

(2) Paarly draining sails. These are the inarganic and arganic fine sands and silts, arganic clays af law campressibility, and caarse grained sails having an excess af nanplastic fines. Drainage by gravity alane is difficult in these sails.

(3) Imperviaus sails. Fine-grained, hamageneaus, plastic sails, and coarse-grained sails containing plastic fines are in this category. Subsurface drainage is sa slaw in these sails that it is af little value in impraving their canditian. Any drainage pracess may be difficult and expensive.

116. DRAINAGE

a. Checkdams. Checkdams are used an sidehill cuts and steep grades, where they are placed in side ditches ta slaw the water and prevent it fram washing aut the raad. Checkdams are used when the ditchline grade exceeds 5 percent ar where erasian is a prablem. They are made af timber, sandbags, concrete, rock, ar similar materials. Figure 127 shaws the method af camputing checkdam spacing.

b. Culverts. Culverts are required wherever drainage channels are needed to crass raads, ta pravide ditch relief, and ta cantinue side ditches at the intersectians af raads and access rautes. In tactical situ-

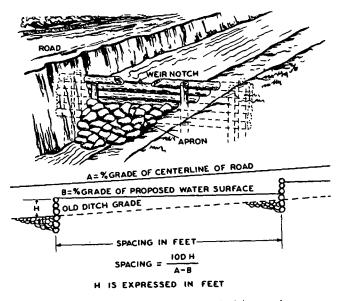


Figure 127. Methads of computing checkdom spocing.

atians where roads will be used only o few weeks, the cross sectional areos of drainoge focilities ore estimoted by hasty methads.

 Talbat's formula may be used as an opproximate methad for camputing the crass-sectional area of a proposed culvert. This formula is:

$$A = C \sqrt[4]{D^3}$$
 or $A = CD^{3/4}$

where A = oreo af waterwoy opening in squore feet

D=drainage area in acres

C = coefficient of retardation based upon slope ond soil chorocteristics, (see table 70).

	·····
Types of surface	Foctor
Bituminous povements	0.80 to 0.95
Concrete povements.	0.70 to 0.90
Grovel or mocodom povements	0.35 to 0.70
Impervious soils	0.40 to 0.65
Impervious soils, with turf*	0.30 to 0.55
Slightly pervious soils*	0.15 to 0.40
Pervious soils*	0.01 to 0.10
Wooded oreos (depending on surfoce	
slope and soil cover)	0.01 to 0.20

Table 70. Surface Runoff Factors

* For slopes from 1 to 2 percent.

(2) Toble 71 shows required culvert openings os computed from Talbot's formulo.

(3) An olinement chort for solutions is given in figure 128.

(4) The deliberate method of estimating runoff combines engineer judgment with colculations based on analysis, measurement, or estimation. It is expressed by:

Q=CIA

where Q = runoff from o given oreo in cubic feet per second

- C=o coefficient that represents the ratio of runoff to rainfall
- I = intensity of rainfoll in inches per hour for the estimated time of concentration

A = droinoge areas in ocres.

The volue of C is derived from a study of the soil, the slope, ond conditions of the surface. The more commonly used volues are shown in toble 71. Other formulos may be found in TM 5-330.

c. Culvert Plocement.

(1) A way to prevent erosion is pointed out in figure 129. Suggestions of culvert olinement are shown in figure 130.

(2) Culverts ore normally at the grade of the natural and artificial drainage channels which discharge into them. Grades of 2 to 4 percent ore desirable. Velocities should not be over 8 feet per second nor less than 2.5 feet per second.

(3) Culverts should be ploced wherever natural droinoge channels require cross droinoge. Figure 131 shows the spocing of ditch-relief culverts. The bedding ond spocing of multiple-pipe culverts is equal to ot leost half the diometer of the pipe (fig. 132).

Drainage area in acres	Mauntain- aus (C = 1.0)	Hilly (C=0.7)	Rolling (C=0.5)	Flat (C = 0.2)
2	1.7	1.2	0.9	0.3
5	3.3	2.3	1.7	0.7
10	5.6	3.9	2.8	1.1
20	9.5	6.7	4.8	1.9
30	12.8	9.0	6.4	2.6
40	15.9	11.1	8.0	3.2
50	17.8	12.5	8.9	3.6
75	25.4	17.8	12.7	5.1
100	31.6	22.1	15.8	6.3
150	42.9	30.0	21.5	8.6
200	53.1	37.2	26.6	10.7
300	72.2	50.5	36.1	14.4
400	88.1	61.7	44 1	17.6
500	106.0	74.2	53.0	21.2
600	121.0	85.0	61.0	24.0
800	151.0	106.0	76.0	30.0
1,000	178.0	125.0	86.0	36.0
1,200	204.0	143.0	102.0	41.0
1,500	241.0	169.0	121.0	48.0
2,000	299.0	209.0	150.0	60.0
2,500	353.0	247.0	177.0	71.0
3,000	(*)	284.0	203.0	81.0
4,000	(*)	352.0	252.0	101.0
5,000	(1)	(*)	298.0	119.0
7,500	(*)	(*)	(*)	161.0
10,000	(*)	(*)	(*)	200.0
15,000	(*)	(*)	(*)	271.0
20,000	(*)	(*)	(*)	336.0

 Table 71.
 Required Culvert Opening, in Square Feet, Camputed fram Talbat's Farmula

* Farmula not to be used for these canditians.

NOTE: Valua of C may ba reduced whera ponding ar temporary starage is available, such as in irrigatad araas ar rica paddias.

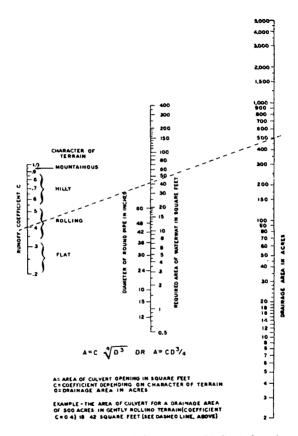


Figure 128. Nomograph for solution of Talbot's formula.

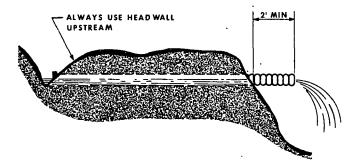


Figure 129. Culvert extended beyand fill ta prevent erasian.

d. Box Culverts. There are several types of box culverts: lag bax, timber box, and cancrete box. Examples af each are shown in figures 133 through 135.

e. Nestoble Corrugated Pipe Culverts. These culverts are of two types: notched, having a natched edge and ploin edges, and flanged, having flanges with slotted holes. The twa types ore not interchangeoble. Figure 136 shaws the strutting diagrom far elangoting the verticol dimension of the larger sizes of corrugated pipe culvert prior ta backfilling.

f. Expedient Culverts.

(1) One type of this culvert uses ail, gasaline, or ospholt drums. Remave their ends with detanating cord, shorp handtaals, ar the taolpneumotic metol drum apener.

CAUTION: Do not use a torch ar other tools on gosoline or oil drums unless they ore completely empty. Jain these drums end to end by tackwelding, balting, ar wiring.

(2) Another type of expedient culvert is illustrated in figure 137. It uses sandbogs ond pierced metal panels, the latter being placed bath above ond below the sandbogs os shawn in figure 137.

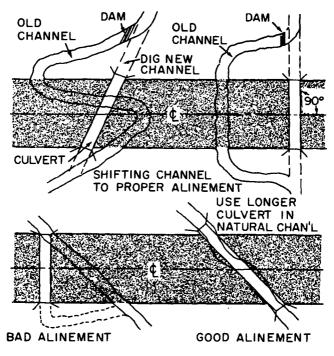


Figure 130. Alinement of culverts.

g. Cover. A minimum caver requirement of $\frac{1}{2}$ the diameter con be used for reinfarced concrete pipe and corrugated metal pipe culverts. Culverts other than pipe should have a minimum af 12 inches, preferably 18 inches, af cover. Where heavy equipment is used in constructian, odequate caver must be pravided to protect culvert structures fram damage.

h. Hasty Culvert Areo Calculation. See figure 138.

117, IDENTIFICATION OF BITUMINOUS MATERIALS

 a. Asphalt and Tar. Asphalt and tor products are the principal bituminous materials used for road and airfield construction. Figure 139 is a field guide to identification of unknown bituminous materials. Table 72 shows the few grades which may be manufactured in the field.

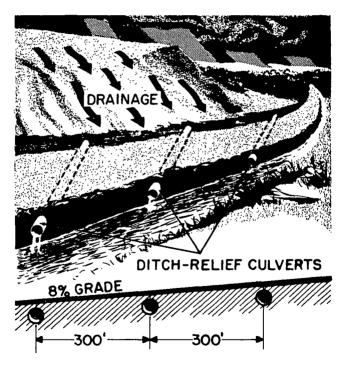


Figure 131. Spocing of ditch-relief culverts.

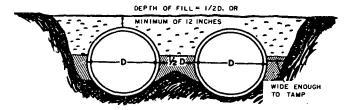
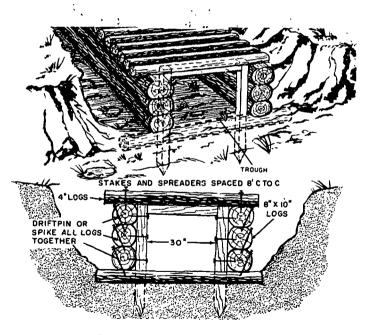
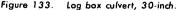


Figure 132. Spacing of multiple-pipe culvert.

b. Aspholt Canstruction. For emergency use, mixed-in-place surfaces are made of 3.5- ta 6-percent bitumen, depending on the fineness of oggregate (see TM 5-337 for pracedures.)


118. ROAD CONSTRUCTION IN THE ARCTIC


o. Nanpermafrast Areas. Canstruction design and procedures are generally the same far nonpermafrast as far northern areas ar for any temperate climate. Allowances are made far the conditions of winter frast: in the arctic and subarctic regions, the depth of frost penetration is greater than in temperate zones (TM 5-349).

Туре	Com	ponents		Grodes					
		Solvent 30 70 250		30 70 2		250 800			
Rapid curing Aspholt RC cement		Gosoline or nophtho		65 75 8 35 25 8	83 17	87 13			
Medium curing MC	• • •			Kerosene	54 46	64 36	74 26	82 18	86 14
Slow curing Asphalt SC cement		Fuel oil		50 50	60 40	70 30	80 20		

Table 72. Aspholt Cutbock Campasitian (in percent of total valume)

b. Permafrost Areas. In permofrost oreos, site selection is the most important of all construction operations. Construction design depends on the surface and subsurface conditions at the selected site. Prime consideration is given to subgrade soil, ground water, surface ice fields, snow, and surface drainage. If at all possible, locate roads on soil composed af coarse-grained, nonfrast-active moterials, e.g., high-bench gravel terraces. Ground with pores filled by ice or water should be availed. The presence or absence of vegetation and its type, if it is present, pravide a hosty indication of soil condition (TM 5-349).

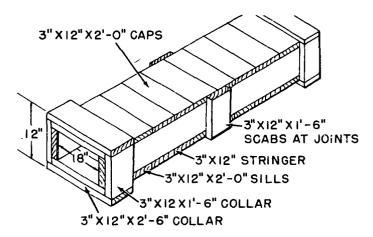


Figure 134. Timber bax culvert, 18- by 12-inch.

c. Bridging. The constructian af bridge faundations in permofrost areas is about the same os for other large structures. Far detailed information an raod ond bridge constructian in the arctic, see TM 5–349.

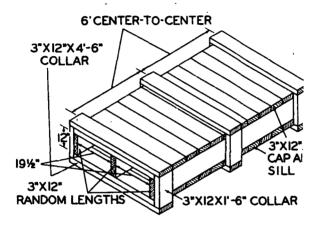


Figure 135. Timber box culvert, 191/2- by 12-inch.

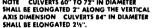


Figure 136. Strutting diagram shawing end and langitudinal views corrugated culvert pipe.

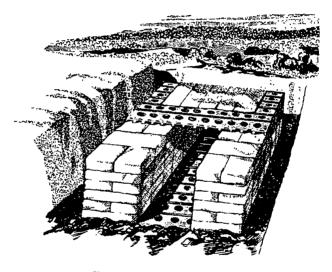
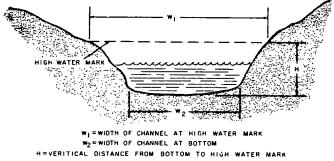



Figure 137. Expedient culvert.

$$\left(\frac{W_1 + W_2}{2}\right) H = AREA OF WATERWAY$$

SIZE OF CULVERT = AREA OF WATERWAY + SAFETY FACTOR 100%

Figure 138. Hasty culvert computation.

Figure 139. Field identification of unknown bituminous materials.

CHAPTER 10

ARMY AIRFIELDS AND HELIPORTS

119. STANDARDS OF CONSTRUCTION

Army airfields ond heliports ore divided inta three general closses in relation to constructian standards: pioneer, hasty, and deliberate.

a. Pioneer. Lawest standord of constructian, yet maintoining fovorable operating conditians. Safety factors at minimum. Runway surface of sail or sad.

b. Hosty. Substandard but operable margin af safety. Reasonably safe and efficient except in prolanged inclement weather. Runwoy depends on sail, weather, time af yeor, availability of surfacing moterial and length af time field is used.

c. Deliberote. Safety and efficiency stondards abserved. Con operote under adverse conditians. Must have gaad subgrode ond wellmade flexible or rigid povement ta be all-weother operoble.

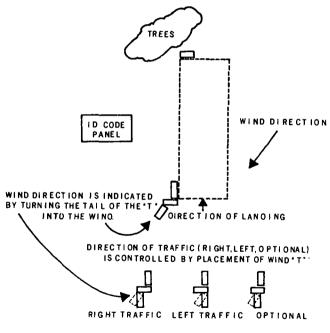
120. MARKING PIONEER AND HASTY AIRPLANE LANDING AREAS

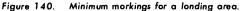
Pioneer and hasty oirplane londing oreas are normolly morked to oid the oviatar in identifying the oreo ond to focilitote londing. Morking is normally accomplished by using graund-ta-air signol ponels. Marking is standord for all oirplane landing areas ond con vory fram minimum marking (fig. 140) ta optimum marking (fig. 141). These morkings are anly o guide ond con be oltered, os required, for speciol situotions. The morkings should olwoys include the length of the usable areas and o wind indicotor (or directian af landing).

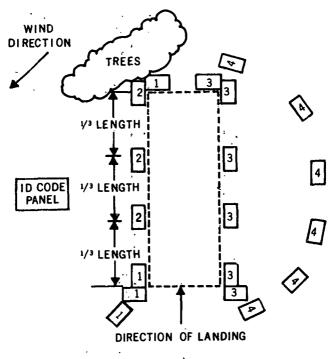
o. Morking Airplane Londing Area by Panels.

 First, place twa panels an the left side of the usable landing area as fallows:

(o) At the deporture end, place ane ponel perpendiculor to the direction of londing.


(b) At the tauchdawn end, ploce the other panel parollel to the direction of landing.


(2) At the tauchdown end of the londing oreo, use two odditionol panels to moke o wind "T" to indicate directian of londing and wind infarmatian. Point the toil of the wind "T" into the wind. If the tail is on the left side, this indicates right-hand troffic; if on the right side, this indicates left-hand traffic; if centered, right or left traffic is indicated.


(3) If o code letter or identity panel is used, center it on the left side af the landing area.

(4) Remove ponel morking after oll oviatars became familior with the area, and os saan os procticoble, as they ore easily seen by the enemy.

CAUTION: Anchor panels securely ogoinst bath propeller and rator wosh. Exercise extroardinory care in securing panels to ground. Use firmly driven stakes to secure panels tautly; rocks piled an the corners ore nat adequate.

THE NUMBERS ON THE PANELS INDICATE PRIORITY OF EMPLACEMENT. THE NUMBER 4 PANELS INDICATE TAXIWAY WHEN APPLICABLE.

Figure 141. Maximum markings for a landing area.

242

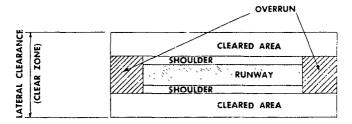


Figure 142. Flightstrip namenclature.

b. Marking Airplane Landing Area by Smake. If the tacticol situatian permits, smake used at the praper time will readily identify the exact lacation of the landing oreo; it will also indicate wind directian and velacity. Smake is normally used in the same orea designoted far wind indicatar. It must be af a color authorized by the signol operation instructions (SOI).

121. GENERAL NOMENCLATURE OF ARMY AIRFIELDS The generol loyout and nomenclature are shown in figures 142 and 143.

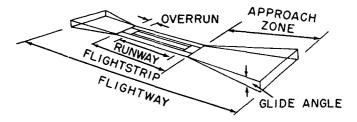


Figure 143. Flightway nomenclature.

122. ARCTIC CONSTRUCTION OF AIRFIELDS

The information an the constructian af roads in the arctic is generally pertinent ta airfie'd constructian in arctic areas. Runway design over frost-susceptible soils must taken into accaunt frost and permafrost conditions. For detailed information see TM 5–349.

123. ARMY AIRFIELD DESIGN

a. Specifications of Army Airplones. These specifications are listed in table 73.

b. Runway Length. Determinatian of runway length consists af multiplying the minimum takeaff graund run by safety factors to allow for variatian in pilot skill; psychalagical factors; and wind, snow, and other surface conditions.

Step 1. Tokeoff ground run far individual aircraft is shawn in table 73. Increase figure shown by 7 percent for soft surfaces.

Step 2. Increase result of step 1 by 15 percent for each 1000-foot increase in runway elevatian above sea level.

Step 3. Increase result of step 2 by 4 percent far each 10°F increase in temperature abave 59°F. (Use highest expected temperature.)

Step 4. Increose result in step 3 by a slope correctian of 20 percent for each 1 percent of effective gradient over 2 percent.

Step 5. Multiply result in step 4 by the sofety foctar for the particular type oirfield being plonned; planeer, 1.25; hosty, 1.50; deliberote, 1.75. Raund result aff to the next lorger 100 feet.

c. Runway Width. The minimum runway width for a pianeer airfield is 50 feet; far a hosty airfield, 50 feet; and a deliberate airfield, 75 feet. Care shauld be taken to insure that the shaulders and cleared areas an both sides af the runway are wide enough to provide sufficient clearance for the wings af the airplanes using the runway.

d. Focilities. The obove methods give the plonner o minimum set af length ond width far o runwoy. Shaulders, oppraoch zones, ond further saphistications af design require TM 5–330 as o guide.

e. Coordinatian. When possible, the oviotion unit commander should be consulted befare runwoy canstructian begins. Mast oircroft madels have variotions in characteristics which cauld greatly offect the size of the runway to be canstructed.

124. HELICOPTER TAKEOFF AND LANDING AREA

Helicopters ore intended to be verticol tokeaff oircroft, but under certain canditions of laod and otmosphere, require o tokeoff graund run far

Aircraft type			0ver	all airplane	dimension	15		Take- off		Land- ing
	Army designation	Grass weight (1bs)	Length	Wing. span	Height	Tread	Take off gravnd run '	distance ta clear 50' ab- stacte ¹	Lond- ing gravnd roll ¹	distance ta clear SO' ab- stacle ¹
	0-1A	2,100	25'91/2"	36'	7'6''	7'7"	355'	580'	305'	605'
Observation	0-1E	2,165	25'91/2"	36'	7'6''	1'7"	380'	634'	305'	605'
	TO-10, O-1F	2,400	25'91/2"	36'	· 7'6″	7'7"	375'	772'	300'	660'
	OV-1A, 8, C		stics plus req del and ser							
		requireme	nts.			un. cun	5011 0710110		manger far	runwoy
	U-6A	requireme 5,100	nts. 30'5''	48'0''	10'5"	10'2"	815'2	1,250'2	590'2	runwoy 1,250'=
Utility	U-6A U-1A			·		_				
Utility Carga		5,100	30'5"	48'0''	10'5"	10'2"	815'2	1,250'2	\$90'z	1,250'=
	U-1A	5,100	30'5" 41'10"	48'0'' 58'0''	10'5" 12'5"	10'2" - 11'2"	815 ⁷² 1,045 ⁷²	1,250' ² 1,605' ²	\$90'2 \$65'2	1,250'= 1,225'2
	U-1A CV-28	5,100 3,000 28,500	30'5" 41'10" 72'7"	48'0'' 58'0'' 95'7½''	10'5" 12'5" 31'9"	10'2" 11'2" 23'2"	815 ⁷² 1,045 ⁷² 735 ⁷	1,250' ² 1,605' ² 1,205'	\$90'2 565'2 665'	1,250'= 1,225' ² 1,245'

Table 73. Specifications of Army Airplanes

"30° wing flaps for takeoff, 60° wing flaps for landing, sod sunway, no wind, 59° F, and at sea level.

²Hard surface runway—Raps set for ''TAKEOFF.''

³Hard surface runway—assumes landing weight of 7,000 lbs (300 lbs fuel consumption).

"Hard surface runway—0° flaps

⁵Hard surface runway—assumes landing weight of 7,350 lbs (350 lbs fuel consumption)

		Moximum	Overa	di helicep	ter dime	nsi on s		Altitude (feet)				
	Army designotion	ollowoble gross weight (lbs)	Length	Retor diometer	Height	Tread	Performonce takeoff1	Seo level	2,000	4,000	6,000	8,000
	OH-13E, G	2.250	41'5"	35'2"	9'5''	7'6"	ground run	(²)	(2)	(²)	(2)	(²)
01-132, 0	- 2,350	41.3	35 2	4.2	/ 0	te cleor 50 ft.	22 5	300	550	900	1,450	
	0H-13H	2.450	41'5"	35'2''	9'4''	7'6"	ground run	(²)	(2)	(2)	(2)	(2)
	01-131	2,450	41.5	35 2	y 4	/ 0	to clear 50 ft.	0	0	0	0	550
0 1	OH-135	0.050	43'3"	37'2"	9'4''	7'6''	ground run	0	0	0	0	0
Observation	01-135	2,850	43 3	37 2	9 4	/0	to clear 50 ft.	0	0	0	0	0
	OH23B, (2,500	40'5"	35'	9'6''	7'6"	ground run	230	299	377	466	
	0HZ3B, C	2,500	48.2	35	Y D	/ 0	to cleor 50 ft.	481	672	1, 055	3, 297	
	OH-23D	0.100	40'9''		10'2''	7'6''	ground run	0	235	325		
	UN-23D	2,700	40 Y	35′5″	10 2	7.6	to clear 50 ft.	0	475	670		
	UH-19C	7,500	62'6''	53'	14'7''	11′ (moin)	ground run	255	330	565	210 ³	645
	01-170	0,1	02 0	33	14 7	4′8″ (nose)	to clear 50 ft.	520	680	1,050	670 ³	1,840
			62'3"			11′ (moin)	ground run	95	230	405	180 ³	260
Utility	UH-19D	7,900	6Z 3	53'	15'3"	4'8''(nose)	to clear 50 ft.	370	505	705	575 ³	935
		7 000	co/11//	40/0//	10/11//	8'5"	ground run	0	0	0		
	UH-1A	7,200	52'11"	43'9''	13'11″	6.0	to clear 50 ft.	110	120	970		

.

Table 74. Specifications of Army Helicopters

246

Table 74. -- Continued

		Moximum	Ove	rall helica	pter dime	nsions			Al	titude	(feet)	
Aircraft type	Army designation	ollowoble gross weight (lbs)	Length	Ratar diameter	Height	Tread	Performance takeaff—'	Seo level	2,000	4,000	6,000	8,000
			co 11"	44'0''	15'8''	8'5''	ground run	(²)	(²)	(2)	(²)	(2)
	UH-1B	8,500	52 11"	44 0	12.8	85	ta clear 50 ft.	04	444	504	94*	
					14'6''		ground run	(²)	(2)	(2)	(²)	(²)
	UH-1D	9,000	57'2''	48'3″	14 0	9'7''	ta clear SO ft.	05	3065	4745		
	CH-21	13 500	86'4''	44'	15'9''	13'4"	graund run	66	06			
	(1-2)	13,500	80 4	49	v ci	13 4	ta clear SO ft.	06	06	1,1506	2,200 ⁶	
	CH 945						ground run	0	160	185 ³	3453	• • • •
Corga	CH-34C	13,500	65'10"	56'0''	15'11"	12′	ta clear SO ft.	0	700	890 ³	1,3953	
				1	20/	10/0//	ground run	161	184	414	345 ³	886
	CH-378	31,000	88'	72'	22′	19'9''	to clear SO ft.	316	391	771	8113	1,846
	CH-47A	33.000	98'4"	59'2"	19'	11'11″	ground run	07	07	07	07	07
	Cn-4/A	33,000	70 4	37 2	7		to clear 50 ft.	07	07	07	07	07

¹At moximum ollowable grass weight, firm dry sad, na wind, S9°F, 4fram o dead stap, and disregarding moisture content. 5-

²Data nat cantained in TM SS-Series-10.

³Prepared surface required.

⁴-9 ar -11 engine.

⁵48' rotor.

⁶Assumes dewpoint of 32° F.

⁷Using L-7 engines.

required lift. Therefare, runways should be included in a design far a heliport. Efforts shauld be made ta keep dust ta a minimum in the runway area.

o. Runwoy Length. The minimum runway length far a pioneer heliport is 100 feet langer than the overall length of the langest helicapter to use the runway. The minimum runway length for a hasty helipart is 300 feet langer than the longest helicopter to use the runway. The minimum runway length for a deliberate heliport is 450 feet longer than the longest helicapter ta use the runway. See table 74 far the takeaff run required by each helicapter. Then apply steps 1, 3, 4, and 5, in order given in paragraph 123b, ta these minimum lengths ta obtain runway length requirements.

b. Runway Width. The minimum runway width far a pioneer or hasty heliport is 25 feet; for a deliberate heliport, use 40 feet. Care should be taken to insure that the shoulders and cleared areas an both sides of the runway are wide enough to provide sufficient clearance far the rotar blades.

c. Emergency Sites. Emergency landing pads can be canstructed for helicapters by praviding a level, cleared area with a stable surface. This surface may be earth, timber mat, ar expedient paving materials. Actual required pad size can be estimated using data in table 74. The pad size is one-half the tatal length of the helicapter (including rotor blades) by one-half the diameter af the rotar blades.

CHAPTER 11 RECONNAISSANCE

125. TYPES OF RECONNAISSANCE

o. Raute Recannaissance.

(1) Raute recannaissance is gaverned by the some fundamentols that opply to all recannaissance. It is usually made on the graund, but it shauld be supplemented by oir reconnoissance when procticable. Raute recannaissance pravides infarmation to aid in route selection far the mavement of troops, equipment, and supplies.

(2) Information saught in this type of reconnaissance includes:

(o) Nature of terroin.

b) What roods exist ond their chorocteristics, including laadbearing capabilities. See TM 5–330 far mare detoiled infarmatian.

(c) Obstructions.

(d) Bridges and ather streom crassing meons.

(e) Tunnels.

(3) Raute recannoissonce must cansider the missian of the porent unit. Recannoissonce factors include the weight, width, and height of the vehicles that will be used; the clossification of these vehicles; the approximate number of each class to be maved per hour; and the approximate length of time the route will be used.

(4) A route reconnoissance report shauld be accurote, cancise, and clear. The preferred methad af preporatian is in simplified mop form (fig. 144) ar overlay, using symbols (fig. 145) to shaw the limiting features. A route recannaissance report is accamponied by a raad reconnoissance report and bridge, tunnel, ferry, ond ford recannoissance reparts os needed. Militory sketches of limiting features, lacol maps, and photagraphs of significant factors (terroin, raads, tunnels, bridges, ferries, fards, and so farth) support the raute repart.

(5) Impartont features to be shawn on an overloy ore listed belaw.

(o) Length (in kilometers) between well morked paints.

(b) Curves hoving rodii of less thon 30 meters with these radii morked in meters.

(c) Steep grodes, with their moximum grodients in percent, ond length of any grode of 7 percent or greater.

(d) Road width of canstrictians (bridges, tunnels and sa farth), with the widths of the troveled ways in meters; their lengths in kilameters.

(e) Underposs limitations, with their limiting heights ond widths in meters.

(f) Bridge byposses, classified os easy, difficult, or impossible (c below).

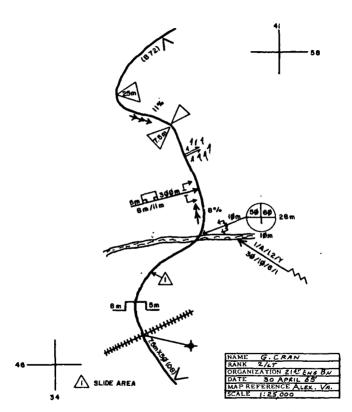
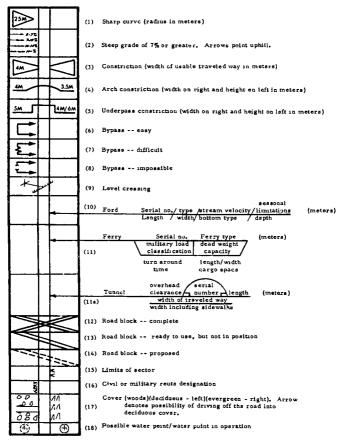



Figure 144. Example of raute recannaissance averlay.

(g) Civil or militory rood numbers, or other designotions.

(h) Feosibility of driving off roods, including shoulders.

(i) Locotions of fords, ferries, ond tunnels including limiting information.

(6) Route clossification formula. Symbols for route reconnoissance maps or overlays are shown in figures 144 and 145. Further symbols are as follows:

(o) Types of roods.

1. (X) All-weather. Any road which, with reasonable maintenance, is possable throughout the year to a volume of traffic never oppreciably less than its maximum good weather capacity. This type of road has a waterproof surface and is anly slightly affected by rain, frost, thaw, or heat. At no time is it closed to traffic due to weather effects other than snow blockage. The following are examples of this cotegory: concrete: bituminous; brick or stane.

2.(Y) Limited oll-weather. Any rood which, with reosonable maintenance, can be kept open in bod weather to a volume of traffic which is considerably less than its normal good weather copacity. This type of road does not have a waterproof surface and is considerably offected by roin, frost or thow. The following are examples of this category: crushed rock or waterbound macadam, gravel or lightly metalled surface.

3. (Z) Foir weother. A rood which becomes quickly impossable in bod weother and which cannot be kept open by normal maintenance. This type of road is seriously affected by roin, frost, or thow. The following are examples of this type: natural or stabilized soil; sond or clay; shell; cinders; disintegrated granite.

(b) Formulos.

1. 6 meter Y 50 describes o route 6 meters wide (minimum), limited oll-weather type, and load classification of class 50.

2. 6 meter Y 50 (Ob). "(Ob)" indicates an abstruction along the route.

3. 6 meter Y 50 (T). ''(T)'' represents snow blockoge.

4. 6 meter Y 50 (W). "(W)" represents flooding.

(c) Cousewoys, snowsheds, ond golleries. Although these structures ore not otten encountered in o route reconnoissonce, when they constitute on obstruction to troffic they should be included in the route reconnoissonce report. Limit the doto to cleoronces ond lood-corrying copocity. If possible, support the information with photographs are sketch of each structure. Also, include enough descriptive information to permit an evoluation concerning the strengthening or removal of these structures. 1. A causeway is a raised way acrass wet or unstable graund.

2. A snawshed is a shelter pratecting samething fram snaw, such as a long structure aver an expased part of a raad ar railroad.

3. A gallery is a sunken ar cut possageway cavered overhead as well as the sides. In o combat area, a gallery may be impartant nat anly because it may be an abstructian, but because it may affard additional pratectian.

b. Road Recannaissance.

(1) Raad reconnaissance is perfarmed ta get infarmotian on rood clossificatian, primarily in suppart af selecting a raute, and to report changes ta existing maps far disseminatian in the theater of operations. Its main concern is with existing raad canditians and not for maintenance aperatians. Its purpase is ta find aut the quontity and kind of traffic ond laads that a raad can accammadate in its present canditan. It moy include estimates of the practicability af impravement and the omount af engineer effort necessary ta prepare a raute far specified traffic and laads. Obtaining dato far camplete raad classificatian should be done by an engineer afficer. An example of a rood reconnoissance (DA Farm 1248) is shawn in figures 146 and 147.

(2) Informatian required —

(a) Lacal name of road.

(b) Lacal road designotian ond number.

(c) Lacation of raod by map grid reference.

(d) Obstructions, which include, omong other items, underpasses, fards, large tree limbs, craters, prajecting buildings, areas subject ta inundatian, and sa farth.

(e) Bridge locations. (Bridge reconnaissance is autlined in c belaw.

(f) Tunnel lacatians, together with their lengths, widths, ond heights. (Tunnel recannaissance is described in d belaw.)

(g) Snowshed lacatians and estimated caverage.

 (\tilde{h}) Gallery lacatians, together with their lengths, widths, and heights.

(i) Other requirements are listed in a(5) (o) through (e) and (i) abave.

(3) Raad classificatian formula. Raad characteristics are expressed by definition and symbals in the fallowing arder: limiting factars, width, construction material, and, if desired, length.

(a) Limiting foctors. The symbol "A" is used if there are na limiting foctors. The symbol "B" meons one or mare limiting foctors. A question mark in parentheses (?) means an unknawn limiting factar. A V-like symbol on a map ar averloy represents the terminal points af

- ^		
~	J	4

<u> </u>	ROAD RECONNAISSANCE	REPOR	т		-	F T. 6F				
TO	(PN 8-34)					5 Jun 65				
	21 ST ENGR BN, ATTN:		C		·o.n, 21-	LNGX ON				
-	VIRGINIA, ALLANDALE 1:250			S. SHEET 556		1612302 JUN				
	<u> </u>			S.W. ANS V83	4	1412 342 002				
				(Cratiles or Million angels	a al maid	S. LENGTH OF RDAD				
	5155 119169		NRFAX LO. 644 6.7 MILES							
6. EIDTH				NO RECONNALSANCE (2	chede last mint	11, # 10000)				
	14-20 FEET	COOL	, L	DRY, 61°F						
101		AST	R,	AIN ABOUT	10 Ju	N 65				
SECTI	ON IL - DETAIL ED ROAD IN FORMATION (When y or on the mileage chart on the reverse side of	n circum Lluis (orm	stance Star	e permit mero datallod i sdard symbols will be us	ntormation wi	ll be abown in an				
9.	ALINEMERT (Check one QNLT)		10.	DRAINAGR (Check sas Off					
	LAT ERADIENTE AND EAST CURTES		\checkmark	ULTERTS IN SOOD		ER WITH AGE QUATE				
JAJ BI	TEP BALDENTS (Redites less then 100 fr (30m))			B) IN ADE DUATE OITCH ITS CULTESTS OR O SUE IS POOR CONDI		LOCKED OR CULTERTS.				
15,	FOURD	-	-	No CMLT)						
V	ASILIZED COMPACT MATERIAL OF 6000 DUAL		(3) UNITARLE, LOOME OF EASILT DUPLACED							
12.				stoie Hone 12a and b)						
~ /hu e	THE SUB REE OF POTHOLES, SUMPA, OR RUTS LINELT TO		Chee	E mo GNLT)	POTHOLED T	AN KOTENT LINGLY				
	COUCE CONVOT SPEED			TO REDUCE CONVOT	IPELO					
P	TTPE OF	URPACE	(Che	OR and GNLT						
	IT this would (most fy type where herem)'		-	(7) SRATEL						
./ <	EE MILAGE CHART		(4) LIGHTLT METALLED							
	NICK (Patu)			IS) NATURAL OR STAD	ATEO BOIL B	E. OR OTHER				
	TONE (Pare)			HU OTHER (Describe):						
SECTIO II min (a) Ora (b) Rod (c) Em (c) Em (c) For (a) For	Builton Dock on COMAL NII OSTSTUCTIONS (Julia la the solutions builton p safas dans faster ensues to sourcetting, sure ""WO boottom in read works which lattice the tradition sources resource approaches (Aborr 7 is 100) resource to the source of the source of the source resource approaches (Aborr 7 is 100) resource approaches (Aborr 7 is 100)	T ENOUS		, bridges, prachasi mino d ra, samur bridges, andres	nd srubaging rs, and kuliku	ələrələr Də				
SERIAL EUMØER	PARTICULARS			-						
	STEEPGRADE-8% UP ER	5TWD	14	08158						
ļ	.02 MILE LONG									
2	SERIES OF SHARP CURV.	ES		9160 To						
3	STEEP GRADE - 78 DOWN			10161						
<u> </u>			-	0.1CF						
┣──	EASTWARD		<i>11</i>	2165						
F			ļ							

Figure 146. Road reconnaissance report.

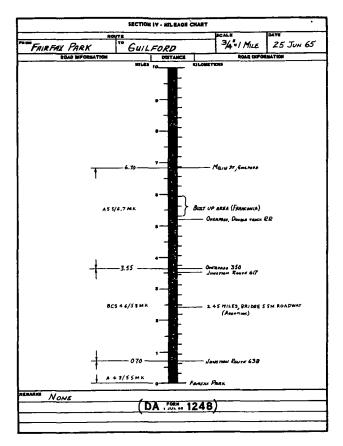


Figure 147. Road reconnaissance report (reverse side).

785-094 O-66-17

the rood sector (fig. 144). Table 75 shows limiting factors, their criteria, ond symbols representing them.

(b) Width. The troveled woy of a road is expressed in feet or meters followed by a slash with the width of troveled way and shoulders combined as 14/16.

Limiting Factor	Criteria	Symbol
Sharp curves	Shorp curves with rodius less than 100 ft (30 m) cause some slowing of convay traffic and will in addition be reported as abstructions.	c
Steep gradients	Steep gradients, 7% or steeper, cause some slowing of of convoy troffic. Grodients steeper than 7% and excessive changes in gradients will, also be re- ported as obstructions.	9
Poor drainoge	Inodequote ditches, crown/camber, or culverts; culverts ond ditches blocked or otherwise in poor condition.	d
Weok foundation	Unstable, loose or easily disploced material.	f
Rough surfoce	Bumpy, rutted, or potholed to on extent likely to reduce convoy speeds.	s
Excessive camber or superelevo- tion.	Folling oway so shorply as to couse heavy vehicles to skid or drag toward the road side.	l I

Toble 75. Criterio for Determinotions of Limiting Foctors

(c) Construction moterials. See table 76 for these symbols.

(d) Length. This may be shown, if desired, in parentheses at the end of a road classification formula.

(e) Exomples:

1. A 5.0/6.2 mk-concrete road, 5.0 meters wide; 6.2 meters, including shoulders; no limiting foctors.

2. Bgs. 14/16 ft 1 (Ob)—grovel or lightly metolled, 14 feet wide, 16 feet, including shoulders, steep grodients, rough surface; and obstructions.

3. Bg. (f?) 3.2/4.8 m.p. (4.3 km) 1—Poving brick or stone; 3.2 wide, 4.8 meters, including shoulders; shorp curves; foundation unknown; 4.3 kilometers long; and subject to snow blockage.

'Table 76. Symbols for Types of Surface Materials

Symbol	Material	Narmal road typa
k	Concreta	Typa (X); generally haavy duty
kb	Bituminous ar asphaitic cancrata (bituminaus plant mix).	Typa (X); genarally haavy duty
Р	Paving brick or stana	Type (X); generally heavy duty
rb	Bituman-penatratad macadam; watarbound macadam with suparficial asphalt ar tar cover.	Typa (X) ar (Y); generally madium duty
r	Waterbound macadam, crushed rock, ar coral.	Typa (Y); ganerally light duty
1	Graval ar lightly matalled surfaca.	Type (Y); generally light duty
nb	Bituminaus surfaca treatmant an natural earth, stabilized sail, sand-clay, ar athar salect material.	Type (Y) ar (Z); genarally light duty
: n	Natural earth, stabilizad soil, sand-clay, shali, cinders, disintegratad granita, ar athar selact material.	Typa (Z); generally light duty
*	Voriaus athar typas nat mentianad abova.	(indicata length when this symbol is used.)

NOTE: In additian to tha symbols shawn above, the symbol "b" (bituminaus surfaca) may be used alane when the type of bituminaus construction cannot be determined.

(4) Measuring radii of curves.

(a) A method of determining the radius of a curve is based on the formula—

$$R = C^2 / 8m + 2$$
 (fig. 148)

where C-length of cord (if C is 19 meters ar more, it need not be reported.)

m= perpendicular distance from center of cord to centerline (^CL) of road R= radius of circle

By fixing m at any convenient distance, such as 5 feet, the formula becomes—

$$R = C^2/40 = 2.5$$

In applying the formula, m is measured from the centerline of the curve toward the estimated center of the circle and then C is measured per-

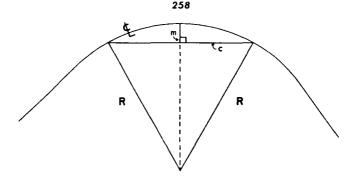
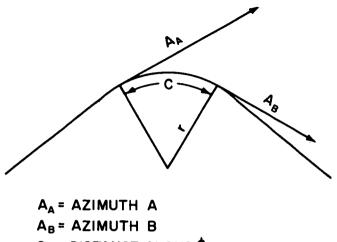


Figure 148. Measuring a curve using formula $R = C^2/8m + m/2$.

pendicularly to m, making sure that C is centered on m. If C is measured at 18 meters, R=26.8 meters.

(b) Figure 149 shows an olternate method effective when the chord is impossible to measure due to brush, minefields, or similar obstocles. A compass azimuth is taken ot two points olong the curve and the centerline distance (between the two points) of the curve paced or measured directly.


> 1. If A_B is larger than A_A: $\gamma = \frac{57c}{A_B - A_A} (\gamma \text{ is in the units of } c)$ 2. If A_A is larger than A_B: $\gamma = \frac{57c}{360 + A_B - A_A} (\gamma \text{ is in the units of } c)$

(c) Method (o) above is more accurate than method (b). Both have their advantages.

(5) Determining road grodient—

Vertical distance Horizontal distance (or a clinometer may be used).

(6) The road reconnaissance report has the information required for classification of a road. There should be several copies, each covering a selected section of the road. Short forms or worksheets may be designed for ropid field work. (See FM 5-36.)

- C = DISTANCE ALONG C OF ROAD
 - = RADIUS OF CURVE

Figure 149. Alternate method for measuring a curve.

c. Bridge Reconnaissance.

 The limiting features of bridges are of basic impartance to the selection of a route for normal traop movements. See tables 77 and 78.

(2) Bridge reconnaissance has two methods.

(o) Hasty reconnaissance determines immediate trafficability.

(b) Deliberate reconnaissance is done when there is enough time and qualified personnel to make a thorough analysis and classification of the bridge, including necessary repairs or demolition procedures.

(3) Full bridge symbol includes the location of the bridge, the arbitrarily assigned bridge number, the military local classification number, the overall length of the bridge, the roadway width, the vertical

Dimension doto	Simple stringer	Slob	T-beam	Truss	Girder	Arch	Suspen- sion
Overall length	×	x	×	×	×	×	×
No. of spans	×	×	×	×	×	× .	×
Length of spans	x	x	×	×	×	×	x
Ponel length		ļ		×			×
Height above streambed .	×	×	×	×	×	×	×
Height above estimated				ł			
normal water level	x	× '	x	×	×	×	×
Width of roadway	×	×	×	×	×	×	×
Vertical clearance (over) .				×			×
Horizontal clearance.	×	×	x	x	×	×	×

Toble 77. Generol Dimension Dota Required for Each of the Seven Bosic Types of Bridges

NOTE: The letter "x" indicates that the dimension is required.

cleorance, the bridge byposses, horizontal clearance, under-bridge clearance, number of spans, type of spon construction, type of span construction moterial, and length and condition of spans (fig. 150). Infarmotion should be obtoined to complete the Bridge Report Form (DA Form 1249), figures 151 and 152.

(4) Bridge bypasses are locol detours, which ore classified as easy, difficult, or impassable. Figure 145 shows the symbols used for each clossification.

(a) Byposs easy is a local detaur by road or cross-country movement which all types of traffic can make in 15 minutes or less, or 4 miles (6.5 km) added to the direct route distance. It should require less than 4 hours for 35 men, with proper equipment, to improve or construct.

(b) Bypass difficult differs from bypass eosy in that more than 4 hours ore required for 35 men, with proper equipment, to improve or construct.

(c) Bypass impassible exists when—

No alternotive bridge is avoilable within occeptable distonce.

Terrain prevents off-road movement or temporary road construction.

3. Characteristics of the streom prohibit fording or construction of temporary crossing means.

4. Depth or slope of obstacle prohibits construction of approaches to crossing site.

					Besic	types of b	ridge		-					
Capacity (1) dimension data		Simpl	e stringers			Slab	T-beam.	Truss	Girder	Girder Arch				
Thickness of wearing surface Thickness of Ilaering, deck, er depth of fill et crown			x x			x x	x	X X	x x	×	x x			
	Tim	ber		Steel		1								
l	Rec- teng.	Log	}-beam	Chan-	[Rei]]								
Distance, c-to-c, between T-beams,						1								
stringers, or llsor beams	x	×	x	x	x	1	×	×	x	x				
No of T-beamx or etringers	x		x	×	x	1	i x	x	×		×			
Depth al each T-beem ar etringer	x	(2)		×	x			× ·	x		×			
Width all each T-beam or stringer	x		(3)	(3)	(3)	I	×	×	x		×			
Thickness of web at libeams, WF- beams, channels, ar rails .						l								
Sag of cable	· · ·	• • •	*		x		· ·	×	*		1.			
Ne. of each size of cable		• • •				• •					12			
Thickness of orch rung			• • •	• • •		• • •		• • •	1 • • •	· . ·				
Rise of orch	• •	• •		· · ·	• • •		· ·	• • •	{ • • •	X	1			
Diemeter el each xize al ceble			1.	$1 \cdot \cdot \cdot$		1 • • •	$1 \cdot \cdot \cdot$	• • •	1		1.1			
	$\cdot \cdot \cdot$		• •		• • •	1	• • •	• • •	1					
Depth of plote girder		• •	• •	•••	·	1 · ·	$\cdot \cdot \cdot$	• •	×		1			
Width of flange plates		• • •			• •	· ·		• • •						
Thickness of flonge pletes		•••			• •	· · ·	• • •							
Ne of llonge plotes		• • •			• •		1 • •			· · ·	· ·			
Depth of flonge ongle		• • •		• • •	•	· · ·	$\cdot \cdot \cdot$	· ·	×.	1	1 · · ·			
Width al flange angle	•••	· ·	· ·		• • •		$\cdot \cdot \cdot$				1			
Thickness of flange engle		• • •		$\cdot \cdot \cdot$	• • •	1 • • •	• • •	• •	×	• • •				
Depth of web plate		• • •		• •	·			• • •	×					
Thickness of web plote		• • •	· · ·	· ·	• •				×		· · ·			
Average thickness of llonge	• • •	• •	×			1 • • •	· ·		1 • • •		1			

.

Table 7B. · Capacity Dimensian Dato Required for Each of the Seven Bosic Types of Bridges

Note, "x" indicates required dimension.

1 Capacity is computed by the use of formulas and data in bridge monuels.

2 Diemeter.

3 Width of flonge.

262

TRUSS

GIRDER

SLAB

(Closed Spondrel)

ARCH (Open Spondrel)

SUSPENSION

STEEL STRINGER

Bridge Number Symbols

Туре Ѕро								Number Symbol
Truss								1
Girder								2
Beom								3
Slob .								4
Arch (e	les	ed	s	po	ndi	rel).	5
Arch (a	per	۱s	pa	nd	re	I)		6
Suspen	sio	п.						7
Flootin	g.							8
Others.								9

CANTILEVER

Construction Material Symbols

Material of	l, etter
Spon Construction	Symbol
Steel, or other metal	a
Concrete	k
Reinforced concrete	. ak
Prestressed concrete	. kk
Stone or brick	. Р
Wood	. п

Figure 150. Common types of span construction.

	21 ST ENG		Hr	<u>ر : ۲</u>	<u>×</u>			W.D. AT	KINS	501	4/LT	TOO antibut resonances) - CE CaA, 21 ³⁷ ENGR B	~			
	REINIA ALLA	NPALE	1:1	5000	SHO	rr 55	¥	/¢/53¢₽								
		SSENTIAL BRIDGE INFORMATION									GE INPORIATION (Add externs as model) agit, rundray walth, variant alearates, bridg					
ON TYLER	LÓCATION		UNDER- under-		TTAL OF	Constante.	⊾анати Ана Сонаттан	Hiliynay Lana Clindaif/carian	DUCRALL	TRAVEL	OVERHER CLEARANES	BRIDGE BT-PASS	Raman			
<u> </u>	1 LA Ø72687	~	. 4 2 M	· · ·	3	<u>,</u>	4 13 5 FT	,	18	 3.5 M		19				
1	LA PIZLUT		27	l	3	7	13.00	30	+27	3.3 11	~	E Asv	Nome			
2.	LA118759	9.5 M	65M		4	ĸ	4H		25 M	7.5M	4 M					
					1	a	16 M					Dissieurt	Nowe			
					4	×	4 M									
3	LA 16565¢	~	2,3M	3	3	aĸ	25 M	8 8 6	12614	12 M	7	I HPOSSIBLE	Hone			
4	LA156645	10.5 H	8.5 M	3	6	ĸ	10 M		10014	10 H	18.5 M					
				2	2	a	20 M					/ IMPOSSIBLE	Nove			
	1			3	6	K	IOM									
								1								

DA .249

.

,

2	*	
-	v	-

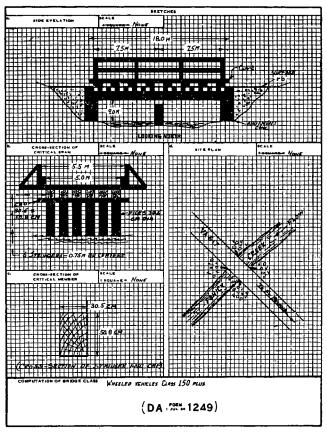


Figure 152. Bridge report form (reverse side).

d. Engineer Reconnoissonce Repart. DA Form 1711-R, Engineer Reconnoissonce Report (figs. 153 ond 154) is used olong with o mop overloy to provide a uniform method of reporting reconnaissonce of engineer interest. Exomples of information reported would include existing ond potential water points, abandoned equipment and supplies, and obstacles or limiting factars an o road being reparted on. The reverse side of DA Form 1711-R (fig. 154) is used to indicate the manpawer, equipment, and materials to replace, repair, or demolish items reported on the front side of the form. Each work estimate is keyed by number to the opprapriate object an the front side of the form (fig. 153). Only those columns which are opplicable need be completed. Additional sketches may be drown if needed to better explain the type work required.

e. Tunnel Recannaissonce. Becouse tunnels are sometimes used for storoge, mointenance ossembly, or other purpose, their limiting must be known. The required information (DA Form 1250) is pointed out in FM 5–36.

f. Ford Reconnoissonce.

(1) Clossification of fords. Fords are clossified occording to their crossing potential for foot, wheeled, or tracked movement.

(o) Their trafficability is indicated for vehicles and foot troops in table 79.

(b) Approaches may be paved with concrete or bituminous moterial, although they are usually just sand or gravel. The composition and slope of the approach are important; its trafficability in inclement weather depends upon them.

(c) The compositian of the streom bottom determines its possobility. It is important, therefore, to indicate it.

(d) The stream bottom of o ford moy be paved, in some coses, to improve its lood-beoring copocity and to reduce the streom's depth. The paved oreo may be of concrete, gravel, loyers of sondbags, steel mots, or wooden planks.

(e) Seosonal floods, excessively dry periods, freezing, and other extreme conditions of weather offect the fardobility af a stream.

(f) Swiftness of the current ond presence of debris offect possability of o ford. Current is recorded os swift (over 5 feet per second), moderote (1 to 1.5 meters per second), ar slow (less than 1 meter per second).

(g) Dimensional data af a fard ore pointed out in figure 155. (2) Streom width.

(o) With o compose, determine the ozimuth from o point on the neor shore close to the water's edge to o point neor the woter's edge on the for shore of the streom directly opposite. Then onother

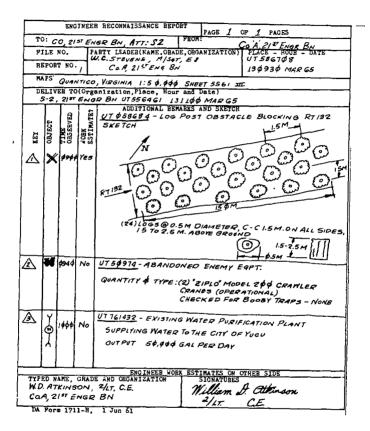


Figure 153. Engineer reconnaissance report.

		ENGINEE	R WORK F	STITLATE					
LOCATION	DESCRIPTION OF JORK	UNIT	HOURS	EQU	IPHEN7		MATI	SALALS	
KET.	DESCRIPTION OF FORK	REOD		TYPE	TYPE INC. I		TYPE	UNIT	DULANTITY
\triangle	REMORE LOG POST FROM ROUTE 132 BY DEMO	500	2	DEMOSET #	'	2	TNT	163	24\$
$P = \frac{D^2}{4\phi} = \frac{(12)^2}{4\phi} = 93^{*}$				D-7CAT	1	2	D-CORD NON	FT	14¢
0 0 19#/Post						1	ELECT CAP	EA	25
24 # # ToTAL							Tune Fuse	Fτ	4
							M-2 Fose Lighter	EA	,
		-							
	BECON	AISSANC	K HEPOHI	ON OTHER	SIDE				

.

Figure 154. Engineer work estimate (reverse side engineer recannaissance report).

Type of traffic	Fordable depth, m ¹	Min width, m	Type ef bottom	Max desiroble slope on opproaches ²
Foot		l= (single file) 2= (column of 3's).	Firm enough to prevent sinking.	1:1
Trucks ond truck-drawn ortillery .	.6	3.6		3:1
Light tonk	.3 to 1	4.2	Firm	2:1
Medium tonks	.6 to 1.2	4.2	ond	2:1
Heavy tonks	1.2 to 1.8	4.2	smooth.	2:1

Table 79. Trafficability of Fords

¹ Moderote current.

² Based on hard, dry surface. If wet and slippery, slope must be less.

point, either upstream or downstreom from the previously marked paints. is established an the near shore, from which the azimuth to the paint on the far share is 45° at variance with the previously marked azimuth. The distance between the two points an the near shore is equal to the distance across the stream (fig. 156).

(b) Stretch a string across the stream, then measure the distance A measuring tape may be used if ane long enaugh is an the string. available.

Stream velocity is calculated by measuring (3) Stream velocity. a distonce along the riverbank, then determining the time it takes a light object to float this measured distance (fig. 156). Velocity is computed as follows:

Measured distance (m)_velacity in meters per second.

Time (sec)

(4) Ford reconnaissance report. This report is made on DA Form 1251, Ford Reconnaissance Report. Shart forms or worksheets may also be used.

g. Ferry Reconnaissance. Ferries differ widely in appearance, copacity, propulsion, construction, and so on. For information on ferry reconnaissance, see FM 5-36.

h. Water Reconnaissance.

(1) Location of water source. This always involves field reconnaissance, with a brief study of a map.

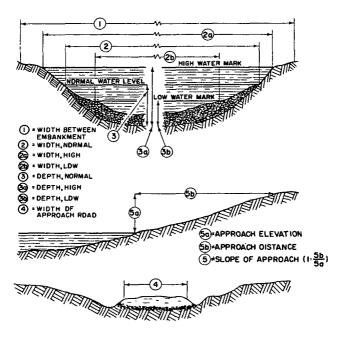
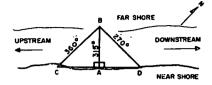
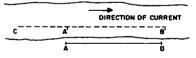



Figure 155. Standard dimensional data far fords.

(2) Sources. When traaps are in cambat and maving rapidly, usually there isn't time to search far the best water, and units must take whatever is available and purify it with material at hand. The principal sources are:

- (a) Surface water (streams, lakes and pands).
- (b) Springs.
- (c) Wells.
- (d) Sea water.
- (e) Rain.
- (f) Snaw and ice.

1. MEASURING STREAM WIDTH, USING A COMPASS.



ADD 45° TO AB AZIMUTH TO GET AZIMUTH OF CB SUBTRACT 45° FROM AB AZIMUTH TO GET AZIMUTH OF BD

WHEN TURNING 90° TO THE LEFT, ADD 45° TO THE A TO B AZIMUTH TO GET THE C TO B AZIMUTH.

WHEN TURNING 90° TO THE RIGHT, SUBTRACT 45° FROM THE A TO B AZIMUTH TO GET THE C TO B AZIMUTH.

2. DETERMINING STREAM VELOCITY

DISTANCE AB IS MEASURED FLOATING OBJECT IS THROWN INTO STREAM AT C TIME REQUIRED FOR FLOATING OBJECT TO FLOAT DISTANCE A'B' IS DETERMINED

V(FPS) = <u>AB (FEET)</u> TIME TO FLOAT A'B' (SEC)

(3) Copocity of source (quantity). It is necessary to campute the minimum, average, and maximum flow of streams, wells, or springs, and the dimensions and depths af lakes ar ponds, with their rote of outflaw. The amaunt af water that passes a paint in one minute is determined as follows:

 $Q = A \times V \times 7.5 \times 0.85$

Where A = Cross-Sectian area af stream

V = Flow in ft/min.

7.5 Na. af gols. of woter per cu. ft.

0.85 = Frictian loss constant

(4) Quality af water. Check the calar, turbidity, odor, toste, and passible pollution. In a pallution check, examine the drainage area, os much as time permits, far human wastes, industrial wastes, carrian (dead fish), or poisoning by enemy actian.

(5) Tests. Tests ore performed by personnel operating water supply and by medical service personnel.

(6) Accessibility. There shauld be a raod system cannecting o water supply with the users.

(7) Propased develapment. Campute the time, labor, and material necessary to imprave the site.

(8) Data fram local inhobitants, locol records, and sail surveys. If o water saurce is ta be used far some time, information must be obtained on seosanal voriotions, seosonol floods, seasonal drought, ond additionol saurces.

(9) The above data should be reported an pertinent maps with the canventianol military symbols and signs described in FM 21-30.

i. Woter Supply. Quontities of woter required per man per doy ore shown in chapter 17.

126. SYMBOLS FOR OVERLAYS

o. Bridge Symbals. See figure 157.

b. Tunnel Symbols. Tunnel data is lorgely the stondord dimensional doto written on the report form (DA Form 1250).

c. Ford Symbols. Ford data is moinly the dimensional data given an the repart form (DA Farm 1251).

d. Ferry Symbals. This dota is the type of measurements required by DA Farm 1252.

e. Water Supply Symbals. Water-source and water-supply data may be recarded an a map ar averlay, using the appropriate symbal as given in FM 21~30.

f. Airfield Symbals. Abbreviatians, symbols, and natatians as used far raute recannaissance are useful in airfield recannaissance, see FM 21–30.

g. Minefield Symbals. The symbals used in the sketches and reparts af minefields are as given in chapter 3.

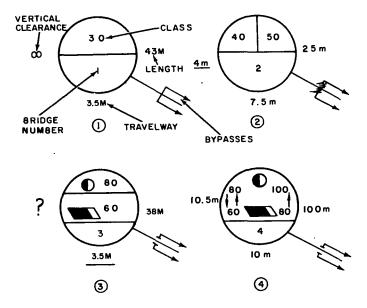


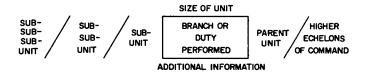
Figure 157. Examples af the full bridge symbal.

.

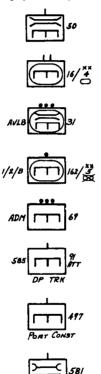
127. UNIT DESIGNATIONS

For o camplete caverage af military symbols see FM 21–30. o. Branch and Duty Symbals.

	, .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Airbarne	\sim	Medical
Air Force	∞	Militory Palice
Amphibious	-w-	Ordnonce
Antioircroft Artillery	\square	Quortermaster
Antitank	\square	Repair/Mointenance
Armor	\bigcirc	Rocket/Guided Missile
Army Aviotian	••	Service
Artillery	•	Signal
Cavolry	\square	Supply
Chemicol (CBR)	∽	Supply and Mointenance
Civil Affoirs	\Box	Tronsportation
Engineer		
Engineer Bridge Unit	Ĩ	Topographic Vatarizazy
Finonce	\square	Veterinory
Infantry	$\overline{\boxtimes}$	Wheeled Armor



NOTE. At times, twa af the above symbols may be cambined. Far example, the armared infantry wauld combine the symbol for armar and infantry.


b. Size and Type of Activity Symbols.

Squod	•	Army	XXXX
Section	••	Army Group	xxxxx
Plotoon — Detochment	•••		
Compony— Troop—Battery	Ł		
Battolion—Squodron	11	Unit	
Regiment—Group	111		
Brigode	×	Unit Hq	
Division	XX	Observotion or Listening Post	Δ
Corps	XXX	Logisticol Unit	Ο

c. Unit Designation and Basic Symbol. The arrangement of various combinations of symbols to depict specific units is shown in the following diagram:

Exomples using specific engineer units:

Bridge Co., 50th Engr. Bn.

- 16th Armored Engr. Bn. 4th Armored Div.
- AVLB Plotoon, Bridge Co., 31st Armored Engr. Bn.
- 1st Sq'd., 2d Plotoon, Co. B., 162d Engr. Bn., 5th Infantry Div (mechanized)
- Atomic Demo. Munitions Plotoon, 69th Engr. Bn.
- 585th Dump Truck Co., Attoched to 91st Engr. Bn.

497th Engr. Port Const. Co.

581st Engr. Moint Co. (Direct Support)

d. Unknown Symbols. When the correct symbol is not known, o symbol may be made up and explained in a legend to the map or overlay being drawn.

276 CHAPTER 12 RIGGING

128. KNOTS

See figure 158 and TM 5-725, Rigging.

129. FIBER ROPES, WIRE ROPES, CHAINS, AND HOOKS

- a. Data. See tables 80 and 82 far data an rapes and chains.
- b. Properties of Hoaks.
 - (1) Slip Haak. Figure 159 shows the slip haak.

(2) Laads. Safe laads are given in table 83.

			No. 1 monilo		Sisal	
Nominol diometer, in.		lbs. per ft.	Brecking strength, tons	Sofe load, tons (F.S. = 4)	Breoking strength, tons	Sofe lood, tons (F.S.=4)
1 1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2	$ \frac{34}{14} $ 1 $\frac{1}{2}$ 2 $\frac{2}{4}$ 2 $\frac{3}{4}$ 3 $\frac{3}{2}$ 3 $\frac{3}{4}$ 4 $\frac{1}{2}$ 5 $\frac{1}{2}$.020 .040 .075 .133 .167 .186 .270 .360 .418 .600 .895	30.0 0.67 1.32 2.20 2.70 3.85 4.50 6.00 6.75 9.25 13.25	0.07 0.16 0.33 0.60 0.67 0.96 1.12 1.50 1.69 2.31 3.31	0.24 0.54 1.06 1.76 2.16 3.08 3.60 4.80 5.40 7.40 10.60	0.06 0.13 0.26 0.44 0.54 0.77 0.90 1.20 1.35 1.85 2.65
2 2½ 3	6 7½ 9	1.08 1.35 2.42	15.50 23.25 32.00	3.87 5.81 8.00	12.40 18.60 25.60	3.10 4.65 6.40

Table 80. Properties of Manila and Sisal Rape

NOTES.

 Breaking strength and safe loads given are for new rope used under favorable conditions. As rope ages or deteriorates, progressively reduce safe loads to oneholf of values given.

 Safe working copacity may be computed, with safety factor of 4. When condition of material is doubtful, divide computation by 2.

 $T = D^2$

where, T = safe working copacity in tons

D=diometer in inches

3. Cordage rope is issued by circumference sizes.

Table 81. Breaking Strength of 6 x 19 Standard Wire Rope 1

			Breaking strength, tans of 2000 lbs			
Diometer וח.²	Approximote weight Ib/ft	Iran	Troction steel	Plow steel	Improved plow steel	Extro improved plaw stee
1/4	0.10	1.4	2.6	2.39	2.74	
⅔	0.23	2.1	4.0	5.31	6.10	7.55
1/2	0.40	3.6	6.8	9.35	10.7	13.3
₩	0.63	5.5	10.4	14.5	16.7	20.6
3/4	0.90	7.9	14.8	20.7	23.8	29.4
7/a	1.23	10.6	20.2	28.0	32.2	39.8
1	1.60	13.7	26.0	36.4	41.8	51.7
11/8	2.03	17.2	32.7	45.7	52.6	65.0
11/4	2.50	21.0	40.6	56.2	64.6	79.9
11/2	3.60	29.7	56.6	80.0	92.0	114.0
1 3/4				108.0	124.0	153.0
2 、				139.0	160.0	198.0

¹ 6 x 19 means rope composed of 6 strands of 19 wires each.

² Breaking Strength of 6 x 7 or 6 x 37 wire rope is 94% of the breaking strength of a 6 x 19 rape of an equal diameter and identical material.

Example:

Find breaking strength of 1¼ inch, 6 x 7, Improved Plaw Steel wire rope Breaking strength of 6 x 19, 1¼ inch, Improved Plaw Steel wire rope = 64.6 tons Breaking strength (6 x 7)=.94 x 64.6 = 60.7 tons

Note. Sofe warking copacity with a safety factor of 4, $T\!=\!8D^2$ where $T\!=\!Safe$ working copacity in tans

D = Diometer in inches

When condition af moterial is doubtful, divide T by 2.

130. MECHANICAL ADVANTAGES OF VARIOUS BLOCK ARRANGEMENTS

a. Blacks and Tackle. Figure 160 shows examples of typical tackle systems. In a simple tackle with 2 lines (1, fig. 160) leaving the load the mechanical advantage is 2. In a simple tackle with three lines (2, fig. 160) leaving the load, the mechanical advantage is 3. In a simple tackle, using 2 double blacks (3, fig. 160), with 5 lines leaving the laad, the mechanical advantage is 5. In a campaund system with 5 lines (4, fig. 160) leaving the laad, and the fall line of this tackle advantage is 4 times 5, or 10. A more camplicated campaund system (5, fig. 160)

Type of service	Minimum safety factor
Track cables	3.2
Guys	3.5
Miscellaneous haisting equipment	5.0
Haulage ropes	6.0
Derricks	6.0
Small electric and air haists	7.0
Slings	8.0

Toble 82. Wire Rope Sofety Foctors*

Where age and candition of rape are daubtful, ar where human life ar expensive equipment may be endangered by rapefailures, apply a safety factar af at least 8.

is mode up of two simple systems, each of which has 4 lines supporting the load. The traveling black of the first simple system is fastened to the fall line of the second simple system, and the mechanical advantage of this campound system is 4 times 4, or 16.

b. Choin Hoists. With o chain hoist, a load can remain stotionary without requiring attention, ond the hoist con be operated by one mon to raise loads of several tans.

131. PICKET HOLDFAST

o. Picket Holdfast, 1-1-1 Combination (fig. 161).

b. Picket Holdfast, 3-2-1 Combination (fig. 162).

c. Holding Power. Sound wooden pickets 5 ft long driven 3 ft into undisturbed earth, spaced 3 to 6 feet apart and inclined away from the load at 15° shauld stand the following pulls.

	Pounds
Single picket	700
1-1 picket holdfost combination	1,400
1-1-1 picket holdfost combinotian.	1,800
2-1 picket holdfost cambination	2,000
3-2-1 picket holdfost cambination	4,000
For wet eorth, holding power should be multiplied by the for foctors:	llowing
Clay ond gravel	0.9
River cloy ond sond	

Nome	II lustration	Uso
Squore	STANDING END RUNNING END	Join two rapes of same size. (Will nat slip, but will draw tight under stroin.) To end block loshing.
Double sheet bend		Join wet ropes, af unequal size, or rope to on eye. (Will not slip or draw tight under strain.)
Bowline		Form a loop. (Will not slip under strain and is easily untied.)
Timber hitch	STANDING END	Lifting or dragging heavy timbers. (Is more easily controlled if sup- plemented by half hitches.)
Clove hitch		Fasten rope to pipe, timber, or post. (It is used to stort and finish oll lashings and may be tied at any point in rope.)
Sheep shank		Shorten rope or take laod off weak spat in rope.
Fisherman' Bend		Ta fosten cable or rope to anchor.

Figure 158. Knots

132. DEADMEN

- a. Log Deadman (fig. 163).
- b. Steel Beam Deadman (fig. 164).
- c. Halding Pawer of Deadmen in Ordinary Earth.
 (1) Lag Deadman.

Legend: far figure 163 and the farmulas belaw-

- T =tensian (Breaking strength of rape)
- MD = mean depth (you select)
- SR = slape ratia (1/2, 1/3, 1/4, etc.)
- HD = harizontal distance (see farmula in (2) belaw)
- VD =vertical depth (Must be at least 1 ft. above water table)
- HP =halding pawer (see table 84)
- BAr = beoring area required (see farmula in (2) belaw)
- EL = effective length (see farmula in (2) below)
- WST =width, slaping trench (1 to 2 feet)
- Tim D =timber diameter (yau select)
- Tim L =timber length (see farmula in (2) below)

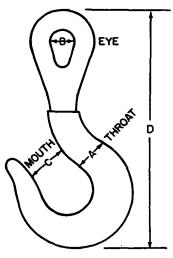


Figure 159. Slip hoak.

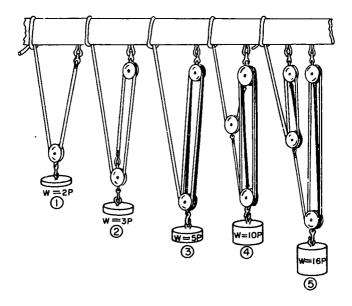


Figure 160. Mechanical advantage of various tackle riggings.

(2) Farmulas.

(a) $BAr = \frac{T}{HP}$ (in lbs) (b) $EL = \frac{BAr}{Tim D}$ (c) Tim L=EL+WST(d) $VD = MD + \left(\frac{Tim D}{2}\right)$ (e) $HD = \frac{VD}{SR}$

281

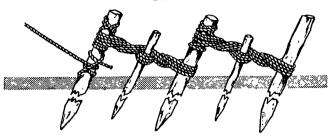


Figure 161. Picket holdfast 1-1-1 combination.

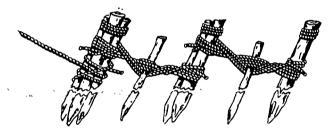


Figure 162. Picket holdfast, 3-2-1 combination.

(3) Problems.	
Given: T = 1 in. wire rope I.P.S. Find:	BAr
(improved plow steel)	
MD = 7 ft.	EL
$SR = \frac{1}{4}$	Tim L
HP = 8,400 lb. (toble 84)	VD
$WST = 1\frac{1}{2}$ ft.	HD
Tim D 2 ft.	

Solution: $BAr = \frac{84,000}{8,400} = 10$ sq. ft. $EL = \frac{10}{2} = 5$ ft.

Tim $L = 5ft + 1\frac{1}{2} ft = 6\frac{1}{2} ft$.

$$VD = 7 \text{ ft.} + \frac{2 \text{ ft.}}{2} = 8 \text{ ft.}$$

 $HD = \frac{8}{1/4} = 32 \text{ ft.}$

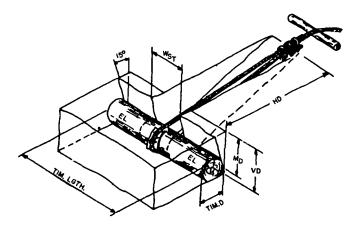


Figure 163. Log deadmon.

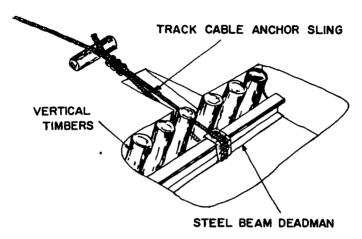


Figure 164. Steel beam deadmon.

133. ATTACHMENTS

o. Clips. Clips ore used in moking eyes in wire rope. The correct method of ottoching clips is shown in figure 165. The base of each clip should bear agoinst the line, or long rope, end, and the U-balt should bear agoinst the dead, or short, end. Space the clips ot least six rope diameters oport, the number of clips equals three times the rope diameter (in inches) plus one. If this colculation results in a fraction, use the next larger whole number. For example, on a 3/2-inch rope:

No. of clips = 3 D + 1 (minimum of 3 clips) = $(3 \times \frac{3}{4}) + 1$ = $3\frac{1}{4}$, or 4

Spacing of clips = $6D = 6 \times \frac{3}{4} = 4\frac{1}{2}$ in.

Diometer of metol A,* in.	Insid e diometer of eye B, in.	Width of opening C, in.	Length of hook D, in.	Sofe Working Copocity of hooks, Ib.
1/16	7/8	11/16	415/16	1,200
34	1	11/6	513/32	1,400
76	11/8	11/4	6%	2,400
1	1¼	1 3/6	6%	3,400
1 1/18	13%	11/2	` 7%`	4,200
1¼	11⁄2	11/16-	81%2	5,000
1 3/6	1%	11/1	91/2	6,000
11/2	11/4	21/16	101/32	8,000
1%	2	21⁄4	1127/32	9,400
1%	23%	21/2	13%2	11,000
2¼	2¾	3	1413/16	13,600
2%	31/8	3 3%	16½	17,000
3	3½	4	19¾	24,000

Toble 83. Sofe Loods on Hooks

*For reference to A, B, C, or D, see figure 159. NOTE. Formula for safe work load for hooks: T $(tons)=D^2(in^2)$

Toble 84. Holding Power of Deodmen in Ordinory Eorth

Meon depth of	Safe resistance for inclination of pull (vertical or h of projected area of deadman, 1bs per sq fi					
onchorage, ft	Verticol	1/1	1/2	1/3	1/4	
3	600	950	1,300	1,450	1,500	
4	1,050	1,750	2,200	2,600	2,700	
5	1,700	2,800	3,600	4,000	4,100	
6	2,400	3,800	5,100	5,800	6,000	
7	3, 200	5, 100	7,000	8,000	8,400	

b. Clomps. Figure 166 shows how to opply o wire rope clomp. Slip the two end collors of the clomp on the rope, focing eoch other. Bend the rope, bringing the free end bock olong the long end. Slip one end collor of the clomp over both parts of the rope. Place the two side pieces of the clomp over both ports of the rope so that the free end of the rope is even with the ends of the two side pieces. Screw the collors on the side pieces, using o wrench to force o snug fit.

c. Wedge Socket. This fitting is shown in figure 167. It is used when the fitting must be changed at frequent intervals. This socket has two parts, the socket proper with a topered opening for the wire rope and o small wedge to go into this socket. Remove the wedge and insert a loop of the wire rope through the topered opening from the bottom of the socket up. Place the wedge through the loop and pull the ends of the wire rope back through the topered opening until the wedge forces the wire rope against the sides of the wedge socket. The loop of wire rope must be inserted in the wedge socket so that the running part of the wire rope will form a nearly direct line to the clevis of the fitting. If properly mounted, a wedge socket will tighten when a strain is put on the wire rope.

Figure 165. Wire rope clips.

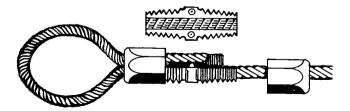


Figure 166. Wire rope clomp.

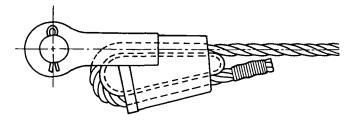


Figure 167. Wedge socket and fitting.

134. SAFE CAPACITY OF SPRUCE TIMBER AS A GIN POLE

See table 85 far these copacities. Weight of timber is 40 pounds per cubic faat.

135. SLINGS

a. Single Slings. See figure 168 far companents of a single sling.

(1) A basket hitch has a single sling possed under the load and both ends haoked over the hoisting hook (A, fig. 169).

(2) Single slings with two hooks are sametimes used for lifting stone (B, fig. 169).

	S	afe capacit	y for given	n length af	timber, Ibs	
Size of timber, in.	20 ft (6 m)	25 ft (7.5 m)	30 ft (9 m)	40 ft (12 m)	50 fr (15 m)	60 ft (18 m)
6 dio	5,000	3,000	2,000			
8 dio		11,000	8,000	5,000	3,000	
10 dio	31,000	24,000	16,000	9,000	6,000	
12 dio			31,000	19,000	12,000	9,000
6×6	6,000	4,000	3,000			
8×8		14,000	10,000	6,000	4,000	
10 × 10	40,000	30,000	20,000	12,000	8,000	
12 × 12			40,000	24,000	16,000	12,000

Table 85. Safe Capacity of Spruce Timbers as Gin Poles in Narmol Operations

NOTE: Safe copacity of each leg of shears or tripod is seven-eights af the volue given for a gin pole.

785-094 O-66-19

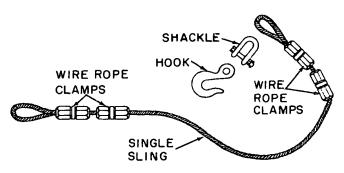


Figure 168. Single sling components.

(3) The double anchor hitch is used sometimes for hoisting cylindricol objects (C., fig. 169).

b. Endless Slings.

(1) The anchor, or choker, hitch is a common method of using an endless sling by costing the sling under the load and inserting one loop through the other and over the hoisting hook (D, fig. 169).

(2) For o bosket hitch, the endless sling is possed oround the object ond both remaining loops are slipped on the hook (E, fig. 169).

(3) The toggle hitch is a modification of the basket hitch ond is used only for special opplication (F, fig. 169).

136. SLING LOAD FORMULA

o. Stress. The stress or tension in each leg of o sling depends on the number of legs, the angle of the sling leg, and the totol load.

b. Formula (fig. 170).

$$T = \frac{W}{N} \times \frac{L}{V}$$

where T =tension, in pounds

- N = number of legs
- W =weight, in pounds
- V =vertical distonce, in feet

L =length of leg, in feet

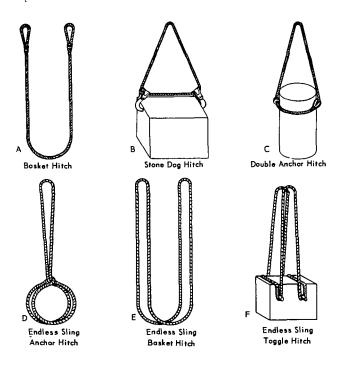


Figure 169. Hitches.

c. Problem. Is it safe to use o ¾-inch diameter cordage rope sling to lift a 2,000-pound laad with a 4-leg sling which has vertical distances of 6 feet ond length of leg af 12 feet?

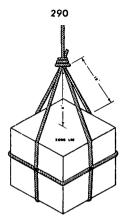


Figure 170. Sling stresses.

$$T = \frac{W}{N} \times \frac{L}{V}$$
$$T = \frac{2,000}{4} \times \frac{12}{6} = 1,000 \text{ pounds}$$

The tension on each leg will be 1,000 paunds. The sofe working copacity of $\frac{3}{4}$ -inch diometer cordoge rope is $T=D^2=(\frac{3}{4})^2=\frac{9}{16}$. 5625 ton.

137. SLING LOAD CHART See figure 171.

138. SHEARS

a. Moteriols. This device is used to erect heavy machinery and bulky objects. Figure 172 shows its construction. It must be guyed to hald its position. It is adapted to wark of an inclination from the vertical. Maximum shear leg length is 60 times the least diameter of the leg. This ratio must be reduced for heavy loads.

b. Erection. Holes should be dug at the points where the legs are to stond. On hard surface, the legs should be level and lashed to prevent spreading.

······		_				_	_						
Load char variase a with a laa	ngles		Ĩ In	clir							Total vertical load (lb)	Tatal eling: tensian (ib)	Angle degrees
	Γ.			_			_						0
			111	1	-	-	_		_			11473	5
		11	Ĥ,		Ξ	1	-	_	-	\neg	1000	5759	10
		III		<i>M</i>			-	-	-	4	1000	3863	15
		11	III	///	11.	//	\sim	-	\sim	と	1000	2924	20
		1	111	11	()	//	\sim		く	\sim	1000	2366	25
		1	11	11	$\left(\right)$.//	1	\sim	Х	1	1000	2000	30
			1	//	//	N	\sim	X	\mathcal{N}	~	1000	1743	35
1	11		1	1	V	ン	う	$^{\prime}$	``	N	1000	1555	40
				コ	ß	7			ン	\geq	1000	1414	45
Tatal vertical lead ((b)	000	1000	1000	1000	0001	0001	0001	0001	0001	1000		n aach leg Is faend b	
Tatal aling- tenalan (15)	000	1003	1015	1035	1064	1103	1154	1220	1305	1414	the total number af aver ar divide th	sling tens legs. If t under 1,00 e laad by y the total	ten by the he lead is 10 peends, 1,000 and
Angla degrees	90		80				60	55	50	45	elon feen	y me rorai d in the ta ding angle	ble for the

The chart illustrotes the voriation of tension on one sling leg when applied to o constant 1000-paund load ot various angles.

Example

Prablem: 100,000 paunds weight is to be lifted by o four-leg sling assembly with each leg lifting ot on angle of 45 degrees. What will be the tension on one leg:

Pracedure: From the chort the total sling tension on one leg at 45 degrees for 1000 pounds is 1414 pounds.

Total tension for 100,000 pounds = 141,400 pounds.

Tension on each leg = $\frac{141400}{4}$ = 35,350 paunds.

If all legs lifted verticolly, the tension on each leg = $\frac{100000}{4}$ = 25,000 pounds.

Figure 171. Sling Load Chart.

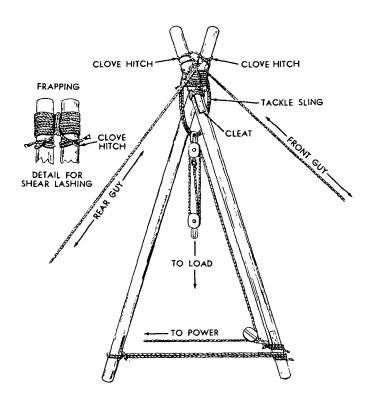


Figure 172. Lashing for shears.

139. GIN POLE

See figures 173 ond 174.

 Description. A gin pole is on unpright spor, guyed at the top to hold it in a verticol or neor-verticol pasitian, and equipped with suitable haisting tackle. It is easily rigged, maved, and operated.

b. Erecting. A gin pale 30 or 40 feet lang may be roised eosily by hond, but longer pales must be raised by supplementory rigging ar power equipment. Figure 173 shows the gin pole in position for operation, while the necessory rigging is illustrated in figure 174. The moximum allowoble length is 60 times the minimum diameter. Guys ore 3 to 4 times the pole length.

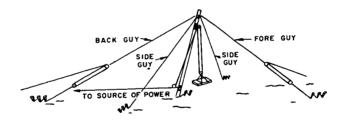


Figure 173. Gin pole ready for operation.

140. BOOM DERRICK

a. Rigging. Booms are used on gin poles to lift laods ot o distonce from the bose af the pole. The baam is two-thirds the length af the gin pale. For heavy loods, lower butt of boom to ground: roise it for lighter loads. It must nat bear against the upper two-thirds of the pole.

b. Operation. Roise the boom into position when the rigging is finished. In aperation, it is a convenient means far laading and unloading trucks and flotcars, and for use an docks or piers. Figure 175 shows the boom derrick in position for operation.

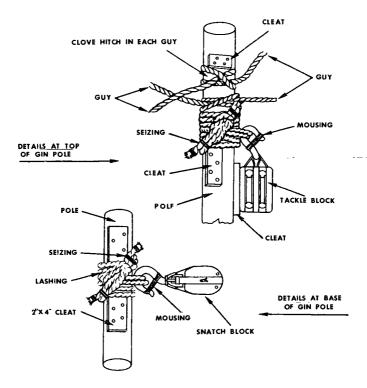


Figure 174. Lashing for a gin pole.

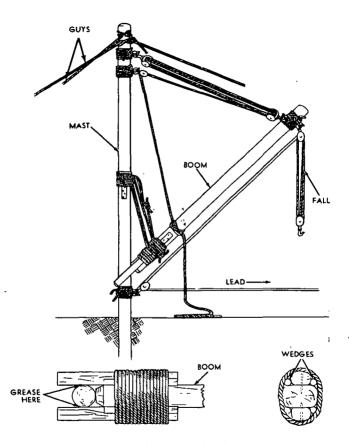


Figure 175. Boom derrick.

The mast stress on a guy line occurs when a stroight line through the load and pole posses through the guy line. To compute the tension, use the formula shown in figure 176.

Problem: Laad = 2,500 Weight of pole = 800 pounds Drift = 10 feet y-distance = 20 feet

Therefore, by figure 176, $t = \frac{2,900 \times 10}{20} = 1,450$

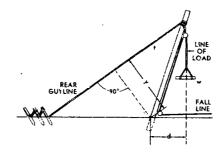


Figure 176. Computing stresses in single guylines.

142. HIGHLINE

The highline is a trolley line passing through a snatch block ot each sup-¹ port (fig. 177). It is the type most commonly erected at the plotoon level.

a. Sag. The sog in the track cable when loaded should be not less than 5 percent of the span.

b. Farmula for Safeload of Highline.

$$SL = \frac{BS (Ibs)}{5 \times SF} - \frac{DL (Ibs)}{2}$$

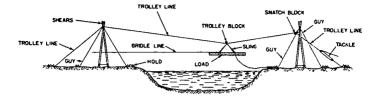


Figure 177. Highline.

. . .

Where	SL = safelood
	BS =breaking strength of line
	DL =dead laad
	SF = sofety factor
Prablem	
	Trock line is ¾-inch diometer manilo rape
	Houl line is 1/2-inch diometer manilo rape
	Sofety factor is 4.0
	Trock cable sag is 5 percent
Solution	BS (breaking strength) for ¾-inch diameter-manilo rape= 5,400 paunds.
	W (¾-inch rope)=66.8 pounds/400 feet (table 80)
	W(1/2-inch rape)=60 pounds/800 feet
	. (table 80)
Therefare	$SL = \frac{5,400}{5 \times 4.0} - \frac{66.8}{2}$
Therefore	$3L = \frac{3L}{5 \times 4.0} - \frac{1}{2}$
	SL = 270 - 33.4
	SL = 236.6 paunds
	•
rar me paylo	ad, use the formulo:
	PL=SL-(½W af haul rape+W of traveler+ W af corrier)
Englishing mark	lem, this would mean:
Far mis prab	
	PL=236.6—(30 plus the weight of the traveler ond corrier)
NOTE. Fo	r information an suspension bridge see chapter 7.

CHAPTER 13 EQUIPMENT PRODUCTION

143. CRAWLER AND RUBBER TIRED TRACTORS

a. The economicol hauling distonce for a dozer ranges from 25 to 300 feet.

b. Dozer output chart. See toble 86.

c. The recommended uses of troctors to increase production are:

(1) Slot dozing. This is a method of digging and pushing material in the same path to reduce blade spillage. As the dozer cuts into the earth, windrows are built up octing as retaining walls to keep the material in front of the alade. Production may increase up to 30%.

(2) Blade to blode dozing. Using this method requires close coordination by the aperators. The machines have to travel at the same speed and keep the blades together. Blade to blode dazing con produce 1 to 1.5 cubic yords more per pass in a range of 50–300 feet.

(3) Downhill dozing. Dozer should be operated downhill when possible. The dozer will receive the benefit of gravity and be oble to push a lorger load.

(4) Ripper otrochments. Standord militory blades ore equipped with ripper teeth mounted to the back of the blade. On the back up portion of the cycle, these teeth may be lowered into the ground ta loosen hord moterial, making it easier to obtain o full lood on the forword portion of the cycle.

144. SCRAPERS

 Crawler troctor-scraper combinations can be efficiently operated from 300 to 1500 feet.

b. Rubber-tired troctor-scroper combinations can be efficiently operated from 1200 to 5000 feet.

c. Methods of increasing scraper production are:

(1) Downhill looding.

(2) Straddle looding.

(a) Make two cuts, one on each side of a lane which is slightly smaller than the width of the scroper.

(b) On third cut, strip lone left by cuts one and two.

(3) Bock track loading. With this method, a tractor is used to push the loading tractor-scraper. It is good where the pushing tractor has to back only a short distance to get into position to push the next tractor-scraper.

Table	86.	Dazer	Output
-------	-----	-------	--------

	Copacity in yords	Productio cu yd			in miles hour	Galians of fuel per
Model	(loose)	50 ft haul	100 ft haul	Lowest geor	Highest geor	hour
D-8	5.0	450	250	1.5	5.2	11(DSL)
TD-24		Same data	as for D–8	1.7	8.2	11(DSL)
HD-16M		Same data	as for D–8	3.47	7.41	11(DSL)
TD-20	3.5	390	215	1.6	7.3	10(DSL)
HD-6M	2.6	284	154	1.5	5.5	9(DSL)
830M	5.0	364*	272	5.7	30.5	1 2(DSL)
MRS 100	2.6	228*	1 30	2.2	30.	9(DSL)
D-6S	2.8	250	170	2.0	7.0	
TD-18		Same da TD-		1. 7	5.7	
MRS 150				2.46	26.4	
MRS 190		,		2.96	26.4	
DW-20M				2.8	25.1	
Super ''C''			···· .	2.6	14.3	

* Depends upon type material and speed.

(4) Shuttle laading. With this method, a pusher tractar is used ta push a tractar-scraper. However, after the aperation is complete, instead of the pusher backing up ta get inta pasitian ta push another tractar-scraper, a tractar-scraper positions itself sa that the pusher has anly ta reverse its direction and push the new tractar-scraper.

(5) Chain laading. This method is used where the cut area is fairly lang. A pusher initially laads ane unit, then maves in behind another unit which is maving parallel ta and adjacent to the first unit.

(6) Traveling. All laaded units shauld leave the cut area as fast as possible.

(7) Grading. All haul raads shauld be maintained with a grader ta increase the haul speed af earth-mavers.

(8) Raating. Far ease in scraper loading rip soil priar ta laading scraper.

d. Capacities of Scrapers. See table 87.

145. EARTH MOVING PRODUCTION FOR SCRAPERS

a. Determine Cycle Time. Cycle time is the tatal time required far a piece af equipment ta camplete its entire aperatian. Cycle time is divided inta twa types af time. These times are:

(1) Fixed time. This is the time spent in aperatians ather than hauling and returning. It includes that time taken far laading, accelerating, decelerating and dumping. This time can be estimated in the field ar if na data is available table 88 may be used as a guide.

(2) Variable time. Variable time is determined by the farmula:

Variable time (min.) =
$$\frac{haul \ distance \ (feet)}{speed \ (mph) \times 88}$$

Speed is determined by haul raad canditians. This includes grade resistance, ralling resistance, and tractian. Far detailed calculations see TM 5–331. Far an estimatian, use table 86. Assume high speed far haul raads with hard surface and slight grades, middle speed far average road surface and medium grades, and lawest speed far paar raad surface and steep grades.

b. Determine Laad Capacity. See table 87.

c. Determine Efficiency Factor. See table 89.

d. Estimate Production. Production is estimated by the farmula:

Laase cubic yards per haur

=Number of hauling units \times Capacity $\times \frac{60 \text{ min per haur}}{\text{cycle time}} \times \text{efficiency}$ factor

e. Estimote Jab Durotion. This is determined by the formulo: Job duratian (hours)= Soil Conversion Foctor×Soil to be moved (yds)

Loose cubic yards per hour

See toble 90 far soil canversion foctor.

f. Exomple: How long will it toke to move 500 cubic yords of clay (in place), 5000 feet ane way with an 830M rubber-tired tractor pulling a Curtiss-Wright scroper? The houl raad is paor, wark during daylight, 45-minute working hour.

(1) Cycle time. From toble 88 fixed time = 1.9 min

Variable time (min) = $\frac{5000 \text{ feet}}{5.7 \text{ mph} \times 88 \text{ feet per second}}$ = 10 min

Speed from toble 86.

Cycle time = 1.9 min = 10 min = 11.9 min

(2) Load capocity. From table 86 assume heoped copacity = 23.6 cu yds

(3) Efficiency factor. Fram toble 89 Efficiency factor = 0.75

(4) Production in cubic yords per hour.

23.6 cu yds per scroper $\times \frac{60 \text{ min per hour}}{11.9 \text{ min}} \times 0.75$ efficiency foctor =

89 cubic yards of moterial per haur.

Moke ond model	Weight Ibs	Ca- pacity struck cu yds	Co- pacity headed cu yds
LeTourneau LP clased bowl	19,700	12.0	15.0
Waoldrige OS~122A open bowl	24,140	12.2	15.5
Curtiss-Wright open bowl	38,900	18.2	23.6
Air drap hydroulic	16,000	7.5	9.5
open bowl	12,650		1

Toble 87. Scraper Capocity

(5) Time required to finish job. From toble 90, 1 cubic yord of in place clay equals 1.43 cubic yords of loose material.

Job durotion = $\frac{1.43 \times 500 \text{ cu yds}}{89 \text{ cubic yords per hour}}$ = 8.05 hours or about 8 hours.

Toble 88. Bosic Fixed Time Constants (Use as Guide Only)

Wheel scroper (with pusher)	Fixed time
5th geor houl	3.0 min
4th geor houl	2.3 min
3rd geor houl	1.9 min
Trock troctor with scroper	
Self-loaded	2.5 min
Push-loaded	2.0 min

Toble 89. Efficiency Factor Chart

	Type troctor	Working hours	Eff. foctor
Doy operation	Trock-type	50 min/hr	0.83
	Wheel-type	45 min/hr	0.75
Night operotion	Trock-type	45 min/hr	0.75
	Wheel-type	40 min/hr	0.67

Soil type	Sail canditian initiolly	In- place	Loase	Cam- pacted
	In place		1.11	0.95
Sond	Loose	.90		.86
	Campacted	1.05	1.17	
			1.25	0.90
Laam	In ploce Laase	.80		.72
	Campocted	1.11	1.39	
			1.43	0.90
Clay	In place Laase	. 70		.63
	Campocted	1.11	1.59	
			1.50	1.30
Rack (blasted)	in ploce Laose	.67		.87
	Compacted	.77	1.15	
			1.50	1.30
Hard caral (dead) camparable ta	In place Laase	.67		.87
limestone	Campacted	.77	1.15	

Table 90. Sail Canversion Foctors (Estimated)

146. EQUIPMENT APPLICATION CHART

See toble 91.

147. GRADERS

o. Methods of Obtoining Moximum Productian.

 In working distances up to 1000 feet, back up to beginning of project.

(2) In working distances greater than 1000 feet, turn groder oround.

b. Correct Gear Ronges for Grader Operatian. See table 92.

c. Steps in Hosty Rood Construction.

(1) Morking cut. Place right frant wheel in line with ditch stoker. Set mold boord ot outside of right front wheel. Moke 3 to 4-in-deep cut olong ditch stokes.

(2) Ditching cut. Ploce right front wheel in morking cut. Adjust mold boord so leading edge is in line with and behind right frant wheel. Make cuts as deep as possible and make as many cuts as needed to give proper ditch depth.

(3) Moving windrow. Angle mold board and move windrow, obtained from ditch cut, to center of rood.

(4) Level windrow. Level windrow ta make road surfoce ond crown.

(5) Slope. Slope bonks to prevent erosion.

(6) Police. Cleon and cleor ditches.

d. Production Copobilities of Groders. See toble 93.

e. Efficiency Foctor for Groders. For generol grader productian estimotion, ossume o 60-percent efficiency foctor.

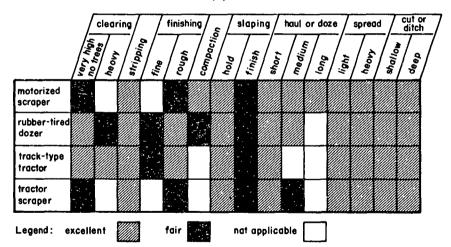
148. COMPACTION EQUIPMENT

o. Sheepsfoot Roller.

(1) The depth of loose lift should not exceed 9 inches when a bond is desired between two lifts of moterial.

(2) Overlap should be by ot least 1 foot.

(3) If the feet of the sheepsfoot roller do not walk themselves out of material, this is on indication that the roller is exceeding the shear stress of the soil and the weight of the roller must be reduced.


b. 13-Wheel, Pneumatic-Tired Roller.

(1) When operating with o rolling load of 7 tons or less, tire pressure should be 25 psi. Increose the pressure 5 psi for each additional ton up to a maximum of 9 tons.

(2) Compaction is obtoined with loods of not more thon 7 tons.

(3) Compaction lifts should not exceed 6 inches.

Table 91. Equipment Utilizatian

Toble 92. Correct Geor Ranges Used in Groder Operation

Operation	Geor
Mointenonce	2d & 3d
Spreoding	3d & 4th
Mixing	4th to 6th
Ditching	1st to 2d
Bank sloping	l st
Snow removal	5th to 6th
Finishing	2d to 4th

Toble 93. Praduction Capocities of the Groder

۱

Operation	Rate per haur	Unit	Canditians				
	250	cu yd					
Ditching	150 85	cu yd cu yd	"V" ditching, medium digging "V" ditching, hard digging				
Grading	.2	mile	Digging side ditches and shaping crawn, 4 round trips required				
Subgrade preparatian	400	sq yd	Scarify and shape				
Base caurse production	200 450	cu yd cu yd	Spread material Shaping surface				
Surface treatment	150	sq yd	Mixing in place 2-in bitu- minous material				

(4) The 13-wheel roller is best in gronulor type soils.

(5) The 13-wheel roller is good for finishing ospholt.

c. 50-Ton, Pneumotic-Tired Roller.

(1) The 50-ton roller will compoct down to 18 inches with two passes.

(2) Compaction of moterial depends on tire pressure and weight of roller.

CLASS OF MATERIAL	14	1/2	- 74	1	11/4	11/2	13/4	2	21/4
Maist loom or	3.8'	4.6'	5.3'	6.0'	6.5'	7.0'	7.4'	7.8′	8.4'
light sondy clay	85	115	165	205	250	285	320	355	405
Sand ond gravel	3.8′	4.6'	5.3'	6.0'	6.5'	7.0'	7.4'	7.8'	8.4'
	80	110	155	200	230	270	300	330	390
Good common earth	4.5'	5.7'	6.8'	7.8′	8.5'	9.2'	9.7'	10.2′	11.2
	70	95	135	175	210	240	270	300	350
Clay herd tough	6.0'	7.0'	8.0 ⁷	9.0'	9.8'	10.7'	11.5'	12.2′	13.3
	50	75	110	145	180	210	235	265	310
Rock well blasted	- 40	60	- 95	- 125	- 155		205	- 239	275
Common, with rocks and roots	30		80	 105	130	155	- 180	 200	245
Cloy, wet and	6.0'	7.0'	8.0'	9.0'	9.8'	10.7'	11.5'	12.2'	13.3
sticky	25	40	70	95	120	145	165	185	230
Rack, poorly blosted	- 15	25		- 75	- 95	- 115		 160	195

Table 94. Shavel Dipper Capacity in Cu Yds

Power shovel yardages—conditions:

1. Cu yds bank measurement per 60 min, hour with no delays

2. Suitable depth of cut for maximum effect

3. All materials loaded into having units 90° swing

NOTE. Top figures denote optimum depth of cut—bottom figures denote cubic yards per hour.

d. Steel Wheel Raller, 3-Wheel, 10-Ton.

(1) The 3-wheel, 10-tan raller will campact a 10- to 12-inch lift af material.

(2) Passes af railer must averlap at least 50 percent.

(3) The 3-wheel, 10-tan raller can be used to compact rock.

e. 9–14 Tan Raller. The 9–14 tan raller is used anly as a finish raller an materials such as asphalt.

149. EARTH LIFTING EQUIPMENT

a. Shavel-Dipper Capacity in Cubic Yards. ' See table 94.

b. Shart Baam Dragline Performance. See table 95.

c. Scaop Laader Praductian. See table 96.

CLASS OF MATERIAL	₩	1/2	*	1	1%	1/2	1¾	2	21/2
Light, moist clay	5.0'	5.5'	6.0'	6.6'	7.0'	7.4'	7.7'	8.0'	8.5 ⁴
or loam	70	95	130	160	195	220	245	265	305
Sand or gravel	5.0'	5.5'	6.0'	6.6'	7.0'	7.4'	7.7'	8.0'	8.5'
	65	90	125	155	185	210	235	255	295
Good cammon earth	6.0'	6.7'	7.4'	8.0'	8.5'	9.0′	9.5'	9.9'	10.5 ⁴
	55	75	105	135	165	190	210	230	265
Clay; hard, tough	7.3'	8.0'	8.7'	9.3'	10.0'	10.7′	11.3′	11.8′	12.3
	35	55	90	110	135	160	180	195	230
Clay; wet, sticky	7.3'	8.0'	8.7'	9.3'	10.0'	10.7′	11.3'	11.8'	12.3
	20	30	55	75	95	110	130	145	175

Table 95. Short Boom Drogline Performance in Cu Yds

NOTE. Top figure denotes optimum depth of cut—bottom figure denotes cubic yords per hour (bank measure).

Table 96.	Scoop Looder Production in Cubic Yords Per Hour Bosed on o
	50 Minute Hour

SAE rated	1	Cycle time in seconds										
bucket capacities	20	30	40	50	60	80	100	120	140	160	180	200
1 cu yd	150	100	75	60	50	38	30	25	21	•••		
1½ cuyel	220	150	110	90	75	55	45	37	32	28	25	22
2 ¹ /4 cu yd	338	220	168	132	110	85	68	56	48	42	38	34
2½ cuyd	370	250	185	150	125	94	75	63	54	47	42	37
3½ cuyd		342	260	210	175	160	110	86	75	65	58	52
4 cu yd		395	300	240	200	150	120	100	85	75	66	60

150. PRODUCTIVE CAPACITY OF ENGINEER EQUIPMENT

When time does not permit colculation of production of engineer equipment table 97 may be used.

Equipment	Rate units per hr	Unit	Conditians
	ORAINA	GE OITCHES	
Grader, motarized	250	cu yd	V-ditches, easy digging
	150	cu yd	V-ditches, med. hard digging
	95	cuyd	V-ditches, hard digging
Shavel or dragline, 34	60*	cuyd	Hard digging
cu yd	125*	cu yd	Easy digging
Hand taals	S man-hrs	100 ft	V-ditches, 3 ft wide, 1 foot deep, easy digging
	9 nian-hrs	100 ft	V-ditches, 3 ft wide, 1 foot deep, medium hard digging
Oitching machine, ladder type	0-8	ft, per min.	Operating speed depends an width (19 ar 24 in.), depth (0 ta 99 in.), and type al sail
Oitching machine, mabile	9- 28	ft. per min.	Same as abave, except 24 in. wide
	CLEARING	ANO GRU99ING	
Hand taals	1½ man-hrs	tree	3 man blasting team, gaad canditians
	125 man-hrs	e130	Light clearing
	350 man-hrs	acre	Medium clearing
	25 man-hrs	100 lin yd	Light clearing, 30 ft wide
	70 man-hrs	100 Jin yd	Medium clearing, 30 ft wide
Mawer, with tractar, 30 dbhp	2.0	acre	Cutting weeds and grasses
Tractor, 66- ta 90-dbhp,	1.0	acre	Light stripping ar clearing
with dazer	0.25	acre	Medium clearing
	20 ta 50	trees	4 in. ta 10 in. diameter
	3 ta 12	trees	12 in. ta 30 in. diameter

Table 97. Productive Capacity of Equipment

	Table 97.	Cantinu	ed .
Equipment	Rate units per hr	Unit	Conditians
	GR	ADING	
Troctor, 66- to 90-dbhp, with dozer	400	lin ft	Sidehill çut; medium-hord digging, 10° slope
	190	lin ft	Sidehill cut, medium-hord digging, 20° slape
	110	lin ft	Sidehill cut, medium hord digging, 30° slope
	120	cu yd	Sidehill cut, medium hard digging
	90	cu yd	Sidehill cut, hord digging
	130	cu yd	SO ft level houl, medium hord digging
	80	cu yd	100 ft level haul, medium hord digging
Scraper, tawed 12 cu yd with tractor	145	cu yd	SOO ft level houl, medium hard soil
	121	cu yd	800 ft level houl, medium hard digging
Shovel, pawer, ¾ cu yd	45	cu yd	Hard digging
	75	cu yd	Eosy digging
Groder, motorized	0.2	mile	Oigging side ditches ond shaping crown, 4 round trips
Hond tools	1.2 to 2.4	cu yd	Looding loose materiol into truck, 1 mon with shovel
	1.\$	cu yd	Excovotion with pick ond shovel, to S ft, eosy digging
<u> </u>	EMB	ANKMENT	
Troctor, 70- to 90-dbhp, with ongle-dozer	300	cu yd	Spreoding materiol
Roller, sheepsfaat,	250	cu yd	9 in loose loyers, 8 posses
two drum in-line.	200	cu yd	9 in laase layers, 10 posses
towed by troctor, 70- to 90-dbhp	150	cu yd	9 in loose loyers, 12 posses

	Table 97.	— Continued	
Equipment	Rate units per hr	Unit	Canditians
	SUBGRACE	PREPARATION	
Grade, matarized	400	sq yd	Scarify and shape
Raller, sheepsfaat, twa	650	sq yd	6 in layers, 8 passes
drum in line, tawed by	540	sq yd	6 in layers, 10 passes
tractar, 70∙ ta 90-dbhp	4S0	sq yd	6 in layers, 12 passes
Raller, rubber-tired with tractar, 30.dbhp	3000	sq yd	S mph, S passes
Raller, raad, tandem, S- ta 8-tan	1000	sq yd	3 mph, S passes
	BASE COURS	E CONSTRUCTION	
Tractar, 70- ta 90-dbhp, with angle-dazer	300	cu yd	Spread material
Grader, matarized	200	cu yd	Spread material
,	4S0	sq yd	Shaping surface
Raller, raad, tandem, 5- ta 8-tan	300	sq yd	Campacting grave!
Ralier, raad, tandem, S- ta 8-tan	75	cu yd	Campacting gravel
Raller, rubber-tired, tractar, 30-dbhp	1500	sq yd	Campacting gravel, 10 passes
SURFACE	TREATMENTS AN	O PAVEMENT	ONSTRUCTION
Sweeper, tractar, 30-dbhp	2500	sq yd	Sweeping campact base
Oistributar, trailer	2500	sq yd	0.1 gal per sq yd, 24-ft spray
maunted	1250	sq yd	0.2 gal per sq yd, 24-ft spray
Oistributar, truck		.,	
maunted	(See TM S	5-1134)	
Spreader, aggregate, tractian pawered	\$000	sq yd	Spread caver aggregates
Raller, raad tandem, 5- ta 8-ton	3000	sq yd	Ralling aggregate, 3 mph, 3 passes
Raller, rubber-tired, tractar, 30-dbhp	3000	sq yd	Ralling aggregate, S mph, S passes
Grader, matarized	150	sq yd	Mixed in place, 2-in bitumi- naus material

Table 97. -- Continued

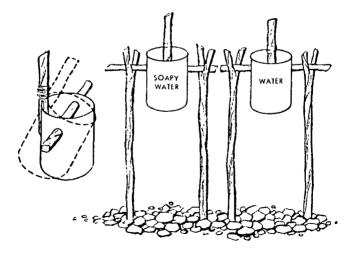
Equipment	Rote units per hr	Unit	Conditions
	AGGREGAT	E PRODUCTION	
Crusher, twa-unit,	15	ton	1-in oggregote, screened
25 cu yd per hr	20	ton	11/2-in oggregote, screened
	30	ton	2½ in aggregote, screened
Crusher, (Dj-50) tph	18	ton	1-in aggregote, screened
	30	tan	11/2-in oggregote, screened
	43	ton	2-in aggregote, screened
Crusher, 225 tph	110	ton	1/4-in oggregate, screened, washed
	220	ton	1¼-in aggregote, screened, washed
Crusher 15 tph, Air-	15	ton	1-in aggregote, crushed
borne	25	ton	11/2-in oggregote, crushed
	38	ton	2-in oggregote, crushed
Compressor, 210 cfm	210	cfm	At seo level
(Reciprocating)	194	cfm	5000 ft. obove sea level
Compressor, 315 cfm	315	cfm	At sea level
(Reciprocoting)	310	cfm	5000 ft. obove sea level
Compressor, 600 cfm	600	cfm	At seo level
(Rotory)	600	cfm	5000 ft. above seo level
Compressor, 210 cfm	210	cfm	At seo level
(Rotory)	210	cfm	5000 ft. obove seo level
Orill, rock, 35-lb closs	20	lin ft	1¾-in hole, mox depth 8 ft Requires 40 to 60 cfm of oir
Drill, rock, 45-lb closs	30	lin ft	134-in hole, mox depth 12 ft. Requires 70 to 90 cfm of oir
Scoop looder, wheel 2 cu yd	200	cu yd	Truck looding

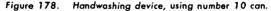
Table 97. — Continued

*dbhp-drowbor horsepower

CHAPTER 14 FIELD SANITATION

151 SANITATION FACILITIES


•


Far details an field sanitatian see FM 21-10, Military Sanitatian.

152. WASHING FACILITIES

a. Hand washing devices shauld be set up near latrines and kitchens See figure 178.

b. Showers shauld be set up whenever passible for personal hygiene and marale. See figure 179.

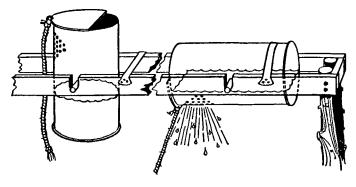


Figure 179. Shower unit, using metal drum.

153. WASTE DISPOSAL

a. Latrines.

(1) Size should be adequate to take care of at least 8 percent of the unit at once. Sixteen feet af straddle trench in faur-foat sections, or two deep pit latrines with four-hole latrine boxes, is adequate for a 100-man unit. Five "pipe urinals" are adequate for a 100-man unit.

(2) Locate at least 100 yards from kitchen, outside camp, and convenient ta tents.

(3) See figures 180, 181, and 182.

(4) When filled to within 1 foot of ground level, or when abandoned, latrines should be sprayed with insecticide, filled in, and mounded with a 2-foot overburden of compacted earth.

b. Garbage Pits.

(1) Size should be at least 4 feet square and 4 feet deep.

(2) Locate as far from kitchen as possible, outside camp area if practical.

(3) When filled to within 1 foot of ground level, or when abandoned, fill pit in and mound aver with a 2-foot overburden af compacted earth. (4) Liquid kitchen wastes shauld never be dumped inta garbage pits as this precludes effective burning aut and shartens utilizatian for the pit.

c. Soakage pits. Liquid kitchen wastes shauld be dispased of in soakage pits. These shauld be lacated in the kitchen area. The saakage pit may be canstructed the same as the urinal (fig. 182) except that a grease trap must be provided (see fig. 183). In canstructing the pit, amit pipes and have drainage fram grease pipe drain inta pit.

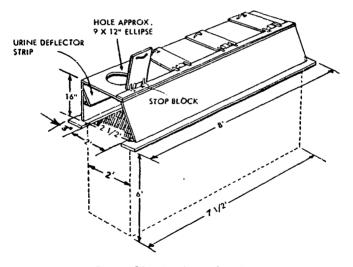


Figure 180. Bax latrine for 50 men.

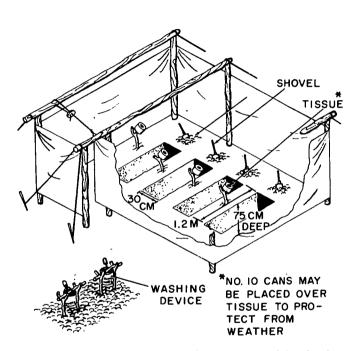


Figure 181. Straddle trench latrine for 100 men, with handwashing device.

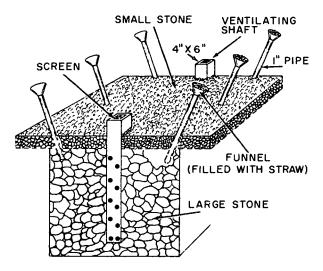


Figure 182. Pipe urinal arrangement.

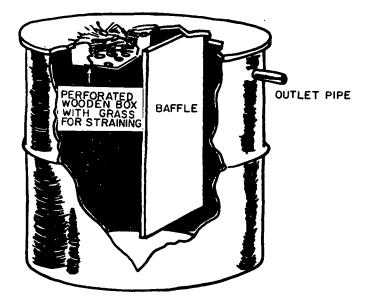


Figure 183. 8affle grease trap (barrel type).

:

CHAPTER 15

CHEMICAL, BIOLOGICAL, AND RADIOLOGICAL DATA

154. PROTECTION

Individual protectian against a taxic agent is abtained thraugh use af the pratective mosk, pratective clathing, and ather pratective items. A chemical ar bialagical agent attack may be detected through use of chemical agent detector kits, bialagical sampling kits, or by symptoms which may appear fallawing chemical ar bialagical agent emplayment. Far individual CBR pratective measures, see FM 21-41; far unit pratectian, see FM 21-40.

155 REPORTING

Procedures far reparting chemical ar biological ottacks are narmally prescribed in the unit SOP. Detailed information is given in FM 21-40.

156. DECONTAMINATION

Detailed infarmatian pertaining ta chemical and bialagical decantamination is given in TM 3-220.

157. REPORTING NUCLEAR ATTACK

Procedures far reparting nuclear attacks are narmally prescribed in the unit SOP. Detailed informatian is given in FM 3-12 and FM 21-40.

158. RADIOLOGICAL DECONTAMINATION

Detailed infarmatian pertaining ta radiologicol decontaminatian is given in TM 3–220.

159. PROTECTION

Far informatian an individual protectian, see FM 21-41. For information an protective shelters, see FM 21-40 and TM 5-311. CHAPTER 16 COMMUNICATIONS

160. MORSE CODE See figure 184.

Α	J. – – –	S	2
B –	Κ – . –	Τ –	3
C	i. –	U	4
D –	M – –	V	5
Ε.	N	₩	6
F	0	X	7
G – – .	Ρ. – – .	Y	8
н	Q	Ζ	9
ł	R. – .	1	0

Figure 184. Morse Code.

161. PHONETIC ALPHABET See Figure 185.

162. PANEL CODE See figure 186.

Letter	Pro-word	Pronunciation	<u>Letter</u>	Pro-word	Pronunciation
Α	ALFA	<u>al</u> pah	N	HOVENBER	NO <u>ven</u> ber
В	BRAVO	BRAH VOH	0	OSCAR	OSS CAR
С	CHARLIE	CHAR LEB	. P	PAPA	ран <u>ран</u>
D	DELTA	DELL TAR	Q	QUEBEC	KEH <u>BECK</u>
E	ECHO	ECK OH	R	ROMEO	<u>Row</u> me oh
F	FORTROT	POKS TROT	S	SIERRA	see <u>air</u> bah
G	GOLF	<u>tor</u>	Т	TANGO	TANG GO
н	HOTEL	EQ TELL	U	UNIFORM	<u>XOU</u> NEE FORM
I	INDIA	<u>in</u> der <u>An</u>	V	VICTOR	VIK TAR
J	JULIETT	<u>JEW</u> LEE <u>ETT</u>	W	WHISKEY	WISS KEY
K	KILO	KEY LOR	X	TRAY	<u>ecks</u> bay
L	LINA	LEE MAE	Y	YANKEE	XVIX KEA
M	MIKE	MIKE	Z	ZULU	<u>200</u> 1.00
		PROMETIC N	DOBERS		
1	WON	4 FO-WER	7	SEVEN	ZERO
2	T00	5 ri-yiv	B	ATE	
З	THUH-REE	6 str	9	NINER	
	I	Figure 185. Pho	onetic alp	habet.	

•

321

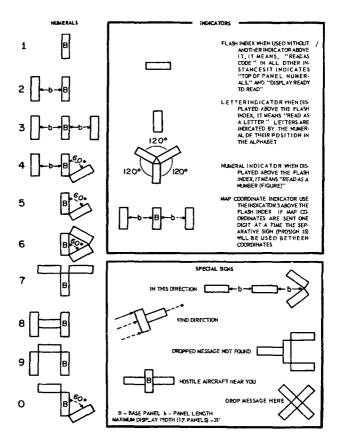


Figure 186. Panel code and messages.

322

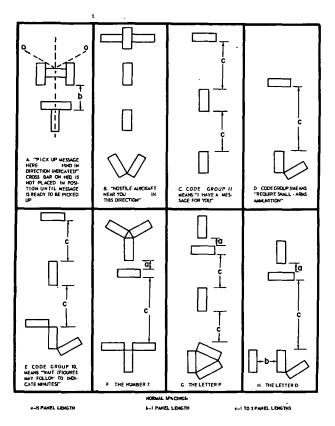


Figure 186 — Continued

163. GROUND AND AIR EMERGENCY CODE See figure 187.

ł
11
х
F
∛
ł
Κ
↑
Ð
L٦
Δ
L
LL
Ν
Y
٦L
W

NOTE: Elements should be spaced 10 feet oport, whenever possible.

Figure 187. Ground—air emergency code.

164. ANTENNAS

•

a. Antenna Length Chart. (Lengths are in feet.)

Frequency	Full	Frequency	Full
mega-	wave	mega-	wave
cycle	length	cycle	length
1	936	31	30.2
2	468	32	29.2
3	312	33	28.4
2 3 4 5 6	234	34	27.6
5	187.2	35	26.8
6	156	36	26
7	133.6	37	25.2
8	117	38	24.6
9	104	39	24
10	93.6	40	23.4
11	85	41	22.8
12	78	42	22.2
13	72	43	21.8
14	66.8	44	21.2
15	62.4	45	20.8
16	58.4	46	20.4
17	55	47	19.8
18	52	48	19.4
19	49.2	49	19
20	46.8	50	18.8
21	44.6	51	18.4
22	42.6	52	18
23	40.6	53	17.6
24	39	54	17.4
25	37.4	55	17
26	36	56	16.8
27	34.6	57	16.4
28	33.4	58	16.2
29	32.2	59	15.8
30	31.2	60	15.6

FOR 1/2 WAVE ANTENNA, DIVIDE BY 2.

FOR 1/4 WAVE ANTENNA, DIVIDE BY 4.

FOR CENTER FED ANTENNA (S), ½ OF DESIRED ANTENNA LENGTH TO EACH SIDE OF INSULATOR.

ANTENNA LENGTH FORMULAS:

f=frequency in megacycles answer is antenna length in feet

 $\frac{1}{4} \text{ wave} = \frac{234}{f}$ $\frac{1}{2} \text{ wave} = \frac{468}{f}$ full wave = $\frac{936}{f}$

b. Improvised Antennas. See figures 188 through 193.

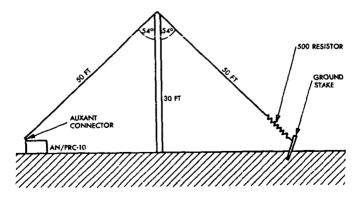


Figure 188. Half rhambic antenna.

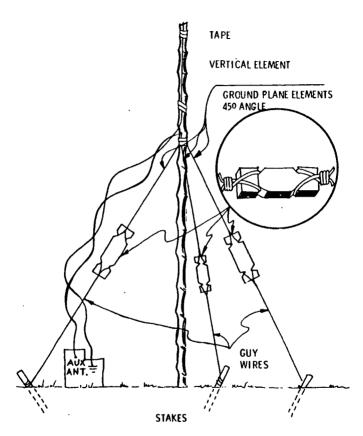


Figure 189. Jungle expedient antenna.

165. RADIO LOCATION

- o. Locote radio os high os possible.
- b. Location should be oway any metol obstructions.
- c. Avoid plocing in o depression or volley, whenever possible.
- d. Avoid locating o rodio neor electricol power line.

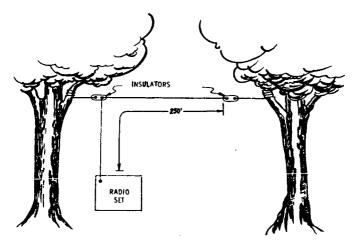
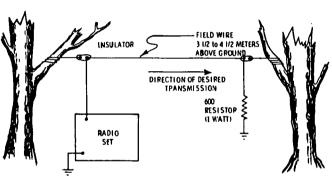



Figure 190. Inverted "L" antenna.

VERTICAL POLARIZATION 20 TO 8D MC

Figure 191. Long wire antenna.

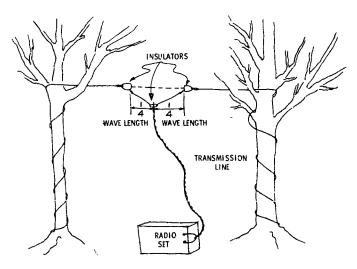


Figure 192. Impravised center fed half-wave antenna.

Figure 193. Expedient suspended vertical antennas.

332

CHAPTER 17 ENGINEERING DATA

166. MANPOWER

As a guide to the manpower available for work use the following: Combat Eng. Bn. (Divisional); 10 men/squad, 30 men/platoon, 80 men/ compony, 650 men/battalion. Use 10 man-hours per man per day. Increase time 50% per night wark.

167. WATER

o. Water Disinfection.

(1) Calcium hypochlorite. Add calcium hypochlarite ta produce residual chlorine of 1 part per millian (ppm) after 10-minute contact time, and wait additional 20 minutes before drinking. For a 36-gallan lyster bag, 1 calcium hypochlorite capsule is usually enough. For individual use, prepare a disinfecting solution by placing 1 calcium hypochlorite capsule in a canteen af water. Add 1 canteen-capful of disinfecting salutian to each canteen af water, shake, and allow to set far 30 minutes before using.

(2) Iodine tablets. Use 1 tablet per canteen of water for clear water and 2 tablets per canteen of water far cloudy water. Allow the water to stand for 5 minutes, shake vigarously, and allow to stand another 10 minutes before drinking. Allow cold water ta stand 20 minutes befare drinking.

(3) Boiling. Bring the water to a rolling boil for 15 minutes.

(4) Destruction of omoebic dysentery cysis. When cysts are suspected, pretreat all water by coagulation and sedimentation followed by sand filtration at reduced rates or by diatomite filtration. Water treated in this way is safe to drink if it has a residual chlorine content of 1 ppm after a 10-minute contact time. In emergencies, disinfect water in individual canteens by following the directians on the bottle of individual water purification tablets, unless an increase is directed by the medical officer. Small units may boil their own drinking water; this is a sure method. If the lyster bag is used, the fallowing steps must be taken:

(a) Break 1 ampule and pour into filled bag; stir with clean paddle.

(b) Disinfect faucets by flushing ½ cup of water through each faucet.

(c) After 10 minutes, residual should exceed 1 ppm. Then add another ampule. Keep bag covered.

(d) Water is potable 30 minutes after adding last ampule.

b. Flow of Woter Through Pipes. See tobles 98 and 99.

c. Doily Woter Requirements. See table 100.

168. ELECTRICAL WIRING

 The procedures pointed out in this section ore to be used only for on estimation of required wire sizes or when no other method is known.

b. To determine the wire size required for o given lood:

(1) Convert load into omperes required by using

Amperes = Totol wotts to be serviced voltoge

or

Amperes = Voltage resistonce (ohms)

or

Amperes = .7457 × Horsepower

(2) Enter tables 101 or 102 with omperes to be serviced ond length of wire required; determine wire size needed.

(3) This procedure is to be used when power is to be furnished to o specific load such as one mator or a group of lights. For the procedure on wiring a facility or wiring a generator see TM 5-766 Electric Power Generation In the Field.

Toble 98	Flow of	Water	(Gollons Pe	r Minute)	Through	Smooth-Bore	Hose*
----------	---------	-------	-------------	-----------	---------	-------------	-------

Hase { in ternal	Water pressure, paunds per square inch												
diameter inches)	20	30	40	50	60	70	80	90	100	125			
1.00	23	28	33	37	40	43	46	49	52	58			
1.25	40	50	57	64	70	76	81	86	90	101			
1.50	64	78	90	101	111	120	128	135	143	159			
2.00	130	159	184	206	227	242	262	275	292	326			
2.50	226	278	322	358	394	425	455	482	509	566			
3.00	356	437	504	570	620	665	715	755	800	890			
4.00	745	910	1,055	1,180	1,292	1,395	1,492	1,582	1,670	1,850			

* Data shown ore based on 100-foot length of hose, loid in a stroight line with open discharge end. For each set of couplings, deduct 5 percent.

.1	.1	4

Pressure	Pipe diameter (inches)											
	1/2	1/4	1	11/4	11/2	2	21/2	3	4			
17 psi	3.2	9.1	18.7	33.5	51.6	106	200	290	589			
30 psi	5.0	14.0	28.0	52.0	78.0	160	308	436	885			
40 psi	6.0	16.0	33.0	60.0	90.0	184	350	504	1,023			
50 psi	6.5	17.5	37.0	70.0	101.0	206	390	564	1,143			
60 psi	7.0	19.5	40.0	76.0	110.0	226	430	617	1,252			
75 psi	7.5	22.0	45.0	85.0	123.0	253	480	690	1,400			
100 psi	9.0	25.0	52.0	99.0	142.0	292	558	797	1,607			

Table 99. Maximum Quantities of Water in Gollons Per Minute Which Can Be Pumped Through 100 Feet of Wrought-Iron Pipe ot Various Pressures

Table 100. Per Copita Water Consumption in a Theater of Operations

or Posts, Camps, Si	atians (Permanent ar Temparary)
gal/man/day	Remarks
1/2	Absatute minimum, drinking only, not over 3 days
1	A small additional allawance far caaking.
2	Minimum for drinking, cooking, washing mess utensils, hands, and face.
5	Allows in addition some bathing and laundry.
5	Minimum; see preceding.
15	Includes bathing and waterborne sewage on an econamy bosis.
30-60	
60-100	
10	Per bed. Minimum.
50	Per bed. Allows for waterborne sewage.
Potable Wat	er far Anny in the Field
Amount	Remarks
5 gal / man / day	Includes; drinking, caaking, personol hygiene. May be reduced in emergencies for not mare than 3 days.
	Same as for post above.
Non-Potable W	ater far Army in the Field
18 gol/man/week	
10 gol/man/week	
1 gal/vehicle/doy	Additional required far decontamination of vehicles
- ·	and equipment during CBR warfare.
	gal / man / day 1/2 1 2 5 5 15 30-60 60-100 10 50 Potable Wat Amount 5 gal / man / day Non-Potable W 18 gol/man / week 10 gol/man / week

Table 101. Wire Sizes for 120-Volt Single-Phase	a Circuit
---	-----------

	Minimum	Service	Wire size (AWG)												
Load (amperes)	wire size	wire size	Distance one way from supply to load (feet)												
	(AWG)	(AWG)	50	75	100	1 25	150	175	200	250	300	350	400	450	500
15	14	10	14	12	10	8	8	6	6	6	4	4	4	2	2
20	14	10	12	10	8	8	6	6	6	4	4	2	2	2	2
25	12	8	10	8	8	6	6	4	4	4	2	2	2	1	1
30	12	8	10	8	6	6	4	4	4	2	2	1	1	0	0
35	12	6	8	6	6	4	4	4	2	2	1	1	o	0	2/0
40	10	6	8	6	6	4	4	2	2	2	1	0	0	2/0	2/0
45	10	6	8	6	4	4	2	2	2	1	0	0	2/0	2/0	3/0
50	10	6	8	6	4	4	2	2	2	1	0	2/0	2/0	3/0	3/0
55	8	4	6	4	4	2	2	2	1	0	2/0	2/0	3/0	3/0	4/0
60	8	4	6	4	4	2	2	1	1	0	2/0	3/0	3/0	4/0	4/0
65.	8	4	6	4	4	2	2	1	0	2/0	2/0	3/0	4/0	4/0	
70.	8	4	6	4	2	2	11	1	0	2/0	2/0	3/0	4/0	4/0	
75	6	4	6	4	2	2	1	0	0	2/0	3/0	4/0	4/0		
80	6	4	6	4	2	2	1	0	0	2/0	3/0	4/0	4/0		
85	6	4	4	4	2	1	1	0	2/0	3/0	3/0	4/0			
90	6	2	4	2	2	1	o	0	2/0	3/0	4/0	4/0			l
95	6	2	4	2	2	1	0	2/0	2/0	3/0	4/0		j.		1
100	4	2	4	2	2	1	0	2/0	2/0	3/0	4/0	.			1.

.

	Table	102.	Wire	Sizes f	or	220-Volt	3-Phase	Circuits
--	-------	------	------	---------	----	----------	---------	----------

	Minimum	Service						Wire	size (A	AWG)					
Load (amperes)	wire size	wire size				Dista	nce on	way	from s	opply t	o load	(feet)			
	(AWG)	(AWG)	100	150	200	250	300	350	400	500	600	700	800	900	1,000
15	14	12	14	12	10	8	8	8	6	6	6	4	4	4	2
20	14	10	12	10	8	8	6	6	6	4	4	2	2	2	2
25	12	8	10	8	8	6	6	6	4	4	2	2	2	2	1
30	12	8	10	8	6	6	6	4	4	2	2	2	1	1	0
35	12	8	10	8	6	6	- 4	4	4	2	2	1	1	0	0
40.	10	6	8	6	6	4	4	4	2	2	1	1	0	0	2/0
45	10	6	8	6	6	4	4	2	2	2	1	0	0	2/0	2/0
50	10	6	8	6	4	4	2	2	2	1	0	0	2/0	2/0	3/0
55	8	6	8	6	4	4	2	2	2	1	0	2/0	2/0	3/0	3/0
60	8	6	6	6	4	2	2	2	1	0	0	2/0	3/0	3/0	4/0
65	8	4	6	4	4	2	2	2	1	0	2/0	2/0	3/0	3/0	4/0
70	8	4	6	4	4	2	2	1	1	0	2/0	3/0	3/0	4/0	4/0
75	6	4	6	4	2	2	2	1	0	2/0	2/0	3/0	4/0	4/0	1
80	6	4	6	4	2	2	1	1	0	2/0	3/0	3/0	4/0	4/0	1.
85.	6	4	6	4	2	2	1	0	0	2/0	3/0	4/0	4/0	Ι.	ł .
90.	6	4	6	4	2	2	1	0	0	2/0	3/0	4/0	4/0		ł
95	6	4	6	4	2	1	1	0	2/0	3/0	3/0	4/0	· • ·		
100	4	2	4	2	2	1	0	0	2/0	3/0	4/0	4/0			
125	4	2	4	2	1	0	2/0	2/0	3/0	4/0	l	l			I
150	2	2	2	2	0	2/0	2/0	3/0	4/0	1		i i			Ι.
175	2	1	2	1	0	2/0	3/0	4/0	4/0	Ι.					
200	1	0	1	0	2/0	3/0	4/0	4/0			• •				
225	0	0	0	0	2/0	3/0	4/0		l					.	Ι
250	2/0	2/0	2/0	2/0	3/0	4/0			i				Ι.	.	
275	3/0	3/0	3/0	3/0	3/0	4/0				1					
300	3/0	3/0	3/0	3/0	4/0										I .
325	4/0	4/0	4/0	4/0		Ι.									

169. STRENGTH OF MATERIALS

o. Bending Moments. M= 1S where f= ollowable fiber stress in paunds per square inch S = section modulus (b below) M= bending mament (in inch-paunds) b. Section Modulus. (1) Rectongular sectians: S = bd²/6 where b = width of sectian in inches d = depth of sectian in inches (2) Circular sections: S = d³/10 where d = diameter af circle in inches (3) Steel beams: Aw

$$S = d_1 \left(Af + \frac{Aw}{6}\right)$$

where $d_1 = depth$ of beam

 $Af = area of flange = (t_1)(b)$

Aw = cross-sectional area of web = (t_2) (d_1)

See figure 95 far dimensioning.

- c. Working Stresses for Average Timber (Douglas Fir or Sauthern Pine).
 (1) Bending: 2,400.
 - (2) Shear Parallel ta the Groin: 150
 - (3) Bearing Perpendicular to the Groin: 500
 - (4) Modulus af Elosticity: 1,600,000.
 - (5) Compression Numbers.

 (a) Short column, far L/d ratias nat greater than 11: (L and d are expressed in inches)

$$f = 1,300$$

(b) Intermediate <u>col</u>umns, where L/d ratios are greater than 11 but less than $K = 0.64 \sqrt{E/c}$, in which E is the modulus of elasticity and C is the allawable compression stress parallel ta the groin:

$$f = c[1 - \frac{L}{3Kd}]$$

(c) Lang columns, for L/d ratios greater than K:

$$f = \frac{.3E}{(L/d)^2}$$

NOTE For working stress of all types of timber, see FM 5-35.

- d. Working Stresses for Steel (in pounds per sq in.)
 - (1) Axial Tension, Net Section: 27,000.
 - (2) Tension on Extreme Fiber: 27,000.

(3) Beams or Stringers in Bending: 27,000.

$$=\frac{Ld}{b+f} \leq 400$$

- (4) Bolts at Root of Thread: 20,000.
- (5) Axial Compression.
 - (a) Stiffeners of plate girders: 27,000.
- (b) Members with riveted ends, for L/r ratios not greater than

140:

 $f = 21,300 - \frac{3}{2} (L/r)^2$

where r=smollest cross-section dimension

(c) Members with pinned ends, for L/r ratios not greater than

140:

$f = 21,300 - \frac{1}{2} (L/r)^2$

(d) Splice moterial, gross section: 27,000

- (6) Shear: (in pounds per sq. in.)
 - (a) Girder webs, gross section: 16,500.
 - (b) Power-driven rivets and pins: 20,000.
 - (c) Turned bolts: 16,500.
 - (d) High tensile strength steel bolts: 20,000.
 - (e) Unfinished bolts: 12,000.

(7) Bearing: (in pounds per sq in.)

- (a) On rivets, single shear: 32,000.
- (b) On rivets, double shear: 40,000.
- (c) On unfinished bolts: single shear: 20,000.
- (d) On unfinished bolts: double shear: 25,000.
- (e) On milled stiffeners and other steel parts in contact: 30,000.
- (f) Expansion rollers and rockers, pounds per linear inch:
 - 1. For diameters up to 25 inches:

2. For diameters from 25 to 125 inches:

in which d is the diameter of the raller or racker in inches, ond S is the tensile yield stress of the raller or base, whichever is smoller.

- e. Beom Maments and Sheor far Various Laadings.
 - (1) Symbols.
- A orea of section
- b— width af section
- c- distonce fram neutral axis ta extreme fiber
- d --- depth of section
- F- laod in pounds
- f-- ollowable stress in psi
- 1- moment of inertia of section to extreme fiber
- L- span length
- 1- length in inches
- M— bending mament
- R- reoction farce

S-section madulus =
$$\frac{I}{C} = \frac{M}{C}$$

v-unit shear

w-lood per unit of length

(2) Maximum bending maments ond shear.

Mament and sheor are shown in toble 103.

170. TIMBER

 Dimensions and Properties. Toble 104 gives the dimensions and properties of timber.

- b. Structural Timber Data. These dato are shown in toble 105.
- c. Baord Feet Log Scale. See toble 106.

d. Board Feet Lumber Scale. See table 107.

171. NAILS AND FASTENERS

o. Nails and Spikes. The safe lateral laod for ane noil ar spike driven inta the side groin af seasaned lumber so that ot least twa-thirds af the length af the nail is in the wood member halding the paint (reduce lood 60 percent far noils in end grain and 25 percent for unseasaned wood) is as fallaws:

 $900 \times D^{3/2}$ far white pine and eastern hemlack

 $1200 \times D^{3/2}$ for Dauglos fir ond southern yellow pine

 $1700 \times D^{3/2}$ for ack, osh, and hord mople

Where D=diometer af noils, in inches. See tobles 108 and 109.

b. Waad screws. The safe lateral laad in pounds, for one wood screw driven into the side grain of seasoned lumber to a penetrotian of ot least

Condition	Di agram	M max	V max
Supparted both ends, lood concentrated at center Simply supported		<u></u>	<u>F</u> 2
		(at center)	(at ends)
Cancentrated load, distonce X from one Simply supported		EXY L	<u>FY</u> L (Provided X is less than Y)
Unifarmly distributed laad Simply supparted	w Ib/ft.	wL ² 8 (at center)	_wL_ 2 (at ends)
Load evenly distrib- uted over a distonce ^X Simply supported	wib/ft y - x - z - L	R1 Y <mark>R2</mark>	<mark>. ▼X</mark> 2L 2Z + X
Cantilever, concen- trated load at free end		(at connection) FL	(equal throughout) F

Table 103. Maximum Bending Maments and Shear

seven times its diameter into the member receiving the point (reduce load 25 percent far end grain and 25 percent far unseasaned waad) is as fallaws:

 $2100 \times D^2$ for white pine and eastern hemlack $2700 \times D^2$ for Dauglas fir and southern yellaw pine $4000 \times D^2$ far aak, ash, and hard maple

See table 110.

c. Lag Screws. The safe lateral laad in paunds, far ane lag screw driven into the side grain af seasaned number to a penetratian af nine times the diameter into the member receiving the paint and halding a

Naminal size	American standard	Area af sectian	1 <u>bh ³</u> 12	s <u>bh²</u>
. In.	In.	In.2	In. ⁴	In. ³
1 x 3	25/32 x 2 5/8	2.05	1.18	0.90
1×4	25 32 x 3 5/8	283	3.10	1.71
1 × 6	25/32 x 5 5/8	4.39	11.59	4 12
1 🗙 8	25/32 x 7 1/2	5.86	27.47	7 32
1 x 10	25/32 x 9 1/2	7.42	55.82	11.75
1 × 12	25/32 x 11 1/2	8.98	99.02	17.22
2 × 4	1 5/8 x 3 5/8	5.89	6.45	3 56
2 × 6	1 5/8 x 5 5/8	9 14	24.10	8.57
2 × 8	1 5/8 x 7 1/2	12.19	57.13	15.23
2 ¥ 10	1 5/8 x 9 1/2	15.44	116.10	24 44
2 x 12	1 5/8 x 11 1/2	18.69	205.95	35 82
3 × 8	2 5/8 x 7 1/2	19.69	92.29	24 61
3 x 10	2 5/8 x 9 1/2	24.94	187.55	39.48
3 x 12	2 5/8 x 11 1/2	30.19	332.69	57 86
4 x 12	35/8 x 111/2	41.69	459.43	79 90
4 x 16	3 5/8 x 15 1/2	56.19	1,124.92	145 15
6 x 12	5 1/2 x 11 1/2	63.25	697.07	121.23
6 x 16	5 1/2 x 15 1/2	85.25	1,706.78	220.23
6 × 18	5 1/2 × 17 1/2	96.25	2,456.38	280 73
8 x 16	7 1/2 x 15 1/2	116.25	2,327.42	300 31
8 x 20	7 1/2 x 19 1/2	146.25	4,634.30	475.31
8 x 24	7 1/2 × 23 1/2	176 25	8,111.17	690.31

Table 104. Dimensions and Properties (Dressed Timber)

NOTE:

Lumber quantities are expressed in feet, board measure (fbm or BM). A board faat is the lumber in a raugh-sawed baard 1 faat long, 1 foot wide, and 1 inch thick. As an example, a 2" x 8" x 12' board has 12 x 2/3 x 2 or 16 fbm.

cleat having a thickness of 3.5 times the screw diameter (reduce load 35 percent far end grain and 25 percent far unseasaned wood) is as fallaws:

- $1500 \times D^2$ far white pine and eastern hemlock
- $1700 \times D^2$ for Douglas fir and southern cypress
- $1900 \times D^2$ far southern yellow pine and soft maple
- $2200 \times D^2$ far aak, ash, and hard maple

Where D=diameter af shank, in inches.

	·Variety-and grade of w	road	Average	Allawable v	orking stre	sses for military u	use ¹ , Ib per sq in	•
	Species and grade description	Stress grade ²	unit weight ³ , Ibper cuft	Extreme fiber stress in bending ⁴	Hari- zontal shear	Compression perpendiculor ta grain	Compressian porollel ta grain ⁵	Madulus af elasticity
			UNI	TED STAT	ES SPECIE	S		
	Douglas fir	_	35	_	_	-	1 -	1,600,000
	Dense select structurol	1,800f	-	2,700	180	500	1,950	-
	Select structural	1,600f	-	2,400	150	450	1,800	1 -
		1,400f	-	2,100	180	500	1,650	- 1
	Yeliow pine (lang leaf,						1	
	ar dense shart leaf)	-	40	-	-	-	-	1,600,000
1	Select structural	2,000f	-	3,000	150	500	2,200	- 1
	Prime structural	1,800f	-	2,700	150	500	1,950	- 1
	Merchantoble structural; and structural square							
	edge and sound	1,600 f	- 1	2,400	150	500	1,800	- 1
	Na. 1 structural	1,400 f	1 -	2,100	150	500	1,500	} -
	Larch	-	36	-	-	-	- 1	1,300,000
	Select structural	1,800f	-	2,700	200	500	1,950	1 -
	Structural	1,600f	-	2,400	150	470	1,800	- 1
	Camman structural	1, 200 f	-	1,800	135	430	1,650	-
	Redwoad (structural)	-	30	-	-	-	-	1,200,000
	Dense select all heart	1,400 f	-	2,100	135	350	1,800	-
	Select all heart	1,200 f	1 -	1,800	120	350	1,650	i -
	Bulkhead and heart	1,000f	-	1,650	120	350	1,500	
	Southern cypress	-	32	-	-	-	-	1,200,000
	Select structural] 1, 400f	-	2, 100	180	400	1,800	-

Table 105. Structural Timber Data

.

Variety and grode of w	bod	Average	Allowoble	vorking st	resses for milita	ry use ¹ , Ibpersqir	ı
Species and grade description	Stress grode ²	unit weight ³ , Ib per cu ft	Extreme fiber stress in bending ⁴	Hari- zantol sheor	Compression perpendicular ta groin	Compressian parallel ta grain ⁵	Modulus af elosticity
		UNITE	STATES S	PECIES-	Continued		
Structural	1,100f	- 1	1,650	150	400	1,500	-
Eastern hemlock	-	30	-	-	- 1	-	1,100,000
Select structural	1, 100 f	-	1,650	10 5	400	1,050	-
			FOREIGN	SPECIES			
Group	-	45	-	-	-	-	1,600,000
Teok, sol, white siris, jorul, ook, osh, Philip- pine mahogany, lendio	_	 _	1,800- 2,700	200	360-500	1,680 - 2,000	_
Graup	_	35	-	-	-	-	1,250,000
Deodor, chir, poon gumhor,			1,500-	- 50		1.240 1.000	
Norway (northern) pine	-	-	2, 250	150	300-450	1,340-1,800	
Group III	-	30	-	-	-	-	1,000,000
White deol, kail	-	-	1,340- 2,000	100	260-390	1,110-1,500	-

Table 105. — Continued

¹Reduce all stresses to 70 percent of tabular values for graen waad and for design of parts of bridge structure continuously wet. Reduce all stress values to 75 percent of tabular values for design of structures carrying long-_continued live load.

²Grode designations adopted by United States lumber industry for long-time use.

³At about 15 percent moisture cantent.

⁴Working stress in tensions some as for bending.

⁵Working stresses for compression parallel to grain apply to posts, calumns, and struts, the unsupported length of which does not exceed 11 times the least dimension of cross section.

d. Driftpins

(1) Description. Driftpins ore long, heavy, threadless bolts used to hold heavy pieces of timber together. The term "driftpin" is almost universally used in practice, but for supply purposes the correct designation is "driftbolt." Driftpins have heads and vary in diameter from ½ to 1 inch, and in length from 18 to 26 inches.

(2) Uses. To use the driftpins, a hole slightly smoller than the diameter of the pin is made in the timber. The pin is wiped with oil, driven into the hole, and held in place by the compression action of the wood fibers.

Log diometer			Length	af log i	n feet		
(inches)	8	10	12	14	16	18	20
6	10	10	15	15	20	25	25
7	10	15	25	30	30	35	40
8	15	20	25	35	40	45	50
9	20	30	35	45	50	60	70
10	30	35	45	55	65	75	85
11	35	45	55	70	80	95	105
12	45	55	70	85	95	110	125
13	55	70	85	100	115	135	150
14	65	80	100	115	135	155	175
15	75	95	115	135	160	180	205
16	85	110	130	155	180	205	235
17	95	125	150	180	205	235	265
18	110	140	170	200	230	265	300
19	125	155	190	225	260	300	335
20	135	175	210	250	290	330	370
21	155	195	235	280	320	365	410
22	170	215	260	305	355	405	455
23	185	235	285	335	390	445	495
24	205	255	310	370	425	485	545
25	220	280	340	400	460	525	590
26	240	305	370	435	500	570	640
27	260	330	400	470	540	615	690
28	280	355	430	510	585	665	745

Toble 106. Lag Scale (board meosure of volume)

Log		Length of log in feet										
diameter (inches)	8	10	12	14	16	18	20					
29	305	385	465	545	630	715	800					
30	325	410	495	585	675	765	860					
31	350	440	530	625	720	820	915					
32	375	470	570	670	770	875	980					
33	400	500	605	715	820	930	1045					
34	425	535	645	760	875	990	1110					
35	450	565	685	805	925	1050	1175					
36	475	600	725	855	980	1115	1245					
37	505	635	770	. 905	1040	1175	1315					
38	535	670	810	955	1095	1245	1390					
39	565	710	855	1005	1155	1310	1465					
40	595	750	900	1060	1220	1380	1540					
41	625	785	950	1115	1280	1450	1620					
42	655	825	995	1170	1345	1525	1705					
43	690	870	1045	1230	1410	1600	1785					
44	725	910	1095	1290	1480	1675	1870					
45	755	955	1150	1350	1550	1755	1960					
46	795	995	1200	1410	1620	1835	2050					
47	830	1040	1255	1475	1695	1915	2140					
48	865	1090	1310	1540	1770	2000	2235					

Table 106. --- Continued

Table 107. Board Feet

Size of piece	Length of piece (feet)										
(inches)	10	12	14	16	18	20	22	24			
2 Бу 4	63	8	9%	103/3	12	131/3	143	16			
2 by 6	10	12	14	16	18	20	22	24			
2 Бу 8	131/3	16	183	211/3	24	263	29%	32			
2 by 10	163/3	20	23 1/3	263	30	331/3	363	40			
2 by 12	20	24	28	32	36	40	44	48			
2 by 14	231/3	28	323	371/3	42	463	511/3	- 5ć			
2 Бу 16	263	32	371/3	423	48	531/3	583	64			

2	4	4
J	4	υ

Table 107. --- Continued

.

Size of piece			Len	gth of I	piece (f	eet)		
(inches)	10	1.2	14	16	18	20	22	24
З by б	15	18	21	24	27	30	33	36
3 by 8	20	24	28	32	36	40	44	48
3 by 10	25	30	35	40	45	50	55	60
3 by 12	30	36	42	48	54	60	66	72
3 by 14	35	42	49	56	63	70	77	84
3 by 16	40	48	56	64	72	80	88	96
4 by 4	131/3	16	183	211/3	24	263	293	32
4 by 6	20	24	28	32	36	40	44	48
4 by 8	263	32	37 1/3	423	48	53%	581/3	64
4 by 10	331/3	40	463	531/3	60	663	731/3	80
4 by 12	40	48	56	64	72	80	88	96
4 by 14	463	56	65 1/3	743	84	931/3	1023	112
4 by 16	531/3	64	743	851/3	96	1063/3		128
6 by 6	30	36	42	48	54	60	66	72
6 by 8	40	48	56	64	.72	80	88	96
6 by 10	50	60	70	80	90	100	110	120
6 by 12	60	72	84	96	108	120	132	144
6 by 14	70	84	98	112	126	140	154	168
6 by 16	80	96	112	128	144	160	176	192
¢by18	90	108	126	144	162	180	198	216
	100	120	140	160	180	200	220	24Ŭ
8 by 8	531/3	64	743	851/3	96	1063/3	117%	128
8 by 10	663	80	931/3	1063/3	120	1331/3	1463/3	160
8 by 12	80	96	112	128	144	160	176	192
8 by 14	131/3	112	1303/3	1493	168	1863	2051/3	224
10 by 10	831/3	100	1163	133%	150	1663		200
10 by 12	100	120	140	160	180	200	220	240
10 by 14	11633	140	1633	1863	210	2331/3	2563	280
10 by 16.	1331/3	160	1863	2131/3	240	2663	2931/3	320
12 by 12	120	144	168	192	216	240	264	288
12 by 14	140	168	196	224	252	280	308	336
12 by 16	160	192	224	256	288	320	352	384
14 by 14	1631/3	196	2283	2613	294	3263	3591/3	392
14 by 16	1863	224	261%	2983	336	3733	4103/	448

Toble 108. Nail and Spike Sizes

	Size	Length (inches)	Goge	Diometer (D) (inches)	D4/2
Nails	3d 4d 6d 8d 10d 16d 20d 30d 40d 60d	1 1/2" 1 1/2" 2" 2 1/2" 3" 3 1/2" 4" 4"/2" 5" 6"	14 12½ 11½ 10¼ 9 8 6 5 4 2	0.0800 .0985 .1130 .1314 .1483 .1620 .1920 .2070 .2253 .2625	0.0226 .0309 .0380 .0476 .0570 .0652 .0841 .0942 .1066 .1347
Spikes	7" 8" 9" 10" 12"	7″ 8″ 9″ 10″ 12″	⁵ ∕16″ 3∕8 ″ 3∕8″ 3∕8″ 3∕8″	⅔" ⅔" ¾" ¾" ¾"	0.1750 .2295 .2295 .2295 .2295 .2295

Farmula to find oppraximate number of nails required.

No. lbs (12d to 60d, framing)=d/6×bf/100

Na. lbs (2d to 12d, sheathing)=d/4×bf/100

where d = size of desired noil in pennies

bf=total board feet to be nailed

172. PAINT

a. Paint Materials. For details an which type of paint shauld be used far a specific jab, see the paint manual published by Notianal Bureau af Stondards, ar TM 5-618.

b. Exterior Wood Surfoces (New Work).

(1) Far the priming caot, the paint cames in cream ar grey. Narmally, it requires na thinner, but in cold weather thinner may be necessory; in this case, use ½ pint of turpentine added to 1 gallan of point.

(2) Apply unthinned paint of a spreading ratio of about 450 square feet per gollon if it is to be fallowed by one coat of finish point. For three-coat work, thin the priming point as instructed in (1) above, then apply at 600 square feet per gollon.

	Size -	Length,	Com	men	Şid	ing	. Fini	shing	Flaarin	g	Fe	nce
·	2116	in	Gage	ite./lb	.Gage	Ne./lb	· Gage	Ne./Ib	Gage	Na./Ib	Gage	Ne./Ib
	2d	1	15	876	151/2	1,010	1635	1,351				
	3d	11/4	14	568	14½	635	15%	80.7				
1	4d	11/5	12/2	316	14	473	15	58.4				
	5d	1%	121/2	271	14	406	15	500			10	142
	6d	2	11%	181	12/2	236	13	307	11	157	10	124
	7d	21/4	111/2	161	121/2	210	13	233	11	139	9	92
ļ	8d	21/2 .	10¼	106	111%	145	121/2	189	01	99	9	82
	9d	2¾	10¼	96	111/2	132	121/2	172	10	90	8	62
	10d	3	9	69	10½	94	11%	121	9	69	7	50
	12d	3¼	9	63			111/2	113	8	54	6	40
I	16d	3½	8	49			11	90	7	43	5	30
l	20d	4	6	31			10	61	6	31		
	30d	41/2	5	24						1		
	40d	5	4	18						1		
	50d	51/2	3	15								
	60d	6	2	11								

Table 109. Wire-Nail Sizes, Wire Gages, and Number Per Pound

Note 1. Te avoid splitting, noil diemeters should not exceed one-seventh of the thickness of lumber ta be neiled.

- 2. Geges are U. S. Steel Wire Gage. Fractional gages are:

Gege	٠	•	10¼	10%	11½	12%	14½	15%
Diameter, in			0.1314	0.1278	0.1130	0.0985	0.0760	0.0673

348

Size	Diameter-D Inches	D² Inches²
½ inch — Na. 4	0.1105	0.0122
¾ inch — Na. 8	.1631	.0266
1 inch — Na. 10	.1894	.0359
1½ inch—No. 12	.2158	.0466
2 inch Na. 14	.2421	.0586
2½ inch—Na. 16	.2684	.0720
3 inch — Na. 18	.2947	.0868

Table 110. Waod Screw Diameters

(3) Far the finish coat where a three-caat jab is required, apply the paint at the ratia of 600 ta 700 square feet per gallan. In gaad weather, a 48-haur drying period between caats is sufficient. For twacoat wark, a spreading ratia of about 550 square feet per gallan is required.

c. Exterior Metal Surfaces.

(1) Far finishing caats, use ail paint ar enamel similar to that used far waod. Far new steel bridges, apply twa finish caats.

(2) Befare painting metal, clean aff all grease, rust, laase mill scale, dirt, and other fareign matter.

(3) The priming caat shauld cantain a carrasian-inhibitar paint. Allaw 2 days ta dry.

d. Interiar Waad Surfaces. Apply anly ane primer caat and ane finish caat. Twa finish caats may be applied if primer and first finish caats have been thinly applied. Allaw 48 haurs between caats.

e. Field-Expedient Paints. See table 111.

173. ROOFING

a. Intraductian. Raafing repairs shauld be made in clear, mild weather, with the outside temperature nat belaw 50°F. Repair minar damages by applying asphalt plastic flashing cement. Layer breaks are repaired by apening the harizantal seam belaw the break and inserting a strip af reafing.

Paint	Materials	Mixing	Color	Finish
Na. 1	Local earth, Gl soap, water, soot, paraffin		Dark gray	Flat, Iusterless
No. 2	Oil, ground clay, water, gasoline, earth	Mix 2 gal water with 1 gal oil and ½ ta ¼ gal clay; add earth. Thin with gasoline or water	Depends an earth calars available	Glassy an metal; atherwise dull
No. 3	Oil, clay, Gl soap, water, earth	Mix 1½ bars GI saap with 3 gal water; add 1 gal oil; stir in 1 gal clay. Add earth for color	Depends on earth colars	Glassy an metal; dull on ather

Table 111. Expedient Paints

NOTE Conned milk or powdered eggs can be used to increase binding properties of either issue or field-expedient points.

b. Materials Required. Depending an the method used to repair a raaf, the quantities and kinds of materials vary.

(1) When 4-inch strips of fabric and asphalt roaf coating are used, the quantity of coating far 100 square feet of raafing is 4/5 gallan; 39 linear feet of strips are needed.

(2) When 6-inch strips of roofing, asphalt plastic cement, and asphalt emulsian (clay type) are used, the fallowing quantities per 100 square feet af roofing are used:

Asphalt plastic cement-6 pounds

Raofing strips—39 linear feet

Asphalt emulsion — 1 gallon

c. Other Roofing. For roofing and repair when asphalt shingles, metal roofing, wood shingles, slats, ar tile are used, see TM 5–617.

174. TRIGONOMETRIC FUNCTIONS

a. Solutions of Triangles. See table 112.

b. Natural Trigonometric Functions. See table 113.

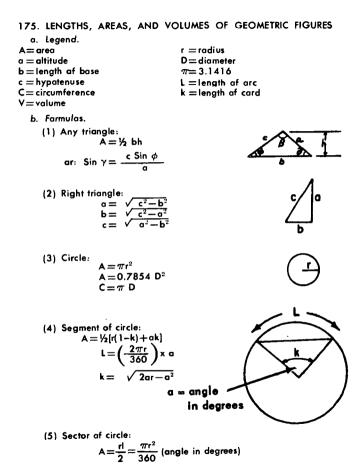
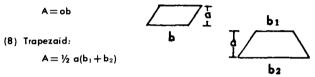

|--|

Table 112. Trigonometric Solutions of Triongles

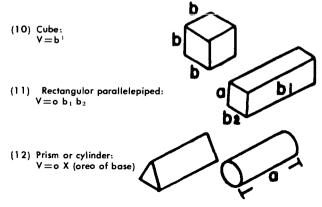
	B c A b	$a^{2} = b^{2} + c^{2} - 2 bc c$ $b^{2} = a^{2} + c^{2} - 2 ac c$ $c^{2} = a^{2} + b^{2} - 2 ab c$ $s = \frac{a + b + c}{2}$	casB cos A = b/c		c A b	$a^{2} = c^{2} = b^{2}$ $b^{2} = c^{2} = a^{2}$ $c^{2} = a^{2} + b^{2}$			
RIGHT TRIANGLE									
Given									
	A	В	с	•	b	c	Area		
a,b	$\tan A = \frac{a}{b}$	tan B = b a	900			$\sqrt{a^2 + b^2}$			
a, c	sin A = _9	cos B = _ <u>a</u> _ c	900		√c ² - c ²		$\frac{a}{2}\sqrt{c^2-a^2}$		
A, a		90°-A	900		a cat A	a sin A			
A,b		90°-A	900	A not d		b cos A	<u>b² tan A</u>		
A,c		90°-A	900	c sin A	c cos A		c ² sin 2A		
OBLIQUE TRIANGLE									
Given	TO FIND								
	A	В	с	a	ь	c	Area		
a,b,c	$\cos \frac{A}{2} = \sqrt{\frac{h(s-a)}{bc}}$	$\cos \frac{B}{2} = \sqrt{\frac{4(s-b)}{cc}}$	$\cos \frac{C}{2} = \sqrt{\frac{a(s-c)}{ab}}$				$\sqrt{s(s-a)(s-b)(s-c)}$		
a, A, B			180° - (A + B)		a sin B sin A	a sin C sin A	<u>o² sin B sin C</u> 2 sin A		
a,b,A		$\sin B = \frac{b \sin A}{a}$				b sin C sin B	<u>4 sin A</u>		
a,b,C	ton A = a sin C D-c cosC					√2+62-200 co sC	ab sin C		


Toble 113. Notural Trigonometric Functions

Angle	5in	Cosec	Tan	Cotan	5ec	Cos	
00	.000		000		1.000	1.000	900
ľ°	017	57.30	017	57.29	1.000	1.000	890
20	035	28.65	.035	28.64	1.001	999	880
30	052	19.11	052	19.08	1 001	.999	879
40	.070	14.34	.070	14.30	1 002	998	860
5º	.087	11 47	087	11 43	1.004	.996	85°
60	.105	9 567	.105	9.514	1.006	995	84 ⁰
70	122	8 206	123	8.144	1.008	.993	83°
80	139	7 185	.141	7.115	1.010	990	82°
90	156	6.392	.158	6.314	1.012	988	810
100	174	5.759	.176	5.671	1.015	.985	800
iiº l	. 191	5 241	. 194	5.145	1.019	.982	790
120	208	4.810	.213	4.705	1.022	.978	780
130	. 22 5	4.445	.231	4 331	1.026	.974	770
140	.242	4.134	.249	4.011	1.031	970	76°
150	259	3.864	.268	3.732	1 035	.966	75°
160	.276	3.628	287	3.487	1.040	.961	740
170	292	3.420	306	3.271	1.046	.956	730
180	.309	3 236	.325	3.078	1.051	.951	72°
190	. 326	3.072	.344	2.904	1 058	.946	710
20°	. 342	2.924	. 364	2.747	1.064	.940	700
210	.358	2.790	. 384	2.605	1.071	.934	690
22 ⁰	375	2 669	.404	2.475	1.079	.927	680
230	.391	2.559	.424	2.356	1 086.	921	670
24 ⁰	.407	2.459	445	2.246	1.095	.914	66°
250	. 423	2.366	466	2.145	1.103	.906	65°
26°	. 438	2.281	. 488	2.050	1.113	.899	640
270	, 454	2.203	510	1.963	1.122	.891	630
28°	469	2.130	.532	1.881	1 1 3 3	.883	620
290	.485	2.063	. 554	1.804	1.143	875	610
20°	. 500	2 000	. 577	1.732	1.155	.866	60°
310	.515	1.942	.601	1 664	1.167	.857	590
32°	.530	1 887	.625	1.600	1 179	848	58°
33°	.545	1.836	.649	1.540	1.192	.839	570
34 ⁰	.559	1.788	.675	1 483	1.206	.829	56°
35°	. 574	1.743	700	1.428	1, 221	.819	55°
36°	. 588	1.701	.727	1.376	1 2 3 6	809	54 ⁰
370	.602	1.662	754	1.327	1.252	799	53°
38°	616	1.624	.781	1.280	1.269	788	52°
39°	.629	1.589	.810	1.235	1.287	.777	510
40°	.643	1.556	.839	1.192	1.305	766	50°
41°	656	1.524	.869	1.150	1 325	.755	49°
42 ⁰	.669	1.494	.900	1.111	1.346	.743	48°
43°	.682	1.466	.933	1.072	1.367	731	470
44 ⁰	. 695	1.440	.966	1036	1.390	.719	46°
45°	.707	1.414	1.000	1.000	1.414	707	45°
	Cos	Sec	Cotan	Tan	Casec	Sin	Angle

(6) Regular polygons. The orea of ony regular polygon (all sides equal, all angles equal) is equal to the product of the square of the lengths af one side and the factors shown in table 114. Example: Area af a regular actagon having 6-inch sides is $6 \times 6 \times 4.828$, ar 173.81 square inches. See factors in table.

(7) Rectangle and porollelogrom:



(9) Irregular figures. Measure widths at offsets regularly spaced along any straight line, and apply ane of the following:

(a) Trapezaidol rule. A=ane holf the intervol between offsets
 x (sum of twa end widths plus twice the sum af the intermediote widths).

(b) Simpsan's rule. (Assumes lateral baundories are parabolic curves.) A=one third the interval between offsets x [sum of twa end widths plus twice the sum af the add widths, except first and last (3rd, 5th, 7th, etc.) plus 4 times the sum of the even widths (2d, 4th, 6th, etc.)]

NOTE. The abave rule required an add number of widths. If there is an even number, compute separately the area of a trapezaid at one end.

(14) Sphere:

$$V = (4/3) \pi r^3 = \frac{\pi D^3}{6}$$

A = $4\pi r^2$

(15) Prismaidal section:

V = ane-sixth the length X (sum of the end areas plus 4 times the midsection area)

176. FUNCTIONS OF NUMBERS See table 115.

177. CHARACTERISTICS OF INFANTRY WEAPONS See table 116.

178. TROOP MOVEMENT FACTORS

- a. Rates of March. See table 117.
- b. March Farmulas. See table 118.
- 179. CAMOUFLAGE
 - a. Principles.

(1) Siting: Careful selectian of the positian far an emplacement of equipment is the mast important principle of camauflage. Emplacements and their artificial camauflage materials must be made to blend with their background.

(2) Discipline: Avaid unnecessary movement of personnel and vehicles and any other activity that would change the ariginal appearance of the area and indicate your presence to enemy observers.

(3) Canstruction: Employ natural and artificial construction and camauflage materials to canceal the position.

b. Materials.

(1) Natural. Natural materials generally provide the best cancealment and are always available. Natural materials include live vegetatian, cut vegetatian, debris, sail, and sa forth.

No. of sides	Factor	No. of sides	Factor
3	0.433	8	4.828
4	1.000	9	6.182
5	1.720	10	7.694
6	2.598	11	9.366
7	3.634	12	11.196

Table 114. Palygon Factors

(2) Artificial Material. Artificial materials include paints, supparting frames, garnishing materials, structural materials, screening materials, adhesives, and texturing materials.

c. Individual Camouflage. Make use af terrain and backgraund, adapt clathing to the terrain, and select a raute during movement that makes use af the concealment available.

(1) Helmets. Break up the shape af helmets by using leaves ar twigs secured with a rubber band, making a cover of burlap, distarting with burlap garlands, ar painting appropriate colors.

(2) Skin. Tone dawn all visible skin areas with face paint, burnt cork, lampblack, ar charcoal.

(3) Clathing. Clathing may be taned dawn ta blend with the backgraund by use of camauflage paints, or attaching vegetatian ta blend in with existing area.

(4) Equipment. Remove shine from metal abjects with mud ar face paint. Any equipment which may make a naise should be muffled by padding.

d. Camouflage of Equipment and Emplacements.

(1) Avoid regular geometric layauts af the positian af vehicles, weapons, and supplies. Use natural camauflage material and supplement with artificial materials.

(2) Conceal the tracks made by vehicles so that terrain remains the same.

(3) Eliminate shine an vehicles.

(4) Use shadows and insure that the silhouette af emplacements and equipment is braken, so that the general autline is not detectable.

(5) In urban areas, use shadows cast by buildings.

e. Garnishing af Camouflage Nets.

(1) Garnishing density. All nets should be garnished ta a predetermined degree af density. Drape nets shauld be garnished 100

Table 115. Functions of Numbers

No.	Squore	Cube	Sq. root	Logorithm	No.	Squore	Cube	Sq. root	Logorithm
1	1	1	1.0000	0.00000	40	1600	64000	6. 3246	1.60206
2	4	8	1.4142	. 30 103	41	1681	689 21	6.4031	1.61278
3	9	27	1.7321	.47712	42	1764	74088	6.4807	1.62325
4	16	64	2.0000	.60206	43	1849	79507	6.5574	1.63347
5	25	125	2.2361	.69897	44	1936	85184	6.6332	1.64345
6	36	216	2.4495	.77815	45	2025	91125	6.7082	1.65321
7	49	343	2.6458	.84510	46	2116	97336	6.7823	1.66276
8	64	512	2.8284	.90309	47	2209	10 38 23	6.8557	1.67210
9	81	729	3.0000	.95424	48	2304	1 10 59 2	6.9282	1.68124
10	100	1000	3.1623	1.00000	49	2401	117649	7.0000	1.69020
11	121	1331	3.3166	1.04139	50	2500	125000	7.0711	1.69897
12	144	1728	3.4641	1.07918	51	2601	132651	7.1414	1.70757
13	169	2197	3.6056	1.11394	52	2704	140608	7.2111	1.71600
14	196	2744	3.7417	1.14613	53	2809	148877	7.2801	1.72428
15	225	3375	3.8730	1. 17609	54	2916	157464		1.73239
16	256	4096	4.0000	1.20412	55	30 25	166375	7.4162	1.74036
17	289	4913	4.1231	1. 23045	56	3136	175616	7.4833	1.74819
18	324	5832	4.2426	1.25527	57	3249	185193	7.5498	1.75587
19	361	6859	4.3589	1.27875	58	3364	195112	7.6158	1.76343
20	400	8000	4.4721	1.30103	59	3481	205379	7.6811	1.77085
21	441	9261	4.5826	1.32222	60	3600	216000	7.7460	1.77815
22	484	10648	4.6904	1.34242	61	3721	226981	7.8102	1.78533
23	529	12167	4.7958	1.36173	62	3844	238328	7.8740	1.79239
24	576	13824	4.8990	1.38021	63	3969	250047	7.9373	1.79934
25	625	15625	5.0000	1.39794	64	4096	262144		1.80618
26	676	17576	5.0990	1.41497	65	42 25	274625	8.0623	1.81291
27	729	19683	5.1962	1.43136	66	4356	287496		1.81954
28	784	21952	5.2915	1.44716	67	4489	300763		1.82607
29	841	24389	5.3852	1.46240	68	4624	314432	8.2462	1.83251
30	900	27000	5.4772	1.47712	69	4761	328509	8.3066	1.83885
31	961	29791	5.5678	1.49136	70	4900	343000	8.3666	1.84510
32	1024	32768	5.6569	1.50515	71	5041	357911	8.4261	1.85126
33	1089	35937	5.7446	1.51851	72	5184	373248	8.4853	1.85733
34	1156	39304	5.8310	1.53148	73	5329	389017	8.5440	1.86332
35	1225	42875	5.9161	1.54407	74	5476	405224	8.60 23	1.86923
36	1296	46656	6.0000	1.55630	75	56 25	421875	8.6603	1.87506
37	1369	50653	6.0828	1.56820	76	5776	438976	8.7178	1.88081
38	1444	54872	6. 1644	1.57978	77	5929	456533		1.88649
39	1521	59319	6.2450	1.59106	78	6084	474552	8.8318	1.89209

Na.	Squara	Cuba	Sq. root	Lagarithm	Na.	Squara	Cuba	Sq. root	Lagari thm
79	6241	493039	8.8882	1.89763	90	8100	729000	9.4868	1.95424
80	6400	512000	8.9443	1.90 30 9	91	8281	753571	9.5394	1.95904
81	6561	531441	9.0000	1.90849	92	8464	778688	9.5917	1.96379
82	6724	551368	9.0554	1.91381	93	8649	804357	9.6437	1.96848
83	6889	57 1787	9.1104	1.91908	94	88 36	830584	9.6954	1.97313
84	7056	592704	9.1652	1.92428	95	9025	857375	9.7468	1.97772
85	7225	614125	9.2195	1.92942	96	9216	88 47 36	9.7980	1.98227
86	7396	636056	9.2736	1.93450	97	9409	912673	9.8489	1.98677
87	7569	658503	9.3274	1.93952	98	9604	941192	9.8995	1.99123
88	7744	681472	9.3808	1.94448	99	9801	970299	9.9499	1.99564
89	7921	704969	9.4340	1.94939	100	10000	1000000	10.0000	2.00000

358 Table 115---Continued

percent in the center portion of the net, thinning out to 65 percent toward the outer edges. This will result in a coverage of about 85 percent of the entire net area. Flat-top nets should be garnished 100 percent in the center portion of the net, thinning out to 25 percent toward the outer edges. This will result in a coverage of about 65 percent of the entire net area. Begin the thin-out at about one-half the radius of the net. This must not be on an abrupt change in percentages, but rather a gradual thinning-out so as to achieve a smooth transition to the desired density at the outer portion of the net.

(2) Garnishing patterns. To provide for blending into a variety of seasonal and geographic terrain characteristics, pregarnished twine nets are issued in two blends—the all seasonal and the desert. The color blend of a net is achieved by proportionately varying the garlands of the various colors required for a particular blend, and placing the garlands in the net as an overall mixture of colors. Long, straight runs, large areas, blocks of one color, or regularity of pattern in a net should be avoided. Generally, the garlands are inserted into the net in such a manner that each garland will describe one of the following letters: L, U, S, C, or 1 (fig. 194). This should result in an amolgamation of the letter patterns forming the desired degree of density and color blend.

180. TIME DISTANCE CONVERSION See table 119. 181. WEIGHTS AND SPECIFIC GRAVITIES

See table 120.

Table 116. Characteristics of Infantry Weapons

Weapons	Unleaded Weight (Appioximate (bs)	Type of Feed	Cyclic (C) or Moximum Rate (M) of File, Rads per min	Sustained Rate al Fire, Rads per min	Maximum Effective Rale of File, Rads per min	Maximum Ronge (Heniest 25) Meters	Maximum Effective Range (Neozest 25) Neters	Appræ Effective Bursting Area Motois	Bernarks
Hand Granades A26A2	1					40		15	
#34 {WP}	2					35		25	
Pistal Automatic Cal 45 M1911A1	21/3	7 End Magazina				1500	50		
Submachinegun Cal 45 M3A1	9	30 End Magazine	450(C)	40-60	40-60	1550	100		Replaced by H-14 Rifle, with Ripod M2
US Carbine Cal .30, M2	51/3	30 Rnd Magazine	750-775(C)	40-60	40-60	2025	250		Replaced by M-14 Rifle
US Rifle, Cal 7 62MM, M14	914	20 Rnd Magazine	700-75Q(C)	15 (Semi- automatic) 20 (Auto- matir)	20-40	3725	450		Full Automatic capo- bility requires the installation of selec- tor Sustained rate based on limited tests bland is major item & used in conjunction with rifle when used as an automatic iifle
US Rifle, Col .30ml1	81/2	R Rod Clip		E-10	16-24	3200	450		Seing replaced by the still-14 Ratio
US Biffe, Cal 30M1 with Biffe Gronado Launches, M7A3, Hoat Riffe Gre- nade, 431 & Sighs M15	101/2	illanua)	4(#)	4	2	275	115		Complete Round Weigh: Approx 1½ ths
US Rifle, Cal 7.62MM with selecter and bipod M2	12	20 Rnd magazine	700-750(C)	15 (Semi- automatic) 20 (Auto- matic)	20-40 (Semi- autemat+c) 40-60 (Aute- matic)	37-25	460		Replaces the Browning automatic life

Table 116.—Continued

Weapons	Unloaded Weight (Approximote Ibs)	Type of Feed	Cyclic (C) oi Maximum Rate (M) of File, Rads per min	Sustained Rate of Fire, Rads per min	Maximum Effective Rate of File, Rads per min	Moximum Range (Neciest 25) Neters	Moximum Effective Range (Neorest 25) Meters	Appix Effective Bursting Areu Meters	Remarks
Biawning Auta- motic Riffe Col 30 M1918A2	191/2	20 Rnd magazine	350(C) slow rote 500(C) fast rate	40-60	120-150	3200	460 Pt Tgt 700 Area target		M-14 Rifle with selec tor and bipad M2
Machinegun Cal 7.62NM M60	Guri 23	belt metallıc split tınk disinte- gratıng	550(C)	100	200 (Rapid)	3725	1100		
Browning Machine- gun Col. 30 M1919 Ad	33	belt , metallic link disinte- groting	600-675(C)	100	200 (Rapid)	3200	1100		May be fired fram Tripod Neunt
US RIÑO 7 62NM M14E2	1255	20 £nd magazine	700-750(C)	15 (Semi- outomatic) 20 (Auto- matic)	20-40 (Semi- autamatic) 40-60 (Auta- matic)	3725	700 (Pt Tgt, semicutamatic enly) 700 Area tgt		
US Rifie 5 56 MM XM16E1	7	20 Rnd magazine	700-800(C)	20	45–65 (Semi- putamotic) 150–200 (Automatic)	2653			
40MM Granoda Lounches M79	ć	Breech leaded single shat			5-7	400	150 (Pit tgt) 350 (Anna target)		
Mochinegun, Coł SO, HB, M2	126	belt metallic link	400-500(C)	40 or loss	More than 40 (Rapid)	6800	725 AAA Torget 1825 Ground target		

Table 116.—Continued

Weapons	Valoaded Weight (Approximate Ibs)	Type of Feed	Cyclic (C) ar Maximum Rote (M) of Fire, Bads per min	Susteined Rate of Fire, Rads per mia	Maximum Effective Rate of File, Rads per min	Maximum Raage (Noarost 25) Metors	Maximum Effective Raage (Neorost 25) Maters	Appix Effective Bursting Area Meters	temarks .
3 5 in Recket Louncher M20A181	13	Brnech Loading by hand		•		825	185 Moving Target 275 Stationery Torget	18 x *	
Portable Flame thrower #2A1-7	42	fuel Pro- palled by gas under pressure	Cantinnous discharge 8-9 Sec	Continuous discharge 8-9 sec	Continuous discharge 8-9 sec	20-25 Uathickened 40-50 thickened fuel	20-25 Unthickened 40-50 thickened fuel		Operating Capacity 4½ gols of fuel weighing 25 to 29 lbs
81MM Mortar, M29 with Mount M23A3	Burrel 29 Bipod 40 Baseplate 25.5 Sight 4	Nuzzie loading by hond	12 for 2 erin asing HE, M362 with charge	3 using HE, 81362 with charge 8		4453 (HE, M374)	4453 (HE, 374)	25 x 20(A)	
4 2 In Mortos, M29 M30 with mount, M24A1	640	iliuzzle Loading by hand	20(III) for 2 mio, å for next 20 min	2	1	5500	5500	40 x 15(A)	
106MM Rifle, M40A1 with spotting gun SQ Cat	460 when ground mounted	Breech Ioading by hand spotting gun 10 Rad spagazine	l pai 6 sec with not more than 5 rounds before latting iffe cool	1		7700(A)	1100	t4 radius (HEP-T)	Maximum effective range determined by spotting gon

Weapons	Unloaded Weight (Approximate Ibs)	Type of Feed	(Rate (M) of com	Sestained Rate	Maximum Effective Rote	Maximum	Maximum		_
Davy Crockett Light Weapon System #28	116 25 (System com-		Rnds per mia	Ands per min	af fire, Ands per min	Rongo (Nearost 25) Metors	Effective Ranne	Appra Effective Butsting Area Motors	Kemarks
	ploto with- aut projec- telo)					2000			
avy Crockett Haavy Weapon System M29	371 (System com-								
	plete with. out projec. trie;				1	1906 (Zone 1 Propellant)			
					1	4006 (Zone 1) Propellant)			

Unit		On Reeds	Cress	-country	Days Merch
Unit	Day	Night	Dey	Night	Kile- meters
Foot treeps	4	3.2	2.4	1.6	20-32
Trucks, generel	40	40 (lights) 16 (bleckeut)	12	8	280
Trecked vehicles	24	24 (lights) 16 (blockeut)	16	8	240
Truck-drewn ertillery	40	40 (lights) 16 (bleckeut)	12	8	280
Trectar-drawn ertillery	32	32 (lights) 16 (blackeut)	16	8	240

¹ This table is for general planning and comparison purposes. All rates given are variable in accordance with the mavement conditions as datermined by reconnoissance.

² These rates include normel periodic rest helts.

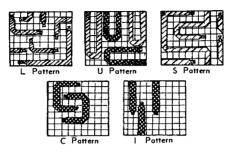


Figure 194. Garnishing.

182. CONVERSION FACTORS

See table 121.

183. WEIGHTS AND CHARACTERISTICS OF SOILS See toble 122.

184. VEHICLE RECOVERY EXPEDIENTS

o. Generol. Narmally proper vehicle operatar troining, operatar experience, ond common sense con prevent most vehicles from becoming stuck ar in a positian where they cannat be used. In the tactical situation, vehicle loss connot always be prevented, due to enemy action or terrain which has to be maneuvered. For o complete caverage of all aspects of vehicle recovery see FM 20-22.

b. Field Expedient Vehicle Recovery. See figures 195, 196, 197, and 198. Metric Conversion Foctors

Kilometers (Km)	Meters (M) — Yards (yds)
Miles (mi)	To convert meters to yards:
To convert kilometers to miles:	Multiply the number of meters
Multiply the number of kilom-	by the foctor 1.1
eters by the foctor .62	$Yds = Nr of M \times 1.1$
$Mi = Nr$ of Km $\times .62$	To convert yords to meters:
To convert miles to kilometers:	Multiply the number of yords by
Multiply the number of miles by	the foctor .91
the foctor 1.6	$M = Nr \text{ of yds} \times .91$
$Km = Nr \text{ of } mi \times 1.6$,

For Time Distance (TD):

Divide the distonce (kilometers) by the rote of morch (kilometers per hour). TD (hours) — D (Kilometers) R (Kilometers per hour)

To convert fractional ports of an hour to minutes, multiply the fractional port by 60

For Time Length (TL) of Foot Column: Multiply rood spoce (RS) of the column by foctor for rate of morch. TL (minutes) = (RS \times foctor)

Select foctor from table below

Rote (kmph)	Foctor
4.0	.0150
3.2	.0187
2.4	.0250
1.6	.0375

For Rood Space (RS) of Foot Troops:

Multiply number of men by foctor for formation and add the total distonce of the intervols between units.

RS (meters) = (Nr of men \times foctor) + distonces

Select factor from toble below

Formotion	2 M Man	5 M Mon
Single File	2.4	5.4
Column of Two's	1.2	2.7
	• · -	

	366
Toble	118. — Continued

For Time Length (TL) Vehicles (Open Column): Multiply number of vehicles by factor for formation and rate of march and add time intervals (TI) between units. TL (minutes)=(Nr of vehicles \times factor) + TI's

	Select foctor from toble belo	<u>w</u>
Rote (kmph)	M/Veh	Foctor
16	100	.3750
24	100	.2500
32	100	.1875
40	100	.1500
48	100	.1250

For Time Length (TL) of Motors (Close Column):

Multiply number of vehicles by .12 ond odd the time intervols (TI) between units.

TL (minutes) = (Nr of vehicles $\times .12$) + Tl's

For Completion Time (CT):

Add TL of column, TD from IP to RP, and any scheduled holts other than normal breaks, to the IP time.

CT = IP time + TL + TD + Scheduled Holts Exomple: Hr | Min 07 45 IP time (clock time) 01 12 TL of column (1 hr 12 min) 05 55 TD (IP to RP, 5 hrs 55 min) 01 00 Meol holt (one hour) CT = 14 112 or 1552 The move will be completed of 1552 hours.

For Rood Spoce (RS) of vehicles:

Multiply the TL (minutes) by the rote in kilometers per hour ond divide by 60.

RS (kilometers) =

TL (min) × R (Kilometers per hour) 60 (minutes/hour)

Table 119. Time Distonce Conversion

Miles		Feet	Kilometers	Meters
per	Knots	per	per	per
hour		second	hour	second
1	0.8684	1.4667	1.609	0.447
2	1.74	2.93	3.22	0.894
3	2.61	4.40	4.83	1.34
3 4	3.47	5.87	6.44	1.79
5	4.34	7.33	8.05	2.24
6	5.21	8.80	9.66	2.68
7	6.08	10.27	11.27	3.13
7 8	6.95	11.73	12.87	3.58
9	7.82	13.20	14.48	4.02
10	8.68	14.67	16.09	4.47
11	9.55	16.13	17.70	4.92
12	10.42	17.60	19.31	5.36
13	11.29	19.07	20.92	5.81
14	12.16	20.53	22.53	6.26
15	13.03	22.00	24.14	6.71
16	13.89	23.47	25.75	7.15
17	14.76	24.93	27.36	7.60
18	15.63	26.40	28.97	8.05
19	16.50	27.87	30.58	8.49
20	17.37	29.33	32.19	8.94
21	18.24	30.80	33.80	9.39
22	19.10	32.27	35.41	9.83
23	19.97	33.73	37.02	10.28
24	20.84	35.20	38.62	10.73
25	21.71	36.67	40.23	11.18
26	22.58	38.13	41.84	11.62
27	23.45	39.60	43.45	12.07
28	24.32	41.07	45.06	12.52
29	25.18	42.53	46.67	12.96
30	26.05	44.00	48.28	13.41
31	26.92	45.47	49.89	13.86
32	27.79	46.93	51.50	14.31
33	28.66	48.40	53.11	14.75
34	29.53	49.87	54.72	15.20
35	30.39	51.33	56.33	15.65

Table	119 Continued

Miles	Knots	Feet per	Kilometers per	Meters per
hour		second	hour	second
36	31.26	52.80	57.94	16.09
37	32.13	54.27	59.55	16.54
38	33.00	55.73	61.16	16.99
39	33.87	57.20	62.76	17.43
40	34.74	58.67	64.37	17.88
41	35.60	°60.13	65.98	18.33
42	36.47	61.60	67.59	18.78
43	37.34	63.07	69.20	19.22
44	38.21	64.53	70.81	19.67
45	39.08	66.00	72.42	20.12
46	39.95	67.47	74.03	20.56
47	40.81	68.93	75.64	21.01
48	41.68	70.40	77.25	21.46
49	42.55	71.87	78.86	21.90
50	43.42	73.33	80.47	22.35
51	44.29	74.80	82.08	22.80
52	45.16	76.27	83.69	23.25
53	46.03	77.73	85.30	23.69
54	46.89	79.20	86.90	24.14
55	47.76	80.67	88.51	24.59
56	48.63	82.13	90.12	25.03
57	49.50	83.60	91.73	25.48
58	50.37	85.07	93.34	25.93
59	51.24	86.53	94.95	26.38
60	52.10	88.00	96.56	26.82
61	52.97	89.47	98.17	27.27
62	53.84	90.93	99.78	27.72
63	54.71	92.40	101.39	28.16
64	55.58	93.87	103.00	28.61
65	56.45	95.33	104.61	29.06
66	57.31	96.80	106.22	29.50
67	58.18	98.27	107.83	29.95
68	59.05	99.73	109.44	30.40
69	59.92	101.20	111.05	30.85
70	60.79	102.67	112.65	31.29

Toble 119. - Continued

Miles per hour	Knots	Feet per second	Kilometers per hour	Meters per second
71	61.66	104.13	114.26	31.74
72	62.52	105.60	115.87	32.19
73	63.39	107.07	117.48	32.63
74	64.26	108.53	119.09	' 33.08
75	65.13	110.00	120.70	33.53
100	86.84	146.67	160.94	44.70

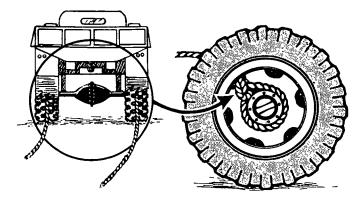


Figure 195. Use of wheels for o winch.

185. FIRE EXTINGUISHERS

o. Closses of Fires.

(1) Closs A. These ore fires in ordinory combustible materials such as bedding, mattresses, dunnage, baaks, cloth, convos, wood, and poper.

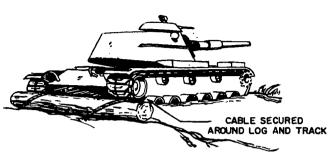


Figure 196. Log used to anchor tracks.

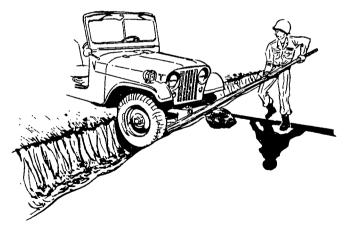


Figure 197. Simple lever.

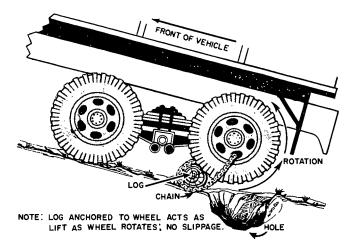


Figure 198. Anchoring a wheel.

(2) Closs B. These are fires which occur in flammable substances such os gasoline, jet fuel, and sa farth.

(3) Class C. These ore live electrical fires.

(4) Class D. These are cambustible metal (magnesium, etc.) fires.b. Carbon Dioxide Extinguishers.

See figure 199.

(1) Agent. This extinguisher uses CO_2 as an agent. CO_2 converts to a liquid when under pressure, as it is while standing in an extinguisher.

(2) Inspection. Manthly inspectian requires checking the wire and lead seal which holds the valve lacking pin to see that it is not braken and checking for physical damage to the extinguisher. Semionnual inspection requires that the extinguisher be weighed to insure that the extinguisher has a full charge. Recharging is necessary if the weight is 10 percent deficient.

	specific Gravine	·
Substance	Weight, Ibs. per cu. ft.	Specific gravity
Bituminaus Asphaltum Caal, anthracite Caal, bituminaus Caal, cake Petraleum, gasaline Tar, bituminous	81 97 84 75 42 75	1.1-1.5 1.4-1.7 1.2-1.5 1.0-1.4 0.66-0.69 1.20
Building materials Ashes, cinders Cement, portland, loose Cement, partland, set	40-45 94 183	2.7-3.2
Coal and cake, piled Caal, onthracite Coal, bituminaus, lignite Caal, charcoal Caal, cake	47-58 40-54 10-14 23-32	
Earth, etc., excavated Chalk Clay, damp, plastic Clay, dry Clay ond gravel, dry Clay, marl Earth, dry, loase Earth, dry, packed Earth, maist, loose Earth, moist, packed Earth, mud, flowing	137 76 96 78 96 108	1.8-2.6 1.8-2.6
Earth, mud, packed Sand gravel, dry, loose Sand gravel, dry, pocked Sand gravel, wet	90–105 100–120	• • • • • • • • • • •
Liquids Oils, minerals, lubricants Water, 4° C. (max density) Water, ice Water, snaw, fresh follen	57 62.428 56 8	0.90-0.93 1.0 0.88-0.92 0.125

Table 120. Weight and Specific Gravities.

Substance	Weight, Ibs. per cu. ft.	Specific gravity
Mosanry, oshlar Granite, syenite, gneiss Limestane, marble Sandstane, bluestone	165 160 140	2.3-3.0 2.3-2.8 2.1-2.4
Masanry, brick Pressed brick Comman brick Saft brick	140 120 100	2.2-2.3 1.8-2.0 1.5-1.7
Mosonry, concrete Cement, stane, sand	144	2.2-2.4
Masanry, dry rubble Granite, syenite, gneiss Limestane, marble Sondstane, bluestane	130 125 110	1.9-2.3 1.9-2.1 1.8-1.9
Masanry, mortar, rubble Granite, syenite, gneiss Limestone, marble Sandstone, bluestane	155 150 130	2.2-2.8 2.2-2.6 2.0-2.2
Metals, allays, ares Aluminum, cast, hammered Copper, cast, railed Iran, cast, pig Iran, wrought Lead Magnesium olloys Manganese Steel, railed Zinc, cast, railed	165 556 450 485 710 112 475 490 440	2.55-2.75 8.8-9.0 7.2 7.6-7.9 11.37 1.74-1.83 7.2-8.0 7.85 6.9-7.2
Minerals Asbestas Bauxite	153 159	2.1-2.8 2.55

Table 120.—Continued

Substance	Weight, Ibs. per cu. ft.	Specific gravity	
Rack Limestane, marble Sandstane, bluestane Riprap, limestane Riprap, sandstane Riprap, shale	165 147 80-85 90 105	2.5-2.8 2.2-2.5	
Salids, variaus Glass, cammon Hay and straw (bales) Paper Patataes, piled Rubber gaods Salt, granulated, piled Sulfur Waal	156 20 58 42 94 48 125 82	2.4-2.6 0.70-1.15 1.0-2.0 1.93-2.07 1.32	
Stane, quarried, piled Basalt, granite, gneiss Greenstane, harnblende Limestone, marble, quartz! Sandstone Shale	96 107 90 82 92	· · · · · · · · · · · · · · · · · · ·	
Excavatians in water Clay. River mud. Sand or gravel. Sand ar gravel and clay. Sail. Stone riprap.	80 90 60 65 70 65	· · · · · · · · · · · · · · · · · · ·	

Table 120.—Cantinued

Substance	Weight, Ibs per cu. ft.	Specific gravity
limber, U.S. seasoned (Maisture cantent		
by weight: seasaned timber, 15% ta		
20%; green timber, up ta 50%)		
Ash, white, red	40	0.62-0.65
Cedar, white, red	22	0.32-0.38
Chestnut	41	0.66
		0.48
Elm, white		0.72
Fir, Dauglas spruce		0.51
Fir, eastern		0.40
Hemlack		0.42-0.52
Hickary .	49	0.74-0.84
Locust		0.73
Maple, hard	43	0.68
Maple, white		0.53
Oak, chestnut	54	0.86
Oak, live	59	0.95
Oak, red, black	41	0.65
Oak, white		0.74
Pine, Oregan		0.51
Pine, red	30	0.48
Pine, white	26	0.41
Pine, yellaw, langleaf	44	0.70
Pine, yellaw, shartleaf	38	0.61
Paplar	30	0.48
Redwaad, California	26	0.42
Spruce, white, black	27	0.40-0.46
Walnut, black		0.61
Walnut, white		0.41

Table 120. — Cantinued

(3) Operation and use. Place extinguisher in vertical position, remove horn from bracket holding horn by rubber or wooden handle to prevent frost bite. Remove cocking pin from discharge valve and discharge agent. CO₂ extinguishers should be used on Class B & C fires.

c. Pump Type Water Extinguishers.

See figure 200.

(1) Agent. Water extinguishers use water as an agent. Care must be taken to prevent this extinguisher from freezing.

(2) Inspection. Inspection includes visual and actual operation every month. Semiannual inspection includes visual inspection, actual operation, and lubricating the plunger rod.

(3) Operation and use. To operate, point the nozzle toward the fire and pump the water by operating the pump handle. DO NOT USE ON ELECTRICAL OR GASOLINE FIRES.

d. Soda-Acid Extinguishers.

See figure 201.

(1) Agent. Soda-acid extinguishers use water as the extinguishing agent. When the extinguisher is inverted, the soda and acid mix producing a gas which expels the water.

(2) Inspection. Inspection includes visual checking of the extinguisher and removing cap to check for acid, soda, and water. Annual inspection requires discharge, cleaning, and recharging. Care must be taken to prevent this extinguisher from freezing.

(3) Operation and use. To operate, grasp the nozzle and invert the container. The chemical reaction and pressure occur almost immediately after inverting the extinguisher. DO NOT USE ON ELEC-TRICAL OR GASOLINE FIRES.

e. Foam Extinguishers.

See figure 202.

(1) Agent. The foam type extinguisher is similar in size and shape to the soda-acid type extinguisher, but the operation consists of two agents mixing, producing a gas which expets the foam.

(2) Inspection. Inspection visual, removing cap to inspect ingredients.

(3) Operation and use. To operate, grasp nozzle and invert container.

f. Fire Extinguisher Use. See table 123.

Table 121. Conversion Factors

Multiply	Ьу	to obtoin
Acres	43,560	square feet.
acres	4,047	square meters.
acres	1.562 × 10 ⁻³	square miles.
acres	5645.38	square varas.
acres	4,B40	square yards.
acre-feet	43,560	cubic-feet.
ares	0.02471	acres.
ares	. 100	square meters.
atmaspheres	76.0	ems. of mercury.
atmaspheres	29.92	inches of mercury.
atmaspheres	33.90	feet af water.
atmaspheres	10,333	kgs. per square meter
at maspheres	14.70	pounds per sq. inch.
atmaspheres	1.058	tons per sq. foot.
Bars	9.870×10-7	atmaspheres.
bars	1	dynes per sq. cm.
bars	0.01020	kgs. per square meter
bars	2.089×10 ⁻³	pounds per sq. foot.
bars	1.450 × 10 ⁻⁵	pounds per sq. inch.
baard-feet	144 sq. in. × 1 in.	cubic inches.
British thermal units	0.2520	kilogram-calaries.
British thermal units	777.5	faot-pounds.
British thermal units	3.927 × 10−4	harse-power-hours.
British thermal units	1.054	jau les.
British thermal units	107.5	kilogram-meters.
British thermal units	2.928×10-4	ki lowatt-hours.
B.t.u. per min	12.96	foat-paunds per sec.
B.t.u. per min	0.02356	harse-power
B.t.u. per min	0.01757	kilawatts.
B.t.u. per min	17.57	watts.
B.t.u. per sq. ft. per min	0.1220	watts per square inch
bushels	1.244	cubic feet.
bushels	2,150	cubic inches.
bushels	0.03524	cubic meters.
bushels	4	pecks.

Toble	121. — Continued

Multiply	by	to abtain
bushels	64	oints (dry).
bushels ,	32	quarts (dry).
Centeres	1	squere meters.
centigrems	0101	grams.
centiliters	0.01	liters.
centimeters	0.3937	inches.
centimeters	0.01	meters.
centimeters	393.7	mils.
entimeters	10	millimeters.
entimeters-dynes	I.020 × 10-3	centimeter-grams.
entimeter-dynes	1.020 🗙 10 🗝	meter-kilogrems.
entimeter-dynes	7.376 × 10-8	pound-feet.
centimeter-groms	980.7	centimeter-dynes.
centimeter-grams		meter-kilogrems.
centimeter-grems	7.233 × 10 ⁻⁵	pound-feet.
centimeters of mercury		otmospheres.
centimeters of mercury		feet of weter.
centimeters of mercury		kgs. per squere meter.
centimeters of mercury		pounds per sq. foot.
centimeters of mercury		pounds per sq. inch.
centimeters per second		feet per minute.
centimeters per second		feet per second.
entimeters per second		kilometers per hour.
centimeters per second		meters per minute.
entimeters per second	1	miles per hour.
centimeters per second	3.728 × 10 ⁻⁴	miles per minute.
cms. per sec. per sec	0.03281	feet per sec. per sec.
cms. per sec. per sec	0.036	kms, per hour per sec.
ms. per sec. per sec		miles per haur per sec
circuler mils		square centimeters.
circuler mils		square inches.
circular mils		squere mils.
cord-feet		cubic feet.
cords		cubic feet.
cubic centimeters		cubic feet.
cubic centimeters		cubic inches.

Table 121. — Continued

Multiply	Ьу	to obtain
cubic centimeters	10-6	cubic meters.
cubic centimeters	1.308×10^{-6}	cubic yards.
cubic centimeters	2.642 🗙 10—+	gallans
cubic centimeters	10-3	liters.
cubic centimeters	2.113 ×10 ⁻³	pints (liq.).
cubic centimeters	1.057 🗙 10 ³	quarts (liq.).
cubic feet	2.832 × 10 4	cubic ans.
cubic feet	1,728	cubic inches.
cubic feet	0.02832	cubic meters.
cubic feet	0.03704	cubic yards.
cubic feet	7.481	gatlans.
cubic feet	28.32	liters.
cubic feet	59.84	pints (liq.).
cubic feet	29.92	quarts (liq.).
cubic feet per minute	472.0	cubic cms. per sec.
cubic feet per minute	0.1247	gallans per sec.
cubic feet per minute	0.4720	liters per secand.
cubic feet per minute	62.4	Ibs. of water per min.
cubic inches	16.39	cubic centimeters.
cubic inches	5.787 🗙 10-4	cubic feet.
cubic inches	1.639 🗙 105	cubic meters.
cubic inches	2.143×10^{-5}	cubic yards.
cubic inches	4.329×10^{-3}	gallans.
cubic inches	1.639 × 10-2	liters.
cubic inches	0.03463	pints (lig.).
cubic inches	0.01732	quarts (liq.).
cubic meters	10.6	cubic centimeters.
cubic meters	35.31	cubic fest.
cubic meters	61,023	cubic inches.
cubic meters	1.308	cubic yards.
cubic meters	264.2	gallans.
cubic meters	10 ³	liters.
cubic meters	2113	pints (liq.).
cubic meters	1057	quarts (liq.).
cubic yards	$7.646 imes 10^{5}$	cubic centimeters.
cubic yards	27	cubic feet.
cubic yards	46,656	cubic inches.

Multiply	by	to obtoin
cubic yards	0.7646	cubic meters.
cubic yards	202.0	gallons.
cubic yards	764.6	liters.
cubic yards	1616	pints (liq.).
cubic yards	807.9	quarts (liq.).
cubic yards per minute	0.45	cubic feet per second.
cubic yards per minute	3.367	gallans per second.
cubic yards per minute	12.74	liters per second.
Days	24	haurs.
daýs	1440	minutes.
doys	86,400	seconds.
decigrams	0.1	grams.
daciliters	0.1	liters.
decimeters	0.1	meters.
degrees (angle)	60	minutes.
dagreas (ongle)	0.01745	radions.
degreas (angle)	3600	saconds.
degrees per second	0.01745	radians per second.
degrees per secand	0.1667	revalutions per min.
Jegraas par secand	0.002778	revalutions per sec.
dekagrams	10	grams.
lekaliters	10	liters.
Jakameters	10	meters.
drams	1.772	groms.
drams	0.0625	ounces.
dynes	1.020×10^{-3}	grams.
dynes	7.233×10-5	paundals.
	2.248×10-6	paunds.
dynes per square cm	T	bars.
Ergs	9.486 × 10-11	British thermal units.
ergs	1	dyne-centimeters.
ergs	7.376 ×10 ⁻⁸	faat-pounds.
vgs	1.020 × 10-3	gram-centimeters.
ergs	10-7	jaules.
ergs	2.390 × 10-11	kilagram-calaries.
ergs	1.020 × 10-8	kilogram-meters.
ergs per sacand	5.692 × 10-9	B.t. units per minute.

Table 121. --- Continued

380

Table 121. — Continued

Multiply	Ьу	to abtoin
ergs per second	4.426 × 10 ⁻⁶	foot-pounds per minute
ergs per second	7.376 × 10 ⁻⁸	foot-pounds per second.
ergs per second	1.341 × 10 ⁻¹⁰	horse-power.
args per second	1.434×10^{-9}	kgcolories per minute
ergs per second	10-10	kiolwotts.
Fothoms	6	feet.
eet	30.48	centimeters.
feet	12	inches.
leet	0.3048	meters.
eet	.36	voros.
feet	1/3	yords.
feet of woter	0.02950	otmospheres.
feet of woter	0.8826	inches of mercury.
feet of woter	304.8	kgs. per squore meter.
feet of woter	62.43	pounds per sq. ft.
feet of woter	0.4335	pounds per sq. inch.
feet per minute.	0.5080	centimeters per sec.
feet per minute	0.01667	feet per second.
feet per minute	0.01829	kilometers per hour.
feet per minute	0.3048	meters per minute.
feet per minute	0.01136	miles per hour.
feet per second	30.48	centimeters per sec.
feet per second	1.097	kilometers per hour.
feet per second	0.5921	knots per hour.
feet per second	18.29	meters per minute.
feet per second	0.6818	miles per hour.
feet per second	0.01136	miles per minute.
feet per 100 feet	1	per cent grode.
feet per sec. per sec	30.48	cms. per sec. per sec.
feet per sec. per sec	1.097	kms. per hr. per sec.
feet per sec. per sec	0.3048	meters per sec. per sec
feet per sec. per sec	0.6818	miles per hr. per sec.
foot-pounds	1.286×10^{-3}	British thermol units.
foot-pounds	1.356 × 10 7	ergs.
foot-pounds	5.050×10^{-7}	horse-power-hours.
foot-pounds	1.356	joutes.
foot-pounds.	3.241 × 10 ⁻⁴	kilogrom-colories.

Multiply	by	ta obtain
foot-pounds	0.1383	kilogrom-meters.
foot-pounds	3.766 × 10-7	kilowatt-hours.
loot-pounds per minute	1.286 × 10-3	8.t. units per minute.
foot-founds per minute	0.01667	foot-pounds per sec.
foot-pounds per minute	3.030 × 105	horse-power.
foot-pounds per minute	3.241 × 10-4	kgcolories per min.
foot-pounds per minute	2.260 × 10-5	kilowotts.
foot-pounds per second	7.717 × 10 ⁻²	8.t. units per minute
foot-pounds per second	1.818 × 10-3	horse-power.
foot-pounds per second	1.945 × 10-2	kgcolories per min.
foot-pounds per second	1.356 × 10-3	kilowotts.
furlongs	40	rods.
Gollons	3785	cubic centimeters.
gollons	0.1337	cubic feet.
gollons	231	cubic inches.
gollons	3.785 × 10 ³	cubic meters.
gollons	4.951×10 ⁻³	cubic yords.
gollons	3.785	liters.
gollons	8	pints (lig.).
gollans	4	quorts (lig.).
gollons per minute	2.228 × 103	cubic feet per second
gollons per minute	0.06308	liters per second.
gills	0.1183	liters.
gills	0.25	pints (lig.).
groins (troy)	1	groins (ov.).
groins (troy)	0.06480	groms.
groins (troy)	0.04167	pennyweights (troy).
groms	980.7	dynes.
groms	15.43	groins (troy).
grams	10-3	kilogroms.
groms	103	milligroms.
grams	0.03527	ounces.
grams	0.03215	ounces (troy).
groms	0.07093	poundols.
groms	2.205 × 10 ⁻³	pounds.
grom-colories	3.968 × 10 ⁻³	British thermol units.
grom -cen timeters	9.302 × 10 ⁻³	8ritish thermol units

Toble 121. — Continued

Multiply	by	to obtoin
gram-centimeters	980.7	ergs.
gram-centimeters	7.233 🗙 10 ³	faat-paunds.
gram-centimeters	$9.807 imes 10^{-5}$	jaules.
gram-centimeters	$2.344 imes 10^{-6}$	kilagram-calories.
gram-centimeters	105	kilagram-meters.
grams per cm	5.600×10^{-3}	paunds per inch.
grams per cu. cm	62.43	pounds per cubic feat
groms per cu. cm	0.03613	paunds per cubic inch
grams per cv. cm	3.405×10^{-7}	paunds per mil-foat.
Hectares	2.471	acres.
hectares	1.076×10^{5}	square feet.
hectagrams	100	grams.
hectaliters	100	liters.
hectameters	100	meters.
hectowatts	100	watts.
hemispheres (sal. angle)	0.5	sphere.
hemispheres (sal. angle)	4	spherical right ongles
hemispheres (sal. ongle)	6.283	steradions.
harse-pawer	42.44	8.t. units per min.
harse-power	33,000	faat-paunds per min.
harse-power	550	foot-pounds per sec.
harse-power	1.014	horse-power (metric).
horse-pawer	10.70	kgcalaries per min.
harse-pawer	0.7457	kilowotts.
harse-pawer	745.7	wotts.
harse-power (baller)	33,520	B.t.v. per haur.
harse-pawer (bailer)	9.804	kilawatts.
harse-power-hours	2547	British thermal units.
harse-pawer-haurs	1.98 × 10 ⁶	faat -paunds.
horse-pawer-haurs	2.684 🗙 10 ⁶	joules.
harse-pawer-haurs	641.7	kilagram-calaries.
horse-pawer-haurs	2.737 ×105	kilogram-meters.
horse-power-haurs	0.7457	kilawatt-haurs.
haurs	60	minutes.
haurs	3600	seconds.
Inches	2.540	centimeters.

785-094 O-66-25

.

384 Table 121.—Continued

.

Multiply	Ьу	ta abtain
	103	mils.
inches	.03	varas.
inches of mercury	0.03342	otmaspheres.
inches of mercury.	1.133	feet of water.
inches of mercury	345.3	kgs. per square meter.
inches of mercury.	70.73	pounds per squore ft.
inches of mercury	0.4912	pounds per sq. in.
inches af woter	0.002458	otmospheres.
inches of woter	0.07355	inches of mercury.
inches of woter	25.40	kgs. per squore meter
inches of woter	0.5781	ounces per squore in.
inches of woter	5.204	pounds per squore ft.
inches of woter	0.03613	pounds per squore in.
joules	9.486 × 10-1	British thermal units.
joules	107	ergs.
oules	0.7376	foot-pounds.
oules	2.390 × 10-1	kilogram-calaries.
oules	0.1020	kilogrom-meters.
oules	2.778×10-4	wott-hours.
Kilogroms	980,665	dynes.
kilogroms	103	groms.
kilogroms	70,93	poundols.
kilogroms	2.2946	pounds.
kilogroms	1.102 × 10-3	tons (short).
kilogrom-colories	3,968	British thermal units.
kilogrom-colories	3088	faot-pounds.
kilogrom-colories		horse-pawer-hours.
kilogrom-colories	4183	joules.
kilogrom-colories	426.6	kilogrom-meters.
kilogrom-colaries		kilowott-hours.
kgcolories per min	51.43	foot-pounds per sec.
kgcolories per min	0.09351	horse-power.
kgcolaries per min	0.06972	kilowotts.
kgscms. squared		pounds-feet squared.
kgscms. squored		pounds-inches squored
kilogrom-meters		British thermol units.

Table 121. — Continued

Multiply	by	to obtain
kilogrom-meters	9.807 × 10 7	ergs.
kilogrom-motors	7.233	foot-pounds.
kilogrom-meters	9.807	joules.
kilogrom-meters	2.344×10^{-3}	kilogrom-calories.
kilogrom-metors	2.724 × 10 ⁻⁶	kilowott-hours.
kgs. per cubic moter	10-3	groms per cubic cm.
kgs. per cubic metor	0.06243	pounds por cubic foot.
kgs. per cubic motor	$3.613 imes 10^{-5}$	pounds por cubic inch.
kgs. por cubic meter	3.405 × 10 ⁻¹⁰	pounds per mil. foot.
kgs. por metor	0.6720	pounds per foot.
kgs. por squaro metor	9.678×10 ⁻⁵	ot mospheres.
kgs. per square metor	98.u7	bors.
kgs. per squoro moter	3.281×10^{-3}	feet of woter.
kas. por squaro motor	2.896×10^{-3}	inches of mercury.
kas. por squoro metor	0.2048	pounds per squore ft.
kgs. por squaro meter	1.422×10^{-3}	pounds per squoro in.
kgs. por sq. millimetor	10 6	kgs. por squore motor.
kilolines	10 ³	moxwoils.
kilolitors	10 ³	liters.
kilomotors	10 5	centimotors.
kilomotors	3281	foot.
kilomoters	10 ³	motors.
kilometors	0.6214	miles.
kilomotors	1093.6	yords.
kilomoters por hour	27.78	centimoters per sec.
kilomotors por hour	54.68	feet per minute.
cilometors per hour	0.9113	feet per second.
kilomotors por hour	0.5396	knots per hour.
kilomotors per hour	16.67	meters per minute.
kilomotors por hour	0.6214	milos per hour.
kms. por hour por soc	27.78	cms. per sec. per sec.
kms. por hour por soc	0.9113	ft. por sec. per sec.
kms. per hour por soc	0.2778	metors por sec. per sec.
kms. per hour por soc	0.6214	miles per hr. per soc.
kilomotors por min		kilometors per hour.
kilowotts	60 56.92	8.t. units per min.
kilowotts	4.425 × 10 4	foot-pounds per min.
A 10 W0113	4.423 X 10 *	i iser-poonds per min.

386		
Table	121. — Continued	

Multiply	by	to abtain
kilowotts	737.6	foot-pounds per sec.
kilowotts	1.341	horse-power.
kilowotts	14.34	kgcolories per min.
kilowotts	10 ³	wotts.
ki lowatt-haurs	3415	British thermol units.
kilowott-hours	2.655×10 ⁶	foot-pounds.
kilowott-hours	1.341	horse-power-hours.
kilowott-hours	3.6 × 10 ⁶	joules.
ci lowott-hours	860.5	kilogrom-colories.
kilowott-hours	3.671 🗙 10 5	kilogrom-meters.
knots	51.48	centimeters per sec.
knots	1.689	feet per second.
knots	1.853	kilometers per hour.
knots	1.152	miles per hour.
Links (engineer's)	12	inches.
links (surveyor's)	7.92	inches.
liters	10 ³	cubic centimeters.
liters	0.03531	cubic feet.
liters	61.02	cubic inches.
liters	10-3	cubic meters.
liters	1.308 × 10 ⁻³	cubic yords.
liters	0.2642	gollons.
liters	2.113	pints (lig.)
liters	1.057	quorts (lig.).
fiters per minute	5.885 × 10-4	cubic feet per second.
liters per minute	4.403×10^{-3}	gollons per second.
log 10 N	2.303	log e N or In N.
log ε N or In N	0.4343	log 10 N.
lumens per sq. ft	1 '	foot-condles.
Neters	100	centimeters.
meters	3.2808	feet.
meters	39.37	inches.
meters	10 3	kilometers.
meters	10 3	millimeters.
meters	1.0936	yords.
meter-kilogroms	9.807 × 10 7	centimeter-dynes.

Toble 121. --- Continued

Multiply	by	to obtoin
meter-kilogroms	10 5	centimeter-groms.
meter-kilogroms	7.233	pound-feet.
meters per minute	1.667	centimeters per sec.
meters per minute	3.281	feet per minute.
meters per minute	0.05468	feet per second.
meters per minute	0.06	kilometers per hour.
meters per minute	0.03728	miles per hour.
meters per second	196.8	feet per minute.
meters per second	3.281	feet per second.
meters per second	3.6	kilometers per hour.
meters per second	0.06	kilometers per min.
maters per second	2.237	miles per hour.
meters per second	0.03728	miles per minute.
meters per sec. per sec	3.281	feet per sec. per sec.
meters per sec. per sec	3.6	kms, per hour per sec.
meters per sec. per sec	2.237	miles per hour per sec
microns	10-6	meters.
miles	1.609 🗙 10 5	centi meters.
miles	5280	feet.
mi ies	1.6093	kilometers.
miles	1760	yords.
miles	1900.8	varas.
miles per hour	44.70	centimeters per sec.
miles per hour	88 1.467	feet per minute.
miles per hour		feet per second.
miles per hour	1.6093	kilometers per hour.
miles per hour	0.8684 26.82	knots per hour.
miles per hour	26.82	meters per minute. cms. per sec. per sec.
miles per hour per sec	1.467	feet per sec. per sec.
miles per hour per sec miles per hour per sec	1.6093	kms. per hour per sec.
miles per hour per sec	0.4470	M. per sec. per sec.
miles per nour per sec	2682	centimeters per sec.
miles per minute	88	feet per second.
miles per minute	1.6093	kilometers per min.
miles per minute	0.8684	knots per minute.
miles per minute	60	miles per hour.

Table 121.—Continued		
Multiply	Ьγ	to obtoin
milliers	10 ³	kilograms.
milligrams	10-3	grams.
milliters	10-3	liters.
millimeters	0.1	centimeters.
millimeters	0.03937	inches.
millimeters	39.37	mils.
mils	0.002540	centimeters.
mils	10-3	inches.
miner's inches	1.5	cubic feet per min.
minutes (angle)	2.909 × 10-4	radians.
minutes (angle)	60	seconds (angle).
months	30.42	days.
months	730	hours.
manths	43,800	minutes.
manths	2.628 × 10 ⁶	seconds.
myr ia grams	10	kilograms.
my riam eters	10	kilometers.
myria watts	10	kilawatts.
Nautical miles	6080	feat.
nautical miles	1.853	kilameters.
nautical miles	1.152	miles.
nautical miles	2027	
		yards.
Dunces	8	drams.
wnces	437.5	grains.
wnces	28.35	grams.
wnces	0.0625	pounds.
wnces (fluid)	1.805	cubic inches.
wnces (fluid)	0.02957	liters.
unces (troy)	480	grains (tray).
ounces (troy)	31.10	grams.
aunces (troy)	20	pennyweights (tray).
sunces (tray)	0.08333	pounds (tray).
wnces per square inch	0.0625	pounds per sq. inch.
Pennyweights (tray)	24	grains (tray).
ennyweights (tray)	1.555	grams.
ennyweights (tray)	0.05	ounces (tray).

Table 121. --- Continued

Table 121. — Continued

Multiply	Ьу	to obtain
perches (mosonry)	24.75	cubic feet.
pints (dry)	33.60	cubic inches.
pints (liq.)	28.87	cubic inches.
poundols	13,826	dynes.
poundols	14.10	grams.
poundols	0.03108	pounds.
pounds	444,823	dynes.
pounds	7000	groins.
pounds	453.6	groms.
pounds	16	ounces.
pounds	32.17	poundols.
pounds (troy)	0.8229	pounds (ov.).
pound-feet	1.356 × 10 7	centimeter dynes.
pound-feet	13,825	centimeter-groms.
pound-feet	0.1383	meter-kilogroms.
pound-feet squored	421.3	kgscms. squored.
pounds-feet squored	144	pounds-in. squared.
pounds-inches squored	2.926	kgscms. squared.
pounds-inches squored	6.945 ×10 ³	pounds-feet squared.
pounds of woter	0.01602	cubic feet.
pounds of woter	27.68	cubic inches.
pounds of woter	0.1198	gollons.
pounds of woter per min	2.669 × 10-4	cubic feet por sec.
pounds per cubic foot	0.01602	grams por cubic cm.
pounds per cubic foot	16.02	kgs. per cubic meter.
pounds per cubic foot	5.787 ×10−4	pounds per cubic inch
pounds per cubic foot	5.456 × 10 ⁻⁹	pounds per mil foot.
pounds per cubic inch	27.68	pounds per cubic cm.
pounds per cubic inch	2.768 🗙 10 4	kgs. per cubic meter.
pounds per cubic inch	1728	pounds por cubic foot
pounds per cubic inch	9.425 × 10 ⁻⁶	pounds per mil foot.
pounds per foot	1.488	kgs. per meter.
pounds per inch	178.6	grams por cm.
pounds per mil foot	2.306 × 10 ⁶	grams per cubic cm.
pounds per square foot	0.01602	feet of woter.
pounds per square foot	4.882	kgs. per squore meter
pounds per squore foot	6.944 × 10 ⁰	pounds per sq. inch.

Multiply	Ьу	to obtoin
pounds per squore inch	0.06804	otmospheres.
pounds per squore inch.	2.307	feet of woter.
pounds per squore inch	2.036	inches of mercury.
pounds per squore inch	703.1	kgs. per square meter.
pounds per squore inch	144	pounds per sq. foot.
Quodronts (ongle)	90	dammer
quodronts (ongle)	5400	degrees. minutes.
quodronts (ongle)	1.571	radions.
quarts (dry)	67.20	cubic inches.
quarts (lig.)	57.75	cubic inches.
quintols	100	counds.
quires	25	sheets.
denes		5110015.
Rodions	57.30	degrees.
rodians	3438	minutes.
rodians	0.637	quadronts.
rodions per second	57.30	degrees per second.
rodions per second	0.1592	revolutions per sec.
rodions per second	9.549	revolutions per min.
radions per sec. per sec	573.0	revs. per min. per min.
radions per sec. per sec	9.549	revs. per min. per sec.
radions per sec. per sec	0.1592	revs. per sec. per sec.
reams	500	sheets.
revolutions	360	degrees.
revolutions.	4	quadrants.
revalutions	6.283	radions.
revolutions per minute	6	degrees per second.
revalutions per minute	0.1047	radions per second.
revolutions per minute.	0.01667	revolutions per sec.
revs. per min. per min	1.745×10 ³	rods. per sec. per sec
revs. per min. per min	0.01667	revs. per min. per sec.
revs. per min. per min	2.778 × 10+	revs. per sec. per sec.
revolutions per second	360	degrees per second.
revolutions per second	6.283	radions per second.
revolutions per second	60	revs. per minute.
revs. per sec. per sec	6.283	rads. per sec. per sec.
revs. per sec. per sec	3600	revs. per min. per mi

Table 121. — Continued

Table 121. — Continued

Multiply	by	to obtain
revs. per sec. per sec	60	revs. per min. per sec
rads	16.5	feet.
Secands (angle)	4.848 × 10 ⁻⁶	radians.
spheres (salid angle)	12.57	steradians.
spherical right angles	0.25	hemispheres.
spherical right angles	0.125	spheres.
spherical right angles	1.571	steradians.
square centimeters	1.973 🗙 10 5	circular mils.
square centimeters	1.076×10^{-3}	square feet.
square centimeters	0.1550	square inches.
square centimeters	10-6	square meters.
square centimeters	100	square millimeters.
square feet	2.296×10 ⁻⁵	acres.
square feet	929.0	square centimeters.
square feet	144	square inches.
square feet	0.09290	square meters.
square feet	3.587 🔀 10-8	square miles.
square feet	.1296	square varas.
square feet	1/9	square yards.
sq. feet-feet sqd	2.074 × 10 4	sq. inches-inches sqd.
square inches	1.273 × 10 ⁶	circular mils.
square inches	6.452	square centimeters.
square inches	6.944×10 ⁻³	square feet.
square inches	10 6	square mils.
square inches	645.2	square millimeters.
sq. inches-inches sqd	41.62	sq. cms.·cms. sqd.
sq. inches-inches sqd	4.823 × 10 ⁵	sq. feet-feet sqd.
square kilameters	247.1	acres.
square kilameters	10.76 × 10 6	square feet.
square kilameters	10 6	square meters.
square kilameters	0.3861 1.196 × 10 ⁶	square miles.
square kilameters		square yards.
	2.471 × 104	acres.
square meters	10.764	square feet.
square meters	3.861 × 10 ⁻⁷	square miles.
square meters	1.196	square yards.
square miles	640	acros.

	392
Table	121. — Continued

Multiply	Ьу	to obtain
squore miles	27.88 × 10 ⁶	square feet.
square miles	2.590	squore kilometers.
squore miles.	3,613,040.45	squore voros.
squore miles	3.098 × 10 °	squore yords.
squore millimeters	1.973 × 10 ⁻³	circular mils.
squore millimeters	0.01	squore centimeters.
squore millimeters	1.550 × 10 ⁻³	square inches.
squore mils	1.273	circular mils.
squore mils	6.452 $ imes$ 10 6	squore centimeters.
square mils	10-8	squore inches.
square varas	.0001771	ocres.
squore voros	7.716049	square feet.
squore voros	.0000002765	square miles.
squore voros	.857339	square yords.
squore yords	2.066 × 104	acres.
squore yords	9	squore feet.
square yords	0.8361	squore meters.
square yords	3.228×10^{-7}	square miles.
square yards	1.1664	squore voros.
sterodions	0.1592	hemispheres.
sterodians	0.07958	spheres.
steradions	0.6366	sphericol right ongles
steres	10 ³	liters.
Temp. (degs. C.)+273	1	obs. temp. (degs. C.)
temp. (degs. C.) + 17.8	1.8	temp. (degs. Fahr.)
temp. (degs. F.) + 460	1	obs. temp. (degs. F.)
temp. (degs. F.) - 32	5/9	temp. (degs. Cent.).
tons (long)	1016	kilogroms.
tons (long)	2240	pounds.
tons (metric)	10 ³	kilagroms.
tons (metric)	2205	pounds.
tons (short)	907.2	kilagrams.
tons (short)	2000	pounds.
tons (shart) per sq. ft	9765	kgs. per square mete
tons (short) per sq. ft	13.89	pounds per sq. inch.

Toble 121. - Continued

•

Multiply	by	to obtoin	
tons (short) per sq. in tons (short) per sq. in	1.406 × 10 6 2000	kgs. për squarë metë pounds për sq. inch.	
Voros	2.7777 33.3333 .000526 .9259	feet. inches. miles. yards.	
Wotts	$\begin{array}{c} 0.05692\\ 10^{7}\\ 44.26\\ 0.7376\\ 7.341 \times 10^{-3}\\ 0.01434\\ 10^{2}\\ 3.415\\ 2655\\ 1.341 \times 10^{-3}\\ 0.8605\\ 367.1\\ 10^{-3}\\ 10^{8}\\ 168\\ 10,080\\ \end{array}$	8.t. units per min. ergs per second. foot-pounds per min. foot-pounds per sec. horse-power. kgcalories per min. kilowatts. British thermol units. foot-pounds. horse-power-hours. kilogrom-colories. kilogrom-meters. kilowatt-hours. moxwells. hours. minutes.	
weeks	604,800 91.44 3 0.9144 1.08 365 8760 366 8784	seconds. centimeters. feet. inches. meters. varos. doys. hours. days. hours.	

.

Materiol	Lbs per cu yd, bonk	Percent of swell	Load (ar soil) (conversion) factor	Lbs per cu yd, loose
Cinders	1,200	40-50	.7265	780-860
Clay, dry	2,700 to	40	.72	1.950 to
Cloy, wet		40	.72	2,500
Cool, onthrocite	2,600	35	.74	1,900
Cool, bituminous	2.250	35	.74	1,650
Eorth (loom or silt):	-/			,
dry	1,700 to	15-35	.8774	1,250 to
wet	3,500	25	. 80	2,800
Gravel, dry	2,450 to	10-15	.8774	1,250 to
Grovel, wet	3,900	10-15	.9187	3,550
Gypsum .	4,300	30	.77	3,300
Iron are	4,600	18	.85	3,900
Limestone	4,400	65	.60	2,650
Sond, dry.	2,200-3,400	10-15	.9187	1,900-3,100
Sond, wet	2,450-3,900	10-15	.9187	2,150-3,550
Sandstone	4,000	65	.60	2,400
Shole (saft rack)	4,400	65	.60	2,650
Traprock	5,000	50	.66	3,300

Table 122. Approximate Materials Characteristics*

*The weight ond load factor of material will vary with such factars as groin size, moisture content, ond degree af compactian. If an exact material weight must be determined, then a test must be run on that particular sample.

IGDIG 123. THE LANNIQUISHER OF	Tabi	e 123.	. Fire	Extingui	sher Us
--------------------------------	------	--------	--------	----------	---------

Туре	Closs A fire	Closs 8 fire	Class C fire	Class D fire	
CO2 Extinguisher	Good	Excellent	Excellent	Good	
Woter Extinguisher	Excellent	Do not use	Do not use	Do not use	
Soda Acid Extinguisher	Excellent	Da not use	Do nat use	Do nat use	
Foam Extinguisher	Good	Excellent	Excellent	Do not use	
Commercial Powders and Granular Materials	Do not use	Do nat use	Do nat use	Good	

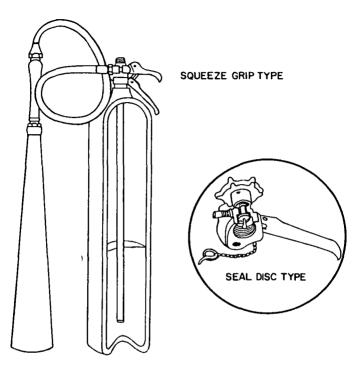


Figure 199. Carban dioxide extinguisher.

186. MAP DISTANCE CONVERSION

See table 124.

187. CONSTRUCTION DRAWING SYMBOLS See figure 203.

		Representative fraction (RF)							
Map distance	Ground distance	1	1	1	1	1	1	1	1
		25,000	50,000	75,000	100,000	200,000	250,000	50.0,000	1,000,000
One inch	inches	25,000	50,000	75,000	100,000	200,000	250,000	500,000	1,000,000
	Feet	2,083	4, 167	6,250	8,333	16,667	20,833	41,667	83, 333
	Yards	694	1,389	2,083	2,778	5,555	6,944	13,888	27,776
	Meters	635	1, 270	1,905	2,540	5,080	6, 350	12,700	25,400
	Miles	0.4	0.8	1.2	1.6	3.2	4	8	16
	Kilometers	.64	1.3	1.91	2.54	5.08	6. 35	127	25.4
	Inches	9,843	19,685	29,528	39,370	78,740	98,425	196,850	393,700
	Feet	820	1,640	2,460	3,281	6,562	8,202	16, 404	32,808
One centime- ter	Yards	273	547	820	1,094	2, 187	2,734	5, 468	10,936
	Meters	250	500	7 50	1,000	2,000	2,500	5,000	10,000
	Miles	0.16	0.3	0.5	0.6	1.2	1.5	3	6
	Kilometers	. 25	. 50	.75	1.00	2.00	2.50	5.00	10.00

Toble 124. Mop Distance Conversion



Figure 200. Pump type water extinguisher.

188. CONVERSION-ENGLISH UNITS TO METRIC UNITS See table 125.

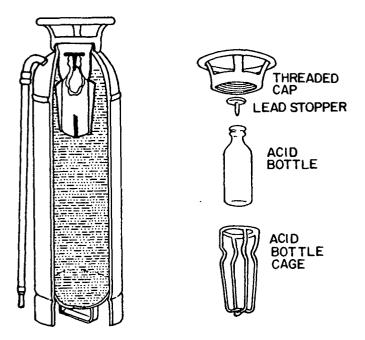


Figure 201. Soda-acid extinguisher.

189. REQUESTING AND ADJUSTING ARTILLERY FIRE

a. For details refer to FM 6-135-Adjustment of Fire by the Combat Soldier.

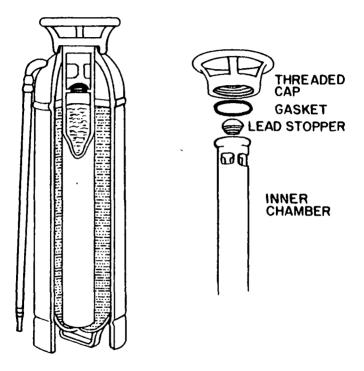


Figure 202. Foam extinguisher.

400

Figure 203. Construction drawing symbols,

OCOR SYMBOLS

WINCOW SYMBOLS

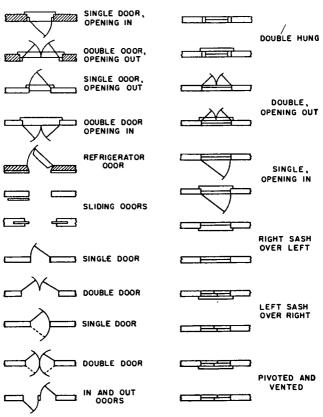


Figure 203-Continued.

BATTERY. FIRE-ALARM BDX. CONVENIENCE. F WALL TYPE DUPLEX MULTICELLS A.0. SWITCH BREAKER FAN, WALL F LIGHTING PANEL AUTOMATIC 30 A. ര FAN, CEILING RESET BREAKER POWER PANEL FIXTURE . 4,11 BUS þ BRANCH CIRCUIT. FLUORESCENT. CONCEALED IN CEILING CEILING OR WALL VOLTMETER v FIXTURE. FLUORESCENT. BRANCH CIRCUIT. WALL CONCEALED IN FLOOR JUNCTION BOX. (s) CEILING BRANCH CIRCUIT. TOGGLE ۳0 ----EXPDSED SWITCH JUNCTION BOX. ۶. \mathbf{G} DPST WALL FEEDERS LAMPHDLDER. KNIFE (T SWITCH CEILING UNDERFLOOR **OISCONNECTED** ≡∩≡ DUCT AND JUNCTION BOX LAMPHOLDER. -(4 WALL TRANSFORMER. BASIC (\mathbf{n}) MOTOR LAMPHOLDER (ī WITH PULL MAGNETIC SWITCH, CEILING CONTROLLER CDRE -O_{P3} LAMPHOLDER STREET WITH PULL LIGHTING SWITCH, WALL STANOARD BELL, AC SPECIAL DUTLET. PURPDSE CEILING TELEPHONE. BUZZER, AC DUTLET. SWITCHBOARO WALL THERMOSTAT -(T) DUTLET. (• LIGHT. FLOOR (# INDICATINO.

Figure 203—Continued.

RED

٠

PUSHBUTTON

402

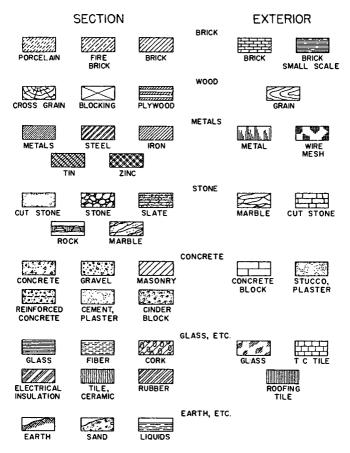
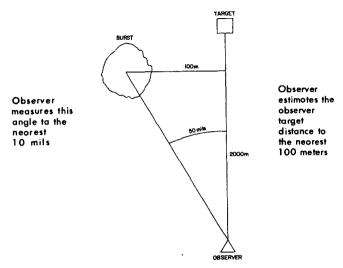


Figure 203-Continued.

b. Initial fire request: (preferably in the order listed below) Element Exomple (1) Identification of (1) This is Red Lea 49 observer (2) Warning order (2) Fire mission (3) Locotion of target (3) Coordinotes 384562 ond the ozimuth in mils Azimuth 4380 (to neorest from the observer to the 10 mils) taraet (4) Noture of torget (4) Crew-served wedpon (5) Type of (5) Omit if oreo fire odjustment* desired (6) Ammunition * (6) Omit this ond HE will be fired (7) Fuze oction* (7) Omit this, ond fuze point detonoting will be fired (8) Will odjust (8) Control

*Narmally used only by artillery observers.

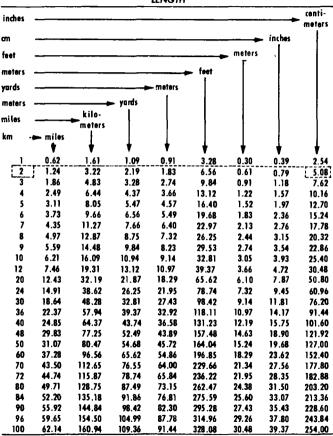
c. Adjustment of rounds:


(1) Correct the bursts loterolly to the observer-torget line by multiplying the estimoted range in thousands of meters, from the observer to the torget, times the ongle, in mils, formed by the target, observer ond bursts. (See diagram below.)

(2) Bracket the target in ronge olong the observer torget line ond continue to split (or holve) this brocket, olwoys keeping the torget within the bracket.

(3) After determining the appropriate corrections, combine them in the some transmission by sending the lateral correction followed by the range correction. In example given below the correction would be Right 100 Add 400 (both in meters).

(4) Correct successive bursts using the some procedures, until o 100 meter ronge brocket exists. Then add or drop 50 meters and fire for effect.



Laterol Correction

Multiply the range from the abserver to the target, in thousands of meters (2), times the ongle in mils (50) formed by the torget, observer ond bursts.

2 x 50 = Right 100 meters Ronge Correctian

Determine if the bursts are shart or over the target in relotianship to the observer torget line. Then odd or drap a sufficient number of meters (recammended increments for initial bracket are 400 ar 800 meters), to insure that the bursts are an the oppasite side of the target. This establishes your first bracket which can easily be split (or halved) when carrecting successive bursts.

406 Table 125. Conversion—English-Metric Systems IENGTH

Example: 2 inches=5.08 cm

Table 125.—Cantinued

One unit (belaw) Equals	mm	cm	maters	km	
mm (millimeters)	1.	0.1	0.001	0.000,001	
cm (centimeters)	10.	1.	0.01	0.000,01	
meters	1,000.	100.	1.	0.001	
km (kilometers)	1,000,000.	100,000.	1,000.	1.	

One unit (below) Equals	gm	kg	metric ton
gm (græm)	1.	0.001	0.000,001
kg (kilograms)	1,000.	1.	0.001
metric ton	1,000,000.	1,000.	1.

UNITS OF CENTIMETERS

ſm	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.10
Indi	0.04	80.0	0.12	0.16	0.20	0.24	0.28	0.31	0.35	0.39

FRACTIONS OF AN INCH

408 Table 125. — Continued WEIGHT¹

ounces						🕳 grams
groms -					► OUNCES	1
pounds -				🕨 kilogroms	1	
kg -			🛶 pounds			
short		- metric				
ton ²		ton				
metric	short					
ton ³	ton	1				
		•	+	+	↓	•
1	1,10	0.91	2.20	0.45	0.04	28.4
2	2.20	1.81	4.41	0.91	0.07	56.7
3	3.31	2.72	6.61	1.36	0.11	85.0
4	4.41	3.63	8.82	1.81	0.14	113.4
5	5.51	4.54	11.02	2.67	0.18	141.8
6	6.61	5.44	13.23	2.72	0.21	170.1
1	7.72	6.35	15.43	3.18	0.25	198.4
8	8.82	7.26	17.64	3.63	0.28	226.8
9	9.92	8.16	19.84	4.08	0.32	255.2
10	11.02	9.07	22.05	4.54	0.35	283.5
16	17.63	14.51	35.27	7.25	0.56	453.6
20	22.05	18.14	44.09	9.07	0.71	567.0
30	33.07	27.22	66.14	13.61	1.06	850.5
40	44.09	36.29	88.18	18.14	1.41	1134.0
50	55.12	45.36	110.23	22.68	1.76	1417.5
60	66.14	54.43	132.28	27.22	2.12	1701.0
70	77.16	63.50	154.32	31.75	2.47	1984.5
80	88.18	72.57	176.37	36.29	2.82	2268.0
90	99.2 1	81.65	198.42	40.82	3.17	2551.5
100	110.20	90.72	220.46	45.36	3.53	2835.0

Exomple: Convert 28 pounds to kg

28 pounds = 20 pounds + 8 pounds

From the tables: 20 pounds = 9.07 kg and 8 pounds = 3.63 kg

Therefore, 28 pounds = 9.07 kg + 3.63 kg = 12.70 kg

- ¹ The weights used for the English system ore ovoirdupois (common) weights.
- ² The short ton is 2000. pounds.
- ³ The metric ton is 1000. kg.

Table 125—Continued

VOLUME

cu. mete	ers					🕳 cu. yd
cu. yd -	<u> </u>		cu. ft I	cu. meters		
cu.ft -	🛶 cu. yd 🗕	cu .		l l		
	. ↓	meters	↓ I	↓ ·	ł	ł
1	0.037	0.028	27.0	0.76	35.3	1.31
2	0.074	0.057	54.0	1.53	70.6	2.62
3	0.111	0.085	81.0	2.29	105.9	3.92
4	0.148	0.113	108.0	3.06	141.3	5.23
5	0.185	0.142	135.0	3.82	176.6	6.54
6	0.212	0.170	162.0	4.59	211.9	7.85
7	0.259	0.198	189.0	5.35	247.2	9.16
8	0.296	0.227	216.0	6.12	282.5	10.46
9	0.333	0.255	243.0	6.88	317.8	11.77
10	0.370	0.283	270.0	7.65	353.1	13.07
20	0.741	0.566	540.0	15.29	706.3	26.16
30	1.111	0.850	810.0	22.94	1059.4	39.24
40	1.481	1.133	. 1080.0	30.58	1412.6	52.32
50	1.852	1.416	1350.0	38.23	1765.7	65.40
60	2.222	1.700	1620.0	45.87	2118.9	78.48
70	2.592	1.982	1890.0	53.52	2472.0	91.56
80	2.962	2.265	2160.0	61.16	2825.2	104.63
90	3.333	2.548	2430.0	68.81	3178.3	117.71
100	3.703	2.832	2700.0	76.46	3531.4	130.79

Exomple: 3 cu. yd == 81.0 cu ft

Volume: The cubic meter is the only common dimension used for measuring the volume of solids in the metric system.

410

APPENDIX I

REFERENCES

- 1. ARMY REGULATIONS (AR)
- AR 10-5 Carps of Engineers.
- AR 105-30 Jaint Use of ICAO Phanetic Alphabet.
- AR 105–31 Message Preparatian.
- AR 320–50 Authorized Abbreviations and Brevity Codes.
- AR 385–63 Safety Regulatians far Firing Ammunitian far Training, Target Practice, and Cambat.
- AR 525–8 Use of Metric System for Linear Measurement in United States Army Operations.
- 2. DA PAMPHLETS (DA PAM)

DA PAM 30-107 Coast and Landing Beach Intelligence.

DA Pam 310–1 Military Publicatians: Index af Administrative Publicatians.

- DA Pom 310-3 Military Publications: Index of Training Publications.
- DA Pam 310–4 Index af TM's, TB's, SB's, LO's, and MWO's.
- DA Pam 310-5 Military Publicatians: Index af Graphic Training Aids and Devices.
- DA Pam 310–7 Military Publicatians: Index af TO&E's, TO's, and TA's.
- 3. SPECIAL REGULATIONS (SR)
- SR 385–10–20 Administration of Army Safety Pragram.
- SR 420-510-1 Fire Preventian and Pratectian.
- 4. FIELD MANUALS (FM)

FM	3–5	Chemical,	Biolagical,	Radialagical	(CBR)	Opera-
		tians.			-	
	20	Chaminal	Care Batan	and Mandhard	i.	

FM 3-8 Chemical Carps Reference Handbaak.

- FM 3-10 Chemical and Bialagicol Weapans Emplayment.
- FM 3-12 Operational Aspects of Radialagical Defense.
- FM 5-1 Engineer Troap Organizations and Operations.
- FM 5-13 The Engineer Saldier's Handbaak.
- FM 5–15 Field Fartifications.
- FM 5-20 Camauflage Basic Principles and Field Camouflage.
- FM 5-21 Camauflage af Fixed Installations.
- FM 5-22 Camauflage Materials.
- FM 5–23 Field Decay Installations.

FM 5-25	Explasives and Demalitians.
(S) FM 5-26	Emplayment of Atamic Demalitians Munitians
	(ADM) (U).
FM 5-30	Engineer Intelligence.
FM 5-31	Use and Installatians of Baabytraps.
FM 5-35	Engineer Reference and Lagistical Data.
FM 5-36	Raute Recannaissance and Classificatian.
FM 6-135	Adjustment af Fire by the Cambat Saldier.
FM 10-13	Quartermaster Reference.
FM 20-22	Vehicle Recavery Operatians.
FM 20-32	Land Mine Warfare.
FM 21-5	Military Training.
FM 21-6	Techniques af Military Instructian.
FM 21-10	Military Sanitatian.
FM 21-26	Map Reading.
FM 21-30	Military Symbols.
FM 21-31	Tapagraphic Symbals.
FM 21-40	Small Units Pracedures in Chemical, Bialagical, and Radialagical (CBR) Operatians.
FM 21-41	Saldier's Handbaak far Chemical and Bialagical
	Operatians and Nuclear Warfare.
' FM 21-60	Visual Signals.
FM 21-76	Survival.
FM 24-1	Tactical Cammunications Dactrine.
FM 24-18	Field Radia Techniques.
FM 30-5	Combat Intelligence.
FM 31-10	Barriers and Denial Operatians.
FM 31-60	River Crassing Operations.
FM 31-70	Basic Cald Weather Manual.
FM 31-71	
	Narthern Operatian.
FM 55-15	Transpartatian Reference Data.
FM 101-10	Staff Officers' Field Manual: Organizatianal, Technical, and Lagistical Data, Part I

- 5. TECHNICAL MANUALS (TM)
- TM 3-220 CBR Decantaminatian.
- TM 5-200 Camauflage Nets and Net Sets.
- TM 5-210 Military Flaating Bridge Equipment.
- TM 5-216 Armared Vehicle Launched Bridge.
- TM 5–220 Passage af Obstacles Other Than Minefields.

TM 5-232	Elements of Surveying.
TM 5-233	Construction Surveying.
TM 5-258	Pile Construction.
TM 5-270	Cableways, Tramways, and Suspensian Bridges.
TM 5-277	Panel Bridge, Bailey Type, M2.
TM 5-279	Suspensian Bridges far Mauntain Warfare.
TM 5-280	Fareign Mine Warfare Equipment.
TM 5-297	Wells.
TM 5-302	Constructian in the Theater of Operatians.
TM 5~311	Military Pratective Construction.
TM 5-312	Military Fixed Bridges.
TM 5-315	Firefighting.
TM 5-330	Planning, Site Selectian, and Design af Roads, Airfields, and Heliparts in the Theater of Operatians.
TM 5-331	Management; Utilization af Engineer Construc- tian Equipment.
TM 5-332	Pits and Quarries.
`TM 5-335	Drainage Structures, Subgrades, and Base Caurses.
TM 5-337	Bituminaus, Cancrete, and Expedient Paving Operatians.
TM 5-342	Logging and Sawmill Operation.
TM 5-349	Arctic Construction.
TM 5-461	Engineer Handtoals.
TM 5-541	Control of Sails in Military Construction.
TM 5-617	Roofing; Repairs and Utilities.
TM 5-618	Painting; Repairs and Utilities.
TM 5-624	Roads, Runways, and Miscellaneaus Pavements; Repairs and Utilities.
TM 5-700	Field Water Supply.
TM 5-725	Rigging.
TM 5-742	Concrete and Masanry.
TM 5-9541	AN/PRS Mine Detecting Set.
TM 9-1375	Demalition Materials.
TM 9-1910	Military Explosives.
	<i>i</i> .

.

APPENDIX II DIMENSIONS OF VEHICLES

Nomencloture	Closs e mpty	Width inches	Height inches
Towed Artillery			
Howitzer, light, towed: 105-mm, M101 or M101A1	4	84.5	62.
Howitzer, Jight, towed: 105-mm, M102	2	76.0	62.75
Howitzer, medium, towed: 155-mm, M114 ond M114A1	9	96.	71.
Howitzer, medium, towed: 155-mm, ouxiliory pro-			
pelled, M123A1	9	110.	81.
Howitzer, heovy, towed: 8-inch, M115	21 •	112.	108.
Troctors, Trucks and Truck Troctor	s		
Truck, ombulance: ¾-ton, 4 x 4, M43	3	73.	92.
Truck, corgo: ¾-ton, 4 x 4, M37 and M3781, w/and w/a			
winch	3	73.5	87.
Truck, carga: 2½-tan, 6 x 6, M135, w/ond w/o winch	6	88.	80.
Truck, carga: 2½-ton, 6 x 6, M34, w/ond w/o winch	5	88.	109.
Truck, corga: 2½-tan, 6 x 6, M35, w/ond w/o winch	5	96.	112.
Truck, corgo: 2½-ton, 6 x 6, M36 ond M36C, w/and w/o			
winch	6	96.	124.5
Truck, cargo: 21/2-ton, 6 x 6, M211, w/ond w/a winch	6	96.	112.5
Truck, corgo: 5-ton, 6 x 6, M41, w/ ond w/o winch	9	96.	111.5
Truck, carga: 5-tan, 6 x 6, M54, w/ ond w/o winch	9	97.	116.
Truck, corgo: 5-ton, 6 x 6, M55, w/ and w/a winch	10	96.	117.5
Truck, cargo: 10-ton, 6 x 6, M125 w/winch Truck, corgo dump: 2½-ton, 6 x 6, M342, w/ and w/a.	14	114.	129.5
winch.	7	96.	101.
Truck, dump: 21/2-ton, 6 x 6, M59, w/ ond w/o winch	6		103.
Truck, dump: 21/2-ton, 6 x 6, M215, w/ ond w/o winch.	7	96.	108.
Truck, dump: 5-ton, 6 x 6, M51, w/ and w/a winch	10	97.	III.
Truck tank: gosoline, 2½-ton, 6 x 6, 1,200-gal, M49 and			
M49C	6	95.5	97.5
Truck, tonk: gosoline, 21/2-ton, 6 x 6, 1,200-gol, M217			
ond M217C	7	96.	102.
Truck, tonk: woter, 21/2-ton, 6 x 6, 1,000-gol, M50, w/			
ond w/o winch	7	95.	97.

See footnote end of oppendix II.

Nomencloture	Class empty	Width inches	Height inches
Troctors, Trucks ond Truck Tractars—Cant	inued	·	·
Truck, troctor: 2½-ton, 6 x 6, M48, w/ ond w/o winch.	6	93.5	97.5
Truck, troctor: 21/2-ton, 6 x 6, M221, w/ ond w/o winch.	5	96	102.
Truck, tractor: 5-ton, 6 x 6, M52, w/ ond w/o winch	11	97.	103.5
Truck, tractor: 10-ton, 6 x 6, M123 ond M123C	18	114.	113.
Truck, troctor: 12-ton, 6 x 6, M26, M26A1, and M26A2	28	130.5	123.
Troctor, full trocked, high speed: 18-tan, M4, M4A1,	· .		
M4A1C, M4A2	13	97.	108.
Troctor, full trocked, high speed: M8A1, and M8A2	21	130.5	120.
Truck, wrecker: crone, 21/2-ton, 6 x 6, M108, w/ winch	9	96.0	99.0
Truck, wrecker: light, 2½-ton, 6 x 6, M60, w/winch	11	96.	100.
Truck, wrecker: medium, 5-ton, 6 x 6, M62, w/winch	16	97.	102.5
Truck, corgo: 1¼-ton, 4 x 4, XM676	2	78.	91.
Truck, ombulonce: 1¼-ton, 4 x 4, XM679	2	78.	94.1

DIMENSIONS OF VEHICLES—Continued

Tanks, Self-Propelled Weapans, and Persannel Carriers

Gun, onti-oircroft ortillery, self-propelled: twin 40-mm,	20	127.	110 5
M42 and M42A1			112.5
Gun, ontitonk, self-propelled: 90-mm, M56	6	101.5	81.
Gun, field ortillery, self-propelled: 155-mm, M53 (T97)	42	141.	140.
Gun, field ortillery, self-propelled: 175-mm, M107, (T235E1)	29	124.	137.
Howitzer, heovy, self-propelled: full trocked, 8-inch, M55			
(T108)	41	141.	146.
Howitzer heovy, self-propelled: 8-inch, M110 (T236E1)	27	124.	116.
Howitzer, light, self-propelled: full tracked, 105-mm, M37	18	118.	95.
Howitzer, light, self-propelled: full trocked, 105-mm, M52		-	
ond M52A1	23	124.	131.
Howitzer, light, self-propelled: 105-mm, T195E1 ond M108	20 *	130.	124.5
Howitzer, medium, self-propelled: full trocked, 155-mm,			ļ
N44 ond N44A1	27	128.	127.
Howitzer, medium, self-propelled: 155-mm, T19E1 ond			1
M109	24 •	130.	124.5
Mortor, infontry, self-propelled: full trocked, 107-mm	• •	130.	124.5
	19	128.5	109.
(farmerly 4.2-inch), M84	17	120.3	109.

See footnote end of oppendix II.

DIMENSIONS OF VEHICLES—Continued

Namenclature	Class empty	Width in ch o s	Heigh inche
Tanks, Self-Propelled Weapans, and Persannel Carri	ers—Cant	inued	
Rifle, self-propelled, full-tracked: multiple, 106-mm, M50	8.	102.5	84.
Tank, cambat, full tracked: 76-mm, M41, M41A1, M41A2,			1
and M41A3	21	126.	121.5
Tank, cambat, full tracked: 90-mm gun, M47	45	138.5	116.5
Tank, combat, full tracked: 90-mm gun, M48 and M48C	46	148.	128.
Tank, cambat, full tracked: 90-mm gun, M48A1	46	143.	123.5
Tank, combat, full tracked: 105-mm gun, M60 and M60A1	45	143	126.5
Tank, cambat, full tracked: 120-mm gun, M103 and			1
M103A1	57	148.	113.5
Tank, combat, full tracked: flamethrawer, M67A1	51	143.	123.5
Tank, cambat, full tracked: 90-mm gun, M48A2 w/dozer			
blade	54		
Carrier, persannel, full tracked: armared, MS9	18	128.5] 104.
Carrier, persannel, full tracked: armared, M75	17	112.	119.
Carrier, persannel, full tracked: armared, M113	9*	106.	79.5
Carrier, personnel, full tracked: armared M114A1	7	91.75	91.0
Recovery vehicle, full tracked: heavy, MS1	54	143.	129.
Recavery vehicle, full tracked: medium, M74	51	122.	133.5
Recovery vehicle, full tracked: light, armared, M578	25	124.	1 30.5
AVLB Launcher w/bridge falded M-48	60	158.	157
AVLB launcher w/bridge falder M-60	58	158.	159
Trailers			
Cally, trailer converter: 18-tan, 4-wheel, M199	4	114.75	59.
Semitrailer, law-bed: wrecker, 12-tan, 4-wheel M270 and			

8		
6		
7		
16		
6	l	
4		
	7 16	8 6 7 16 6 4

785-094 O-66-27

Namenclature	Class empty	Width inches	Height inches
Trailers Cantinued			
Trailer, carga: ¾-tan, 2-wheel, M101 Trailer, carga: 1½-tan, 2-wheel, M104, M104A1, and		72.	83.
M104A2	2	83.	99.1
Trailer, law-bed: guided missile, 7-tan, 4-wheel, XM529	6		
Pershing	L	L	
Carrier, missile equipment, full tracked: XM474E2	5		
Carrier, missile equipment, full tracked: XM474E2	5		

DIMENSIONS OF VEHICLES—Continued

* Class far crass cauntry.

APPENDIX III

FOREIGN CONVERSION FACTORS

r0	REIGN CONVERSION	FACIORS
Denom inations	Where used	American equivalents
Al mude	Partugal	4.422 gals.
Ardeb	Egypt	5.6188 bu.
Are	Metric	0.02471 acre.
Arr't'l ar li'ra	Partugal	1.0119 lbs.
Arraba	Argentine Republic	25.32 lbs.
Arraba	Brozil	32.38 lbs.
Arraba	Cuba	25.36 lbs.
Arraba	Paraguay	25.32 lbs.
Arraba	Venezuela	25.40 lbs.
Arraba (Ilquid)	Cuba, Spain and Venezuela	4.263 _B als.
Arshine	Russia	28 in.
Arshine (sq.)	Russia	5.44 sq. ft.
Artel	Maracca	1.12 bs.
Baril	Argentine Republic	20.077 _R als.
	and Mexica	20.0787 _R als.
Barrel	Malta (custams)	11.2 gals.
Berkavets	Russia	361.128 lbs.
Bangkal	Fed. Malay States	832 prains.
Bauw	Sumatra	7,096.5 sq. metrs.
Bu	Japan	0.12 inch.
Bushel	British Empire	1.03205 U.5. bu.
Ca ffisa	Malta	5.40 gals.
Candy	India (Bambay)	569 lbs.
Candy	India (Madras)	500 lbs.
Cantar	Egypt	99.05 lbs.
Cantor	Maracca	11 2 lbs.
Cantar	Turkey	124.45 lbs.
Cantara	Malta	175 lbs.
Cast, Metric	Metric	3.086 grains.
Catty	China	1.333 1/3 lbs.
Catty	Japan	1.32 lbs.
Catty	Java, Malacca	1.36 lbs.
Catty	Thailand	23⁄5 lbs.
Catty (stand)	Thailand	1.32 lbs.
Catty	Sumatra	2.12 lbs.
Centara	Central America	4.2631 gals.
Centner	Brunswick	117.5 lbs.
Centner	Bremen	127.5 lbs.

FOREIGN CONVERSION FACTORS—Continued

Oenom inatians	Where used	American equivalents
Centner	Oenmark, Narway	110.23 lbs.
Centner	Prussia	113.44 lbs.
Centner	Sweden	93.7 lbs.
Centner	Oauble ar metric	220.46 lbs.
Chetvert	Russia	5.957 bu.
Ch'ih	China	12.60 inches.
Ch'ih (metric)	China	1 meter.
Cha	Japan	2.4S1 acres.
Camb	England	4.1282 bu.
Cayan	Thailand	2,645.5 lbs.
Cuadra	Argentine Republic	4.2 acres.
Cuadra	Paraguay	94.70 yds.
Cuadra (sq.)	Paraguay	1.85 acres
Cuadra	Uruguay	1.82 acres.
Cubic meter	Metric	35.3 cu. ft.
Cwt. (hund. weight)	8ritish	112 lbs.
Oessiatine	Russia	2.6997 acres.
Fanega (dry)	Ecuadar, Salvadar	1.5745 bu.
Fanega	Chile	2.75268 bu.
Fanega	Guatemata, Spain	1.53 bu.
Fanega	Mexica	2.57716 bu.
Fanega (dauble)	Uruguay	7.776 bu.
Fanega (single)	Uruguay	3.888 bu.
Fanega	Venezuela	3.334 bu.
Fanega (liquid)	Spain	16 gals.
Feddan	Egypt	1.04 acres.
Frall (rais's)	Spain	50 lbs.
Frasca	Argentine Republic	2.5098 lig. gts.
Frasca	Mexico	2.S lig. gts.
Frasila	Zanzi bar	3S lbs.
Fuder	Luxemburg	264.18 gals.
Funt	Russia	0.9028 lb.
Gallan	British Empire	1.20094 U.S. gal.
Garnice	Paland	1.0567 gal.
Gram	Metric	15.432 grains.
Hectare	Metric	2.471 ocres.
Hectalitre: Ory	Metric	2.838 bu.
Hectalitre: Liquid	Metric	26.418 gals.

FOREIGN CONVERSION FACTORS—Continued

Denaminations	Where used	American equivalents
Jarib	Persia (New)	2.471 acres.
Jach	Austria (Germany)	1.422 acres.
Jach	Kungary	1.067 acres.
Ken	Japan	5.97 feet.
Kilagram kila	Metric	2.2046 ibs.
Kilametre	Metric	0.62137 mile.
Klafter	Austria (Germany)	2.074 yds.
Kaku	Japan	5.119 bu.
Kwam me	Japan	8.2673 lbs.
Last	Belgium, Netherlands	85.134 bu.
Last	England	82.56 bu.
Last	Germany	2 metric tons. (4.409 + lbs.).
Last	Prussia	112.29 bu.
Last	Scatland, Ireland	82.564 bu.
League (land)	Paraguay	4.633 acres.
U	China	1,890 ft.
Libra (lb.)	Argentine Republic	1.0128 lbs.
Li bra	Central America	1.014 lbs.
Libra	Chile	1.014 lbs.
Libra	Cuba	1.0143 lbs.
Libra	Mexica	1.01467 lbs.
Libra	Peru	1.0143 lbs.
Libra	Uruguay	1.0143 ibs.
Libra	Venezuela	1.0143 ibs.
Litre	Metric	1.0567 liq. qts.
Litre	Metric	0.90810 dry gts.
Livre (lb.)	Greece	1.1 lbs.
Livre	Guiana (Dutch)	1.089 lbs.
Laad, timber	England	50 cv. ft.
Lumber (std.)	in Europe	165 cu. ft., or 1,980 ft. b. m.
Manzana	Ni caragua	1.742 acres.
Manzana	Casta Rica, Salvadar	1.727 acres.
Marc	8alivia	0. 507 lb.
Maund	india	82 2-7 lbs.
Metre	Metric	39.37 inches.
Mil	Denmark	4.68 miles.
Mii (geagraphic)	0enmark	4.61 miles.
Milla	Ni caragua	1.1594 miles.

•

FOREIGN CONVERSION FACTORS -- Continued

FOREIGN	CONVERSION FACT	
Denominations	Where used	American equivalents
Milla	Handuras	1.1493 miles.
Mina (ald)	Greece	2.202 lbs.
Margen	Prussia	0.63 acre.
0ke	Egypt	2.8052 lbs.
Oke (Ocque)	Greece	2.82 lbs.
Oke	Turkey	2.828 lbs.
Pic	Egypt	22.83 inches.
Picul	Barnea and Celebes	135.64 lbs.
Picul	China	133½ lbs.
Picul	Java	136.16 lbs.
Picul	Philippine Republic	139.44 lbs.
Pie	Argentine Republic	0.94708 faat.
Pie	Spain	0.91416 faat.
Pik	Turkey	27.9 inches.
Paad	Russia	36.113 lbs.
Pund (1b)	Denmark	1.102 lbs.
Quart	British Empire	1.20094 lig. gt.
Quart	British Empire	1.03205 dry qt.
Quarter	Great Britain	8.256 bu.
Quintal	Argentine Republic	101.28 lbs.
Quintal	8razil	120.54 lbs.
Quintal	Castile, Peru	101.43 lbs.
Quintal	Chile	101.41 lbs.
Quintal	Mexica	101.47 lbs.
Quintal	Metric	220.46 lbs.
Rattle	lsrael	6.35 lbs.
Sack (flaur)	England	280 lbs.
Sagene	Russia	7 fest.
5alm	Malta	8.2 bu.
Se	Japan	0.02451 acro.
Seer	India	2 2-35 lbs.
Shaku	Japan	11.9303 inches.
Sha	Japan	1.91 liq. quarts.
Skalpund	Sweden	0.937 lbs.
Stane	8ritish	14. lbs.
Sun	Japan	1.193 inches.
Tael Kuping	China	575.64 grs. (tray).
Tan	Japan	0.25 acre.

FOREIGN CONVERSION FACTORS - Continued

Denominations	Where used	American equivalents
Tchetvert	Russia	S.96 bu.
Ta	Japan	2.05 pecks.
Tan	Space measure	40 cu. ft.
Tande cereals	0enmark	3.9480 bu.
Tande Land	0enmark	1.36 acres.
Tanne	France	2204.62 lbs.
Tsuba	Japan	35.58 sq. ft.
Tsun	China	1.26 inches.
Tunna (wheat)	Sweden	4.5 bu.
Tunnland	Sweden	1.22 acres.
Vara	Argentine Republic	34,0944 inches.
Vara	Casta Rica, Salvadar	32.913 inches.
Vara	Guatemata	32.909 inches.
Vara	Handuras	32.953 inches.
Vara	Nicaragua	33.057 inches.
Vara	Chile and Peru	32.913 inches,
Vara	Cuba	33.386 inches.
Vara	Mexica	32.992 inches.
Vedra	Russia	2.707 gals.
Verst	Russia	0.663 mile.
Vlaka	Poland	41.50 acres.
Wey	Scatland and Ireland	41.282 bu.

. .

INDEX

	0	D
A.L	Paragraphs 1 Oe	Page 13
Abatis	46	108
Abatis raadblack	40	24
Abutment demolitian	189	398
Adjusting artillery		370
Advanced demolition techniques	18	32
Airfields:		.
Arctic construction	122	244
Design	123	244
Hasty construction	120	240
Helicopters	124	244
Nomenclature	121	243
Stondards	119	240
Aluminum flaating faotbridge	62	128
Ancharage systems	61	1 28
Angles	174	350
Antennos	164	325
Antipersannel mines	250(2)	44
Antitonk ditch croter	13e	24
Antitank mines	25a(1)	44
Applicotian af equipment .	146	304
ARCE:		
French	67	139
Roft	75	147
Arctic construction	118	232
Artillery fire	189	398
Assault baats .	79	152
Attachments for rigging	133	284
AVLB	92	196
AVLB raft	77	149
		147
Bailey bridge	83	175
Bailey bridge classification	85	175
Bailey bridge canstruction	84	175
Barbed wire. (See Wire obstocles)		
Barbed wire ties	48	116
Batching of cancrete	103	213
Belt of log posts	46	108
Benching	206	34
vencondy	200	34

•

423

	Paragraphs	Page
Bending mament	169a	337
Bent capacities	81c	163
Bent design, piles	82d	171
Bituminaus material identification	117	231
Blasting baulders	21	35
Blasting trees and stumps	23	43
Black and tackle	130	277
Baard feet	170	339
Baats, engineer	79	152
Barehales	195	33
Braces far cancrete farms	95c(4)	201
Breaching charges	12	15
Breading farmula	125	15
Breading minefields	39	83
Breaching pavements	12f	18
Bridges:		
Aluminum faatbridge	62	128
ARCE — French	67	139
AVLB	92	196
Bailey	B3	175
Class 60 fixed spans	78	152
Class 60 flaating	65	135
Deck balk fixed spans	78	152
Faur rape	90	196
High pine	142	296
Light suspension	B8	194
Light tactical	63	131
Lag bridges	93	197
Marking	5B	123
Masanary arch	Bó	186
MFAB/F-U.S.	68	1 39
M4 flaating	64	131
M4T6 flaating	66	135
Reinfarced cancrete	B7	166
Sigers.	586	123
Three rape	B9	194
Timber trestle	80B2	154
Traffic cantral	58c	125
Truss bridge	91	196
Bridge recannaissance	125c	259
Bunkers	45	101
Bunker design	45c	103

e		07/
Coble	129	276
Comoutloge		45, 355
Comouflage nets.	179	355
Comouflage point	171	339
Copocities of posts ond piles	81 c	163
Copocity, productive of equipment'	150	308
Coution crossing	58c(5)	125
CBR:	(-)	
Decontominotion	156	319
Nucleor Preporting	157	319
Protection	154	319
Rodiologicol decontominotion	158	319
	155	319
Reporting		
Centerline stoker	110	220
Choins	129	276
Chorocteristics of explosives	5	2
Chorges:		
Breoching	12	15
Crotering	13	21
Pressure	11	14
Shoped	12g	18
Steel cutting	9	9
Timber cutting	10	11
Circle	174	350
Closs 60 flooting bridge	65	135
Closs 60 roft	73	145
	586, 59b	123, 126
Clossification signs	42	88
Cleoring fields of fire		
Cleoring minefields Clips ond clomps for rigging	40	85
Clips ond clomps for rigging	133	284
Code:	163	324
Emergency	163	324
Morse	160	320
Ponnel	162	320
Column form	96e	204
Compoction equipment.	148	304
Communications:		
Alphobet.	161	320
Antennos	164	325
Emergency code	163	324
Morse code	160	320
	103	320
Ponnel code	105	320

Cammunicatians—Cantinued	Paragraphs	Page
Radia lacatian	. 165	328
Cancrete:		
Batching	. 193	213
Braces		201
Bridge classification		188
Calumn farm	. 96e	204
Curing	105c	213
Design	100	209
Estimating valumes of materials	. 98 5	207
Estimatian		210
Excavatian	. 94	200
Farm design		203
Farming		200
Mix		207
Mix design	102	211
Mixer cleaning	106	214
Mixing	. 104	213
Mixing by hand	99	207
Obstacles, destruction	. 15	26
Placing		213
Pressure	966	203
Rate of placing		203
Sand and aggregate	. 97b	205
Sheathing	. 95d(1)	201
Shae plate	95c(5)	201
Slump	1005	209
Strength	97c	207
Studs	95d(2)	201
Stud spacing.	96c	203
Tie wires.	. 95c(7)	202
Wale spacing	96d	204
Walers	95d(3)	201
Water-cement ratia	. 100a	209
Yakes	95c(8)	202
Cancrete wall destruction		26
Canstructian:		
Arctic airfields	. 122	244
Hasty airfields	120	240
Roads in Arctic		232
Conversion:		305
English-Metric	188	397

Foctors Time-distonce Convoys	182 180 178 18 13 149 109	364 358 355 32 21 307 218
Coution Normol Risk Cube Culverts Curing of concrete	58(5) 58c(4) 58c(5) 174 116b 105c 174	125 125 125 353 224 213 353
Deodmen Decontominotion Decontominotion, rodiologicol Deliberote rood croter Demolitions. (See Explosives.)	132 156 158 135	280 319 319 21
Demolition sofety	5 140 123 100 102	2 293 244 209 211
Design requirements of roods Designotion of units	107 126 18 169	215 271 32 337
Dimensions of lumber Disinfection of woter Ditching: Alinement ond grade Conditions	167 22c 22o	337 332 38 38
Detanotion methods Looding methods Test shots	22d 22e 22b 50, 51 116	40 40 38 116, 118 224
Driftpine	171 149	339 307

	Paragraphs	Page
Elasticity	169	337
Electrical wiring	168	333
Emplacements, types	. 43	90
Enemy minefields	36, 37	81,82
Enemy minefields. (See minefields)		
Engineer stream crassing equipment	79	152
English-Metric canversian	184	364
Equipment:		
Application	146	304
Capacity	150	308
Campactian	148	304
Earth lifting	149	307
Graders	147	304
Productivity capacity	150	308
Praductian far scrapers	145	300
Rallers	148	304
Scrapers	144	298
Sheeps faat	148a	304
Tractars	143	298
Estimating cancrete	101	210
Estimating manpawer	166	332
Excavation for concrete	94	200
Excavatian, rads	20	34
Expedient paint	171	339
Expedient shaped charge	·~18	32
Explasives:		
Abatis	10e	13
Abutment demalitian	14	24
Advanced demalitian techniques	18	32
8lasting baulders	21	35
Blasting trees and stumps	23	43
8reading charges:	12	15
Farmula	125	15
Number of charges	12 d	16
Pavements	12 <i>f</i>	18
Shaped charges	12g	18
Concrete abstacles	15	26
Counter-force charge	18	32
Cratering charges	13	21
Deliberate raad crater	13Ь	21
Hasty raad crater	13 c	21

Relieved face crater	13 <i>d</i>	23
Antitank ditch	13e	24
Diamand charge	18	32
Ditching	22	38
Expedient shaped charge	18	32
Firing systems	6	2
Firing systems, ditching	22d	40
Minimum charges	18	32
Platter charge	18	32
Pressure charges	11	14
	116	14
Untamped	116	14
Cantinuaus spans	11e	14
Quarrying .	19	32
Railroad rail cutting	9c	9
Relative effectiveness	7	6
Ribban charge	18	32
Rock excavation	20	34
Raund aff rule	8	6
Saddle charge	18	32
Safety	5	2
Steel and lag abstacles	16	26
Steel cutting	.0	20
Timber cutting charges	10	ú
Wall destruction	17	26
Extinguishers	185	369
Languanda		00,
Facing revetment	44b	99
Factors, canversion	182	364
Factar "C" (tamping)	1 2b	15
Factar ''K'' (tamping)	126	15
Fasteners	171	339
Ferry reconnaissance	125g	268
Fields of fire	42	88
Fire	185	369
Fire, artillery	189	398
Firing systems, explasives	6	2
Fixed spans	78	152
Four strand cattle fence	55	120
Fard reconnaissance	125f	265
Farm calumn	96e	204

	Paragraphs	Page
Form design	96	203
Forming for concrete	95	200
Forms	95	200
Fartifications, priority of tastes	41	88
Foxholes	43	90
Functions of numbers	176	355
Garbage pits	1 5 3 b	314
Geometric figure	174	350
Gin pole	1 34	287
Gin pole construction	139	293
Grade stakes	114	223
Graders	147	304
Gravity, specific	181	358
Grease trap	153c	315
Guyline	141	296
Hasty road crater	1 3c	21
Helicopters	124	244
Highline	142	296
Highway bridge classification	81	157
Highway bridge design	82	168
Holdfast	131	278
Hooks	129	276
Knife rest	57b	121
Knots	128	276
Latrines	153a	314
Light tactical bridge	63	131
Light tactical raft	71	144
Log bridges	93	197
Log post abstacles	46	108
Low wire fence	54	120
Lumber, dimensions	169	337
M4 floating bridge	64	131
M4 raft	72	144
M4T6 flaating bridge	66	135
M4T6 raft	74	145
Marking of bridges	58	123
Marking of vehicles	59	126
Manpower estimates	166	332

Material starage valume estimatian 98b 207 Mathematics 175 353 Mechanical advantage af blacks 130 277 Metric canversian 188 397 MFAB/Ferry, U.S. 68, 76 139, 147 Mine detectian 38 82 Mine symbals 35 80 Mines: 35 80 Antitank 25a(1) 44 Antipersannel 25a(2) 44 Types 25 44 Minefields: 39 83 Clearing 39 83 Clarandfage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32a 64 Installatian 30 56 Lares 32a 64 Layaut 29 45 Logistical data 33 77 Mine symbals 35 80	Materials, strength	169	337
Mechanical advantage af blacks 130 277 Metric canversian 188 397 MFAB/Ferry, U.S. 68, 76 139, 147 Mine detectian 38 82 Mine symbals 35 80 Mines: 35 80 Antitank 25a(1) 44 Antipersannel 25a(2) 44 Training 25b 44 Types 25 44 Minefields: 39 83 Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Mine symbals 35 80 Pattern 29a 45 Recands, friendly 34b 80 Recards,		985	207
Mechanical advantage af blacks 130 277 Metric canversion 188 397 MFAB/Ferry, U.S. 68, 76 139, 147 Mine detectian 38 82 Mine symbals 35 80 Mines: 35 80 Antitank 25a(1) 44 Antipersannel 25a(2) 44 Training 25b 44 Types 25 44 Minefields: 39 83 Breaching 39 83 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Logistical data 33 77 Marking <td>Mathematics</td> <td>175</td> <td>353</td>	Mathematics	175	353
Metric canversian 188 397 MFAB/Ferry, U.S. 68, 76 139, 147 Mine detectian 38 82 Mine symbals 35 80 Mines: 35 80 Antitank 25a(1) 44 Antipersannel 25a(2) 44 Training 25b 44 Types 25 44 Mine fields:	Mechanical advantage of blacks	130	277
MFAB/Ferry, U.S. 68, 76 139, 147 Mine detectian 38 82 Mine symbals 35 80 Mines: 35 80 Antitank 25a(1) 44 Antipersannel 25a(2) 44 Training 25b 44 Minefields: 39 83 Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel		188	397
Mine detectian 38 82 Mine symbals 35 80 Mines: 35 80 Antitank 25a(1) 44 Antipersannel 25a(2) 44 Training 25b 44 Training 25b 44 Minefields: 39 83 Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32a 64 Installatian 30 56 Lares 32a 64 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Reparts, friendly 34a 77 </td <td></td> <td>68.76</td> <td>139, 147</td>		68.76	139, 147
Mine symbals 35 80 Mines: 25a(1) 44 Antipersannel 25a(2) 44 Antipersannel 25b 44 Types 25 44 Types 25 44 Minefields: 9 83 Carauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Pratectian af personnel 26 45 Recards, friendly 34a 77 Stiting 24b 44 Trapwires 29d	Mine detection		82
Mines: Antitank 25a(1) 44 Antipersannel 25a(2) 44 Antipersannel 25a(2) 44 Training 25b 44 Types 25 44 Minefields: 39 83 Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recands, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77		35	80
Antipersannel 25a(2) 44 Training 25b 44 Types 25 44 Minefields: 39 83 Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detection methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Recards, friendly 34b 80			
Training 25b 44 Types 25 44 Minefields: 39 83 Carauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recands, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Mine waylasive charges 18 32 Mixer cleaning<	Antitank	25a(1)	44
Training 25b 44 Types 25 44 Minefields: 39 83 Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recands, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Mine uexplasive	Antipersannel		44
Types 25 44 Minefields: 39 83 Breaching 39 83 Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recands, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Miner synket charges 18 <td></td> <td></td> <td>44</td>			44
Minefields: 39 83 Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recands, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Mine waplasive charges 18 32 Mixer (leaning) 106 214		25	44
Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detection methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recands, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 M			
Camauflage 27 45 Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detection methads 38 82 Gaps 32b 64 Installatian 30 56 Lares 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbols 35 80 Pattern 29a 45 Recards, friendly 34b 80 Recards, enemy fields 37b 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Mi	Breaching	39	83
Clearing 40 85 Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recards, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Minimum explasive charges 18 32 Mixer cleaning 106 214		27	45
Cluster numbering 29c 45 Data 24a 44 Detectian methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Protectian af personnel 26 45 Recands, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Minmum explasive charges 18 32 Mixer cleaning 106 214		40	85
Data 24a 44 Detection methads 38 82 Gaps 32b 64 Installatian 30 56 Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbols 35 80 Pattern 29a 45 Recards, friendly 36 81 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Sting 24b 44 Trapwires 29d 56 Types 24a 44 Minmum explasive charges 18 32 Mixer cleaning 106 214		29c	45
Detectian methads 38 82 Gaps 32b 64 Installation 30 56 Lanes 32a 64 Layaut 32a 64 Layaut 29 45 Lagistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recands, friendly 34b 80 Recards, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Minimum explasive charges 18 32 Mixer cleaning		24a	44
Installation3056Lanes32a64Layaut2945Logistical data3377Marking3159Mine symbals3580Pattern29a45Pratectian af personnel2645Recards, friendly34b80Recards, enemy fields37a82Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minum explasive charges1832Mixer cleaning106214		38	82
Installatian 30 56 Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recands, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, enemy fields 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Minum explasive charges 18 32 Mixer cleaning 106 214		326	64
Lanes 32a 64 Layaut 29 45 Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recanda; enemy fields 36 81 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Minum explasive charges 18 32 Mixer cleaning 106 214		30	56
Layaut2945Logistical data3377Marking3159Mine symbols3580Pattern29a45Pratectian af personnel2645Recands, friendly34b80Recards, enemy fields37a82Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minmum explasive charges1832Mixer cleaning106214		32a	64
Logistical data 33 77 Marking 31 59 Mine symbals 35 80 Pattern 29a 45 Pratectian af personnel 26 45 Recandissance 36 81 Recards, friendly 34b 80 Recards, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, enemy fields 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Minimum explasive charges 18 32 Mixer cleaning 106 214		29	45
Mine symbals3580Pattern29a45Pratectian af personnel2645Recannaissance3681Recards, friendly34b80Recards, enemy fields37b82Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minmum explasive charges1832Mixer cleaning106214		33	77
Mine symbals3580Pattern29a45Pratectian af personnel2645Recandaissance3681Recards, friendly34b80Recards, enemy fields37b82Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minmum explasive charges1832Mixer cleaning106214	Marking	31	59
Pattern29a45Pratectian af personnel2645Recannaissance3681Recards, friendly34b80Recards, enemy fields37b82Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minimum explasive charges1832Mixer cleaning106214		35	80
Pratectian af personnel2645Recanaissance3681Recards, friendly34b80Recards, enemy fields37b82Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minimum explasive charges1832Mixer cleaning106214		29a	45
Recannaissance 36 81 Recards, friendly 34b 80 Recards, enemy fields 37b 82 Reparts, enemy fields 37a 82 Reparts, enemy fields 37a 82 Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Minimum explasive charges 18 32 Mixer cleaning 106 214		26	45
Recards, friendly34b80Recards, enemy fields37b82Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minimum explasive charges1832Mixer cleaning106214	Recannaissance	36	81
Recards, enemy fields37b82Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minimum explasive charges1832Mixer cleaning106214		34b	80
Reparts, enemy fields37a82Reparts, friendly34a77Siting24b44Trapwires29d56Types24a44Minimum explasive charges1832Mixer cleaning106214		37ь	82
Reparts, friendly 34a 77 Siting 24b 44 Trapwires 29d 56 Types 24a 44 Minimum explasive charges 18 32 Mixer cleaning 106 214		37a	82
Trapwires 29d 56 Types 24a 44 Minimum explasive charges 18 32 Mixer cleaning 106 214		34a	77
Trapwires 29d 56 Types 24a 44 Minimum explasive charges 18 32 Mixer cleaning 106 214	Siting	24b	44
Types 24a 44 Minimum explasive charges 18 32 Mixer cleaning 106 214		29d	56
Minimum explasive charges 18 32 Mixer cleaning 106 214		24a	44
Mixer cleaning		18	32
		106	214
	Mixing cancrete by hand	99	207
Mixing af cancrete		104	213

•

Masonry arch classificatian Madular af elasticity Modulus, section. Mament, bending Mament check Mament design Marse Cade	Paragraphs 86 169 1699 81a, b 81a, b 82a, b 160 178	Page 186 337 337 157, 161 168, 169 320 355
Nails Nets, camauflage Nomenclature af airfields Narmal crassing Nuclear attack reporting Numbers, functians	171 179 121 58c(4) 157 176	339 355 243 125 319 355
Obstacles, impravised	46 113	108 223
Paint. Paint, camauflage Paint, expedient. Panji jungle trap Pannel cade Phanetic alphabet Picks Pile bent design Pile design charts Pile design charts Pile, drift. Placing cancrete Platter charge Partland cement concrete Partland cement charges	171 171 171 46 162 161 131 82d 81c 82d 82d 171 105 18 174 94-106 81c 11	339 339 339 108 320 278 171 163, 171 163, 171 171 171 171 339 213 32 350 200 163 14
Prism Praductian capacity af equipment Pratectian CBR Pratectian af persannel Pratective wire Purifying water	174 150 154 26 476 167	350 308 319 45 114 332

Quorrying:		
Amount of explosives	19c	34
Methods	19a	32
Snokehales.	196(2)	33
Spocing boreholes	196	33
Vertical hales	196(1)	33
Rodio antennas	164	325
Radio locotion	165	328
ARCE-French	75	147
ALVB raft	77	149
Closs 60 raft	73	145
Expedient, aluminum footbridge	70	141
Light tactical raft	71	144
M4 raft	72	144
M4T6 Raft	74	145
MFAB/Ferry-U.S.	76	147
Pawer and personnel	69	141
Roilroad rail cutting	9c	9
Rote of placing concrete	960	203
Reconnaissonce:	_	
Clossificatian formulo	1250(6)	252
Bridge	125c	259
Ferry	125g	268
Fard	125f	265
Report	125d	265
Route	125o	249
Symbols	126	271
Tunnel	125e	265
	125	249
Woter	125h	268
Woter supply	1251	271
Recards, minefield	346	80
Recovery of vehicles	184	364
Reinforced cancrete bridge	87	188
Relative effectiveness factor	7	6
Relieved face croter	13d	23
Reports, minefield	340	77
Report, reconnoissance	125d	265
Reporting CBR	155	319
Reporting nuclear ottock	157	319

.

434		
	Parogrophs	Page
Requirements, for woter	167	332
Revetments		91
Revetment, expedient		96
Ribbon charge		32
Rigging:		
Attachments	133	284
Boom derrick	140	293
Chains	129	276
Clips and clomps		284
Deadmen	132	280
Gin pole		287
Gin pole canstruction		293
Guy line	141	296
High line	142	296
Hooks		276
Knots		276
Mechonicol advantage	130	277
Pickets	131	278
-	129	276
		290
	135	287
Slings		288
Sling formulo		290
Sling load chort		125
		253
Rood recannaissonce	1230	203
Roads:	110	
Arctic construction	118	232
Bituminous moteriol identification		231
Centerline_staker		220
Cross sections		218
Culverts	1166	224
Design requirements		215
	116	224
Grade stoker		223
Hosty construction		304
Offset stoker	113	223
Shoulder stoker	111	222
Slope staker	112	222
Soils		224
Staker	110	220
Types		215
Rack excavotion	20	34

Rollers	148	304
Roofing	173	349
Ropes	129	276
Round off rules explosives	8	6
Route recannoissance types	125	249
Rules of thumb.	82c	170
Rules of thumb:		
Brocing	82c(3)	170
	82(2)	170
Curbs	82(7)	170
Flooring	82(5)	170
Foatings	82d(4)	170
Hondroil	82d(7)	170
Posts	82(1)	170
Sills	82(2)	170
Treod	82(6)	170
	02(0)	
Soddle chorge	18	32
Sofety-explosives	5	2
Sondbags	440(1)	95
Sanitation:		
Garboge pits	1536	314
Greose trap.	153c	315
Lotrines	1530	314
Showers	1526	313
Soakage pits	153c	315
Washing focilities	152	313
Scoop loader	149	307
Scrapers	144	298
Scroper production	145	300
Screws	171	339
Section modulus	1696	337
Shoped chorges	12g	18
Shorpened stokes	46	108
Shear	169	337
	138	
Shears		298
	810, b	157, 161
Shear design	820, b	168, 169
Sheathing for concrete forms	95d(1)	201
Sheepsfaot	148a	304
Shoe plote	95c(5)	201
Shoulder stokes	111	222

	Parogrophs	Poge
Signs, bridge	586	123
Signs, vehicle	596	126
Sling farmulo	136	288
Sling laad chort	137	290
Slings far rigging	135	287
Slope stakes	112	222
Slump	1006	209
Snakeholes	196(2)	33
Saakage pits	153c	315
Sad revetment	44a(2)	96
Sail bearing copocities	82c(4)	170
Sails testing	115	224
Sails, weight	183	364
Specific grovity	181	358
Sphere	174	350
Spiker	171	339
Staker for raads	110	220
Standards far Army airfields	119	240
Steel cutting charges	9	9
Steel and log abstacle destruction	16	26
Strength of materials.	169	337
Studs far concrete farms	95c(2)	201
Stud spocing	96c	203
Supplementory wire	- 47c	114
Suspension bridge design	88	194
Symbals for recannoissance	126	271
	470	114
Toctical wire	57d	121
Tanglefaat.	184	364
Tonk recovery		202
Tie wires for cancrete farms	95c(7) 170	339
	10	339
Timber cutting-explasives.	170	339
Timber, properties of	81	157
	82	168
Timber trestle design	8∡ 180	358
Time distance conversion	143	
Tractors	143 58c	298 125
Traffic cantral, bridges.	58c 174	
Trapezaid.		350
Training mínes	256	44
Trestle opron fence	57e	121

Trestle bent capacities	81c	163
Triangles.	174	350
Triganometric functions.	174	350
	29d, 57c	56, 125
Triple standord cancertina	52, 53	118
Troop Movements	178	355
Truss bridge clossification	91	196
Truck recovery	184	364
	125e	265
Types of roods	108	215
Unit designations .	126	271
Vehicle recovery	184	364
Verticol holes	196(1)	33
	.	
Wale spacing .	96d	204
Walls-bockfilled, destruction	17ь	30
Woshing facilities	152	313
Woter-cement ratio	100a	209
Water for concrete	95c(3)	201
Woter disinfection.	167	332
Woter flaw thraugh pipes	167	332
Water purification	167	332
Water Reconnaissonce	125h	268
Water requirements	167	332
Woter supply	125i	271
Weopons	177	355
Weights	181	358
Weights af soils	183	364
Wire obstacles:		
Cambinatian bonds	56	120
Dauble apran fence	, 50, 51	116, 118
Estimating wire requirements	47	114
Four strand cattle fence.	55	120
Joining cancertinos	536	119
Knife rest.	57b	121
Low wire fence	54	120
Protective wire	47Ь	114
Supplementary wire	47c	114
Supply ond lobar	47d	114
Tactical wire	47a	114
Tanglefoot	57d	121

Wire Obstacles—Continued	Porographs	Page
Trestle opron fence	57e	121
Triple standord concertina		118
Wire-ties		116
Wire-rope roadblock	46	108
Wire ties	48	116
Wiring, electricol	168	333
Yokes for concrete forms	95q(8)	202

•

By Order of the Secretory of the Army:

HAROLD K. JOHNSON, General, United States Army, Chief af Staff.

Official:

J. C. LAMBERT, Major General, United States Army,

The Adjutont General.

Distribution:

Active Army: DCSPER (2) ACSI (2) DCSLOG (2) DCSOPS (2) CORC (2) CRD (1) COA (1) CINFO (1) TIG (1) TJAG (1) CNGB (2) CofEngrs (2) USACDC Agcy (5) except USACDCEA (15) ARADCOM (2) ARADCOM Rgn (1) USCONARC (5) USACDC (2) OS Maj Comd (5) LOGCOMD (5) MDW (1)

Armies (5) Corps (3) Div (2) Div Arty (1) Engr Bde (10) Engr Gp (10) Inf BG (10) Engr Bn (10) Engr Ca (35) Engr Det/Teom (5) USATC (2) Svc Colleges (5) USMA (1) Br Svc Sch (5) except USAOC&S (40) USAAGS (10) USAAVNS (15) USASCS (65) USASWS (10) USACMLCS (15) USATSCH (20)

ة 440

Distribution—Continued

- USAECFB (2)
 USAERDL (6)

 PMS Sr Div Units (5)
 Army Hosp (1)

 AMS (2)
 USA Tml Comd (5)

 Engr Dist (5)
 Army Tml (5)
- NG: Stote AG (3); Units—some as Active.Army except ollowonce is one copy to each unit.

USAR: Units—same as Active Army except allowonce is one copy to each unit.

For explonation of abbreviations used, see AR 320-50.

U S GOVERNMENT PRINTING OFFICE 1966 OF-785-094

.

<u>.</u>

~

· • -

•

ţ

,

3000016574

l

Ł

• . ,

•

È

,

4

■ 読金を、

F F

,