

> -FM 5-34
$\left.\begin{array}{l}\text { Field Manual } \\ \text { No. 5-34 }\end{array}\right\}$

HEADQUARTERS
DEPARTMENT OF THE ARMY Washington, D.C., 30 December 1965

ENGINEER FIELD DATA

Paragraphs Page
10. ARMY AIRFIELDS AND HELIPORTS 119-124 240
11. RECONNAISSANCE 125-127 249
12. RIGGING 128-142 276
13. EQUIPMENT PRODUCTION 143-150 298
14. FIELD SANITATION 313
15. CHEMICAL, BIOLOGICAL, AND RADIOLOGICAL DATA 154-159 319
16. COMMUNICATIONS 160-165 320
17. ENGINEERING DATA 166-189 332
APPENDIX I. REFERENCES 410
II. DIMENSIONS OF VEHICLES 413
III. FOREIGN CONVERSION FACTORS 419
Index 423

$$
\stackrel{\rightharpoonup}{2}
$$

CHAPTER 1
 INTRODUCTION

Section I. Purpose and Scope

1. PURPOSE

This manual provides a convenient packet reference for afficers ond noncammissioned afficers at the plataan level. The continuing requirement of readily accessible field dota, when librory focilities ore not avoilable, will be fulfilled to a greot extent by this monual.

2. SCOPE

o. Content. This monuol contoins candensed dota on a wide variety of subjects pertinent to the field duties of engineer officers ond noncommissioned officers. Informotion is presented in tables, diagrams, formulos, written motter, and illustrotions.
b. Applicotion. The informotion in this manuol is applicable ta both nucleor and nannuclear warfare.
c. Camments. Users af this monuol are encouroged to submit camments ar recammendations for chonges to improve this monuol. Comments should be keyed to the specific poge, poragraph, and line of text in which the change is recommended. Reasans shauld be provided for eoch comment to insure understanding and praper evoluotion. Comments should be forworded directly to the Cammondant, U.S. Army Engineer Schaal, Fort Belvair, Virginio, 22060.

Sectian II. References

3. MANUALS

Pertinent monuols and ather military publicotions ore listed in oppendix 1 .

4. STANDARD AGREEMENTS

Infarmation in this manuol reflects, where apprapriate, North Atlontic Treoty Orgonizatian (NATO) agreements in the farm of standord ogreements.

CHAPTER 2
 EXPLOSIVES AND DEMOLITIONS

Section 1. General Informotion

5. CHARACTERISTICS OF EXPLOSIVES AND SAFETY

See toble 1 for the principol types of U.S. explosives commanly used for military purposes.

Note. Safery regulotions will be abserved in all situations ta the fullest extent permitted by time, by materials available, and by requirements af the mission.
a. Always hondle explosives carefully.
b. Responsibility for the preparotian, placement, or firing of chorges is never to be divided; ane person should be responsible ta supervise all phoses of a demolitian mission.
c. See table 2 for minimum sofe distances.
d. For further infarmotion, see AR 385-63.

6. FIRING SYSTEMS

Firing systems for explasives are illustroted in figure 1. A nonelectric detonoting assembly is shown in figure 2.

Table 1: Characteristics of Principal U.S. Explosives

Name	Principal usa	Smollest cop required for detonotian	Relotive effectiveness os externol chorge	Velacity of detonatian, fps	Value as crotering chorge	Intensity of poisonous fumes	Woter resistance	Pockoging
TNT	Main chorge, booster. chorge; culting and breoching chorge, generol and military use in forword oreas	Speciol blosting cop, electric or monelectric	1.00	21,000	Gaod	Oamarous	Excellent	$\begin{aligned} & \text { I Ib, } 50 \\ & \text { to box } \end{aligned}$
Tetrytol, M1, M2			1.20	23,000	Foir -	Dangerous	Excel- lent	$21 / 2 \mathrm{lb}$ blocks wooden box
Composition $\mathbf{C 3}$			1.34	$\cdots 26,000$	Excellent	Oongarous	Good	16 21/4-16 blocks in waoden box
Compasitian C4			. 1.34	$\cdot 26.000$	Excellent	Slight	Excel- lent	$\begin{aligned} & 2421 / 2-1 \mathrm{lb} \\ & \text { blocks in } \\ & \text {-wooden box } \end{aligned}$
Ammonium nitrote	Crotering ond ditching	Speciol blasting cop, electric or nonelectric	0.42	11,000	Excellont	Dongerous	Poor	40-1b thorge in motol can
M118 charge demolition	(Soe (-4)	(See (-4)	1.34	23,000	Poor	Slight	Excel. lent	$400,1 / 2 \mathrm{lb}$ sheets/ container
Militory dynomite MI	Quorrying stumping--ditching	(Soe (-4)	0.92	20,000	Gaod	Dangarous	Good	$\begin{aligned} & 1 / 2-\mathrm{fb} 100 \\ & \text { to box } \end{aligned}$

Table 1.-Continued

Name	Principal use	5 mallast cap required far delanation	Relative effectiveness as external charge	Velacity of detonofion, fps	Value as cratering charge	Intensity of paisonous fumes	Water resistance		ging
Straight $\mathbf{4 0 \%}$ dynamite 50% (Commercial) 60%	Land clearing, crotering, quarrying, and general use in rear areas, such as ditching and stumping.	Na. 6 cammercial cop, electric ar nonelectrit	$\begin{aligned} & 0.65 \\ & 0.79 \\ & 0.83 \end{aligned}$	11,600 15,000 18,200	Good	Dangerous	Poor Good Excel- lent	102 103 106	Sticks par 50 lb bax
Ammonia 40% dynomite 50% (Commercial) 60%			$\begin{aligned} & 0.41 \\ & 0.46 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 10,200 \\ & 11,000 \\ & 12,700 \end{aligned}$	Excellent	Dangeraus	Good Good Good	110 110 110	Sticks per 50 lb bax
40% Gelatin 50% dynamite 60%			$\begin{aligned} & 0.42 \\ & 0.47 \\ & 0.76 \end{aligned}$	$\begin{array}{r} 8,000 \\ 9,000 \\ 16,000 \end{array}$	Good Good Goad	Slight	Good Very Good Very Good	$\begin{aligned} & 130 \\ & 120 \\ & 110 \end{aligned}$	5ticks per 50 lb Bax
PETN	Detanating cord 8lasting rap	Special blasting cap, electric of nonelectric NA	1.00	21,000	HA	Slight	Good		
Terryl	Booster charge	Special blasting cap, electric or nanelectric	1.25	23,400	NA	Dangeraus	Excel- lent		

Table 1.-Continued

Mame	Principal Use	5mallest Coprequired far datonotion	Relotive effectiveness as ${ }^{-}$ externol charge	Velacity of detana. tion, fps	Value as cratering chorge	Intensity of poisonaus fumas	Woṭer restist. once	Pork aging
Composition B	Bangalare tarpedo	Special blosting cop, electric ar nanelectrit	$\begin{aligned} & 1.35 \\ & 1.17 \end{aligned}$	25,000	Gaod Excellent	Dangeraus Oangerous	Excel- lent Paar	Bulk
Amotal 80/20	-do-							
Black Powder	Jime blasting fuze	HA	0.55	1310 Max. 0epends on Confinement	fair	Oangerous	Poor	Bulk
Mitrostorch	Substitute for TNT	Speciol blosting cap, electric or nonelectric	0.80	15,000	Good	Oongeraus	Satisfoctory	1-lb blacks

Table 2. Minimum Safe Distance for Personnel in the Open

Pounds of ex- plosive	Safe distance in feet	Pounds of ex- plosive	Sofe distonce in feet	Pounds of ex- plosive	Sofe distonce in feet
$1-27$	900	46	1065	90	1344
28	910	48	1080	95	1365
30	930	50	1104	100	1400
32	951	55	1141	125	1500
34	965	60	1170	150	1600
36	990	65	1200	200	1750
38	1000	70	1225	300	2000
40	1020	75	1260	400	2200
42	1030	80	1290	500	2400
44	1050	85	1310		

NOTE. MINIMUM distonce for personnal in o missile-proof shelter is $\mathbf{3 0 0}$ feet. For charges over 500 lbs, use

$$
\text { Distonce }=300 \sqrt[3]{\text { Pounds of explosives }}
$$

7. RELATIVE EFFECTIVENESS FACTOR

a. The formulas given in paragraphs 9 through 14 give the weight of explosive required for o demolition task (P), in pounds of TNT.
b. For externol chorges only, where a type of explosive other thon TNT is used, the correct weight of explosive is abtained by dividing P by the relative effectiveness factor for the explosive used. See toble 1, column 4.
c. Example. For a steel cutting chorge, P is found to be 21 lbs of TNT. Composition $\mathrm{C}-4$ is to be used. Therefore, the correct weight of $\mathrm{C}-4$ required is $21 \div 1.34=15.7 \mathrm{lbs}$ of $\mathrm{C}-4$. Use 16 lbs of $\mathrm{C}-4$.
d. This adjustment is not used for internal chorges or rules of thumb.
e. For further details see FM 5-25.

8. ROUNDING-OFF RULE

a. When using explosives alwoys ottempt to use the omount calculated. However, at times it may be difficult to use the exact omount calculated due to the size of the explosive pockage. Use the amount

COMgBation pual fring frtitu
Figure 1. Firing systems for explosives.

Figure 2. Nonelectric detanating ossembly.
of explosive os close to the calculoted amount os possible, but never use less thon the colculoted omount. Some explosives like C-4 and M118 con be cut to the desired omount, while with other types the ability to size explosives is limited.
b. For chorges colculoted by formulo, use the following round-off steps:
(1) Coiculote ane (1) charge for TNT using a demalitian farmula to of leost two decimols.
(2) Use the relative effectiveness factor, if required.
(3) Round aff answer for one chorge to next package size or pound.
(4) Multiply onswer for one chorge by the number af chorges te obtain the totol explasives required.

Sectian II. Calculatian af Charges

9. Steel cutting charges

a. Farmula for Structural Steel Sectians. This is the type af steel used in buildings, bridges, and ather steel structures. The fallawing farmula is applicable ta this steel (such as I-beams, girders, and plates) except slender bars af 2-inch diameter ar less:
$P=3 / 8 \mathrm{~A}$ where $P=$ paunds af TNT required and
$A=$ crass sectianal area, in square inches, of the steel member ta be cut.
b. Farmula far Other Steel Sectians. The fallawing farmula is recammended far use with all high-carban steel, allay steel, armar plate, strang fargings, machine parts, cables, chains, and high-strength taals. It is alsa recammended far structural steel rads and bars af $\mathbf{2}$-inch diameter ar less:
$P=D^{2} \quad$ where $P=$ pounds of TNT and
$D=$ diameter, in inches, af sectian ta be cut, ar the smallest crass sectian dimensian.
c. Railraad Rails. The size af a railraad rail is expressed by the weight af 1 yard af rail: an 80 -paund rail weighs 80 paunds per yard. Ta cut this size rail, $1 / 2$ paund af TNT is set against its web. Far a heavier rail, use 1 paund af TNT. (As a rule of thumb, a rail aver 5 inches high weighs mare than 80 paunds per yard.)
d. Example:
(1) Calculate the amaunt af TNT required to cut the steel wideflange section (fig. 3).

Calculatian: $P=3 / 3$ (See a abave)
Area in flanges $=2 \times 1 / 2 \mathrm{in} . \times 5 \mathrm{in} .=5 \mathrm{sq}$. in.
Area in web $=3 / 8 \mathrm{in} . \times 11 \mathrm{in} .=41 / 8 \mathrm{sq}$. in.
Tatal area $=91 / 8$ sq. in.
$P=1 / 2$
$P=1 / 8 \times 91 / 8=3.42$, therefare, use 4 lbs . TNT
(2) Plastic explasive is best suited far cutting steel. Haw much campasition $C-4$ explasive is required ta cut the wide-flange sectian shawn in figure 3? Since the amaunt af TNT required is $\mathbf{3 . 4 2}$ paunds and campositian $\mathrm{C}-4$ has a relative effectiveness factar af 1.34 (calumn 4 af table 1), the amaunt af $C-4=\frac{3.42}{1.34}=2.55$ paunds. Use 3 paunds of C-4.

Figure 3. Wide flonge section.
e. Example. How much TNT is required to cut the steel choin in figure 4?
Colculotion: $P=D^{2}$
$P=1$ in. $\times 1$ in.
$P=1 \mathrm{lb}$ of TNT
Use 1 pound of
TNT of A ond 1 pound of B to destroy the choin link.
f. Toble. See toble 3 for omount of TNT required to cut different rectongulor steel sections.

10. TIMBER-CUTTING CHARGES

o. Requirements. Different types of timber in various localities require vorying omounts of explosive to cut them. Test shots should be mode to determine the specific omount of explosive required for o specific type of timber.

Figure 4. Steel chain.

Table 3. Culting Charges For Rectangular Steel Section

Thickness of Section in Inches	Pounds of TNT $P=1 / 8 A$, Structural Steel												
	Width of Section in Inches												
	2	3	4	5	6	8	10	12	14	16	18	20	24
$1 / 4$. 2	. 3	. 4	. 5	. 6	. 8	1.0	1.2	1.3	1.5	1.7	1.9	2.3
3/8	. 3	. 5	. 6	. 7	. 9	1.2	1.4	1.7	2.0	2.3	2.6	2.8	3.4
$1 / 2$. 4	. 6	. 8	1.0	1.2	1.5	1.9	2.3	2.7	3.0	3.4	3.8	4.5
5/8	. 5	. 7	1.0	1.2	1.4	1.9	2.4	2.9	3.3	3.8	4.3	4.7	5.7
$3 / 4$. 6	. 9	1.2	1.4	1.7	2.3	2.8	3.4	4.0	4.5	5.1	5.7	6.8
\%	. 7	1.0	1.4	1.7	2.0	2.7	3.3	4.0	4.6	5.3	6.0	6.6	7.9
1	. 8	1.2	1.5	1.9	2.3	3.0	3.8	4.5	5.3	6.0	6.8	7.5	9.0

Ta use table:

1. Measure redangular sections af member seporately.
2. Using toble, find charge far eoch sectian.
3. Add charges for setians ta find tatal charge.
4. Hever use less than calculated charge.
5. If dimension is nat in the table, use next higher dimensien.
b. Far Untamped External Charges. Ta cut trees, piles, pasts, beams, ar ather timber, the fallawing farmula gives a test shat.
$P=\frac{D^{2}}{40}$ where $P=$ paunds af TNT required and

$$
\mathrm{D}=\text { diameter af timber in inches }
$$

Far ather explasives, adjustments for P are made accarding ta paragraph 7.
c. Far Tamped Internal Charges. The fallawing farmula gives a test shat:
$P=\frac{D^{2}}{250}$ where $P=$ paunds af any type explasive and
$\mathrm{D}=$ diameter ar least crass sectianal dimensian in inches af dressed timber.
d. Table. Use table 4 as a guide far bath internal and external timber cutting test charges.
e. Far Cutting Trees ta Create on Obstacle. Ta cut trees and leave them attached ta their stumps, the fallowing farmula gives a test shot.
$P=\frac{D^{2}}{50}$ where $P=$ paunds af TNT needed far external charges and
$D=$ diameter af timber in inches
Far ather explasives, adjustments are made accarding ta paragraph 7.
f. Placement. See figure 5 far placement af charges.

Figure 5. Placement af charges.

Table 4. Timber Cutting Test Shot Chorges

Type of Charge	Explosive	Least dimension of timber in inches									
		6	8	10	12	15	18	21	24	30	36
		Pounds of explosive									
Internal	Any	$1 / 2$	$1 / 2$	1/2	1	1	11/2	2	21/2	4	6
External	TMT	1	2	21/2	4	6	$81 / 2$	111/2	141/2	221/2	321/2
Abalis External	NT	1	11/2	2	3	41/2	61/2	9	111/2	18	26

11. PRESSURE CHARGES

a. Use. Pressure charges ore effective ogainst simple span, reinforced concrete T-beam bridges.
b. For Tamped Pressure Charges. Use the following formulo: $\mathbf{P}=3 \mathbf{H}^{\mathbf{2}} \mathbf{T}$ where $\mathbf{P}=$ pounds of TNT required for eoch stringer $\mathrm{H}=$ height of stringer (including thickness of roadwoy) in feet, ond
$T=$ thickness of stringer in feet.
If H and T are not whole numbers, round them off to the next higher quarter-foot dimension. Neither is ever considered to be less thon 1 in the formula. A minimum of 10 inches of tomping surrounding the chorge is required. For other explosives, odjustments are made accarding to paragraph 7.
c. For Unłamped Pressure Charges. Increase the calculated value of P by one-third in the formula, (b obove), if the pressure chorge is not tamped.
d. Example. How much TNT is required to destroy the bridge spon in figure 6? The omount is colculoted in figure 6.
e. Continuous Bridge Spans. For concrete stringer bridges of continuaus spons, chorges are calculoted by the breoching formulo (paro 12b). Charges should be so ploced and colculoted to insure thot the breaching rodius or rodii will cause o complete severonce of the cross concrete section. The steel probobly will not be cut by the explosion.

figure 6. Colculation and plocement of pressure chorges.
f. Toble. Use toble 5 for colculation of pressure chorges far simple spon reinfarced cancrete T-beams.

12. BREACHING CHARGES

o. Use. Breoching charges have their most impartant use in the destruction of bridge piers, bridge obutments, ond field fortificotions of o permanent type, or in breaching wolls and blowing holes in concrete slabs or roodways.
b. Formula. $P=R^{3} K C$
where $P=$ pounds of TNT required
$R=$ breaching radius in feet, to neorest highest $1 / 2$ foot increment
$K=$ moterial foctar (toble 6) which indicates strength ond hordness of materiol to be demolished. (When it is not known whether or not concrete is reinfarced, it is assumed ta be reinforced.)
$\mathrm{C}=$ tamping foctor (fig. 7).
NOTE. Ta breach walls 1 faat thick and under, increase the tatal calculated charge by 50 percent. Add 10 percent for charges under 50 paunds. Far external charges, use at least 5 pounds for reinfarced concrete and at least 3 pounds for dense concrete.
785-094 O-66-2

Table 5. Taimped Pressure Charges -Increose by $1 / 3$ if Untamped

Height of Beam in Feet	Pounds of TNT for Eoch Beam (Tomped Chorges)								
	Thickness of Beam in Feet								
	1	11/4	13/2	14/	2	21/4	2h	21/4	3
	12 in .	15 in.	18 in.	21 in .	24 in.	27 in.	30 in.	$33 \mathrm{in}$.	36 in .
1 (12 in.)	3								
$11 / 4$ (15 in.)	5	6							
$1 / 8$ (18 in.)	7	9	11						
$13 / 4$ (21 in.)	10	12	14	16					
2 (24in.)	12	15	18	21	24				
21/4 (27 in.)	16	19	23	27	31	35			
24.38 in .)	19	24	29	33	38	43	47		
24, (33 in.)	23	29	34	40	46	51	57	63	
3 (36 in.)	27	34	41	48	54	81	68	75	81
31/4 (39 in.)	32	40	48	56	64	72	80	88	95
3/2 (42 in.)	37	46	56	65	74	83	92	101	111
3\% (45 in.)	43	53	64	74	85	95	106	116	127
4 (48 in.)	48	60	72	84	96	108	120	132	144
4//4 (51 in.)	55	68	82	95	109	122	136	149	163
4/2\% (54 in.)	61	76	92	107	122	137	152	169	183
4\% (57 in .)	68	85	102	119	136	153	170	187	203
5 (60 in .)	75	94	113	132	150	169	188	207	225

c. Tobles. For reinforced cancrete breaching, see table 7. See toble 8 for the breoching of masonry items other than reinforced concrete.
d. Number of Chorges. To demolish o pier, slob, or woll, use this formulo:

$$
\begin{aligned}
N=\frac{W}{2 R} \text { where } N & =\text { number of charges, } \\
W & =\text { width of pier, slab, or woll, in feet, and } \\
R & =\text { breoching radius in feet. }
\end{aligned}
$$

Table 6. Values of Material Factor K far Use in Calculating Breaching Charges

Moterial	R (braoching radius)*	K
Ordinary earth	All values	0.05
Poor masonry, shale, and hardpan, good timber and earth construction	All values	0.23
Good masonry, ordinary concrete, rock	Less than 3 ft 3 ft to less than 5 ft 5 ft to less than 7 ft 7 ft or more	$\begin{array}{r} 0.35 \\ .28 \\ .25 \\ .23 \end{array}$
Dense concrete, first-class masonfy	Less than 3 ft 3 ft to less than 5 ft 5 ft to less than 7 ft 7 ft or more	$\begin{array}{r} 0.45 \\ .38 \\ .33 \\ .28 \end{array}$
Reinforced concrete (for concrete only; will not cut reinfarcing steel)	Less than 3 ft 3 ft to less than 5 ft 5 ft to less than 7 ft 7 ft or more	$\begin{array}{r} 0.70 \\ .55 \\ .50 \\ .43 \end{array}$

*Distance (in feet) from the explosive, within which all material is displaced or destroyad. For extemal charges, the thickness of the mass to be breached may be taken. For intemal charges, toke one-half of thickness af mass to be breached if charge is placed midway into mass. If hales are drilled less than halfway inta mass, the breaching radius is the longer distance from center of drill hole to outside of moss, e.g., to breach 4 -foot wall by internal charge placed I foot into mass; breaching radius is 3 feet.

NOTE: FOR WATER, IF THE BREACHING RADIUS IS GREATER THAN
THE DEPTH OF WATER USE 2.5: IF EQUAL TO OR LESS USE 1.25
Figure 7. Values of tamping factor "C."

When the calculated value of \mathbf{N} contoins a fraction less than $1 / 2$, the froction is disregorded; if $1 / 2$ or more, round off to next higher figure. Exception: in N volues between 1 ond 2, fractions. less than $1 / 4$ ore disregorded; $1 / 4$ or more is rounded off to whole number of 2.
e. Exomples.
(1) Find the size and number of TNT chorges required to breach a reinforced concrete wall thot is 25 feet long ond 4 feet thick. Use externol chorges placed at ground level and untamped.

Size of charges:

$$
\begin{aligned}
& P=R^{3} K C, \quad R=4, \quad K=.55, \quad C=4.5 \\
& P=(4)^{7} \times(.55) \times(4.5)=158.4 \text { pounds, use } 159 \text { pounds of TNT }
\end{aligned}
$$

Number of chorges:

$$
N=\frac{W}{2 R} \quad W=25, \quad R=4
$$

$$
N=\frac{25}{(2)(4)}=31 / 8 \quad \text { Use } 3 \text { chorges. }
$$

(2) A timber ond earth wall $61 / 2$ feet thick ond an explosive chorge ploced of the base of the woll without tamping. The conversion factor is 0.5 (toble 8). If this wall were made of reinforced concrete, 618 pounds of TNT would be required to breach it (table 7). Multiply 618 pounds of TNT by 0.5 ond the result is 309 pounds of TNT required to breoch the woll.
f. Breaching Hord-Surfoce Povements.
(1) A hord-surface povement is breoched so thot holes can be dug for crotering chorges. Use a l-pound chorge of explósives for each 2 inches of povement thickness, with tomping twice os thick as the povement.
(2) Povement moy be breached by chorges ploced in boreholes drilled or blasted through the povement. A shoped chorge readily blosts o smoll diometer borehole through the povement and into the subgrode. Concrete should not be breached of an expansion joint becouse the concrete will then shotter on only one side of the joint.
g. Shaped Chorges. Table 9 shows the size of boreholes obtoined by using the stondord shaped charges.

Table 7. Breaching Charges, Reinforced Concrete Only

NOTES:

1. 10% HAS BEEN ADDED TO THE TABLE FOR CHARGES LESS THAN 50 LBS

2 FOR BEST RESULTS PLACE CHARGE IN SHAPE OF A SQUARE
3 FOR THICKNESS OF CONCRETE OF 4° OR LESS USE CHARGE THICKNESS OF 2° (ONE BLOCR THICK 1 , OVER 4° THICK USE CHARGE THICKNESS OF 4^{*} \{ONE HAYERSACK OF TETRYTOI OR PLASTIC).

TO USE TABLE:

1. MEASURE THICKNESS OF CONCRETE.
2. DECIDE HOW YOU WILL PLACE THE CHARGE AGAINST THE CONCRETE. COMPARE YOUR METHOD OF PLACEMENT WITM THE DIAGRAMS AT THE TOP OF THE PAGE IF THERE IS ANY QUESTION AS TO WHICH COLUMN TO USE, ALWAYS USE THE COLUMN THAT WILI GIVE YOU THE GREATER AMOUNT OF TNT.
-FOR OTMER TYPES OF CONSTRUCTION, SEE TABLE 8

Table 8. Breaching Charges far Material Other Than Reinfarced Cancrete*

Canversian Factars Far Material Other Than Reinfarced Cancrete

Earth	Ordinary Masanry, Hard- pan Shale, Ordinary Cancrete, Raak, Gaad Timber and Earth Canstructian	Dense Cancrete First Class Masanry
0.1	0.5	0.7

Ta use table:

1. Determine the type af material in the abject yau plan ta destray if in daubt, assume the material ta be af the stranger type -e.g. Unless yau knaw differently, assume cancrete ta be reinfarced.
2. Using the abave table, determine the apprapriate canversian factar.
3. Using table 7, determine the amaunt af explasive that wauld be required if the abject were made of reinfarced cancrete.
4. Multiply the number af paunds af explasives (fram table 7) by the canversian factar fram the table abave.

Example:

A timber and earth wall $61 / 2 \mathrm{ft}$. thick and an explasive charge placed of the base af the wall withaut tamping. The canversian factar is 0.5 (see table above). If this wall were made af reinfarced cancrete, 618 lbs af TNT wauld be required ta breach it (see table 7).

Multiply 618 lbs of TNT by 0.5 and the result is 309 lbs of TNT required ta breach it.

- For reinforced concrete see toble 7.

Toble 9. Sizes of Barehales Produced By Shaped Charges

Materiol	Informatian needed		M3 (40.16) shoped chorge	M2A3 (15-1b) shoped chorge
Re. inforced concrate	Moximum woil thickness which can be perforated Depth of penetration in thick walls		60 in 60 in	36 in 30 in
	Diemeter of hole	Entrance Avoroge Minimum	5 in $3 k$ in $2 \2 in	$3 / 2$ in 2 ${ }^{3}$ in 2 in
	Dopth of hoio with second chorge ploced over first hole		84 in	45 in
Armor. pleto	Perforotion Averoge diameter of hole		At leost 20 in $2 K_{2}$ in	$\begin{aligned} & 12 \text { in } \\ & 1 / 2 \mathrm{in} \end{aligned}$
Permo. Host	Dopth of hole with 50 -in standoff Depth of hoie with 30 -in stondoff Depth of hole with 42 -in standoff Diometer of holo with overage (30 in) standoff Diameter of hole with 50 -in standoff Diameter of hoie with normol standeff		72 in NA NA NA 8 to 5 $26-30$ to 7 in	NA 72 in 60 in 6 to $1 / 2 \mathrm{in}$ NA $26-30$ to 4 in
lee	Depth with ovarage (42 in) stondaff Diameter with overoge (42 in) stondoff		$\begin{gathered} 12 \mathrm{tt} \\ 6 \end{gathered}$	7 f $31 / 2$ in

13. CRATERING CHARGES

a. Requirements. Rood croters, to be effective obstacles, must be too wide for spanning by trock-loying vehicles ond too deep and steep-sided far any vehicle to pass through them. They must alsa be large enaugh to tie inta natural or manmode abstacles ot each end. Antitank ond antipersannel mines are often placed of the site to hamper repair operations and thus increase the effectiveness of the croter. Rood croters angled at about 45° to the roadway are more effective abstacles thon croters blasted perpendicular ta the roadway.
b. Deliberate Road Crater. See figure 8.
c. Hosty Rood Crater. Hasty road craters blasted with barehales less than 5 feet deep and loaded with less than $\mathbf{5 0 - 1 b}$ explasive charges

Figure 8. Placement af charges far deliberate raad crater.
Holes of equal depth,
spoced at 5 -foot intervols. Use 10 -pounds of explosives per foot of depth. Resulting croter depth approx. $1 / 2$ times depth of boreholes. Width approx. 5

Figure 9. Placement of charges for hasty raad crater.
are ineffective against madern tanks. Far placement and size af charges see figure 9.
d. Relieved Face Crater. Crater will be appraximately 7 leet deep and 30 feet wide. Instantcneous delay caps must be used ta get desired delay detanatian. The greatest impravement aver the ather types of craters is the resulting trapezaidal shape. Far replacement and size of charge, see figure 10.

Figure 10. Relieved face crater.
e. Antitank Ditch Cratering. In open country, ontitank ditches are constructed to strengthen prepared defensive positions. As they are costly in time and effort, much is gained if the excavotion can be made by means of the cratering methods described above. To be effective, an antitank ditch must be wide enough and deep enough to stap an enemy tank. It may be improved by placing a log hurdle an the enemy side, by placing the spoils in the friendly side, and by digging the face in the friendly side vertical.
f. Rules of Thumb.
(1) To ensure against misfires, all ammonium nitrate cratering chorges must have an additional primer, a ane-pound charge placed on tap af each can and incarporated inta a dual firing system (figs. 1 and 2).
(2) Rule of thumb for number af holes:

$$
N=\frac{L-11}{5}
$$

Where L is the total length of the blawn crater.

14. BRIDGĖ ABUTMENT DEMOLITION

Plocing charges in the fill behind an abutment is economical in explosives and conceols the chorges fram the enemy.
o. Abutments 5 Feet Thick or Less and 20 Feet or Less in Height. See figure 11 for details.
b. Abutments More Than 5 Feet Thick and 20 Feet ar Less in Height. Place breaching charges in contact with rear face af abutment (fig. 12). Calculote the size and number of charges by the farmulo in figure 12. Charges are placed at a depth greater than or equal to R. The spocing between charges and number of charges are determined by the calculations explained in paragraph 12.
c. Abutments Over 20 Feet High. Place a combination af extemal breaching charges (along bottom of the river face of the abufment) ond fill chorges (behind the abutment) to destroy abutments more than 20 feet high. Fire them simultoneously. The fill chorges may be calculoted according to:paragraph $1 \mathbf{2 b}$, or placed as in figure 11 , depending on the thickness of the abutment.

Beginning 5 foet in from the side of the road, place 40 -pound cratering charges in hales 5 feot deop, 5 feet an centers and 5 fo of behind the river foce of the abutment.

Formula: $N=\frac{W}{5}-1$
where $N=$ no. barehales
W a width of abutment

Figure 11. Charge placed in the fill behind a reinfarced concrete abutment less than 5 feet thick and 20 feet ar less in height.

$$
P=R^{3} K C
$$

where $R=$ obutment thickness
$K=$ material factor
$C=$ tamping toctar

Number af Chorges Formula;

$$
N=\frac{W}{2 R}
$$

(This formula may alsa be used

Figure 12. Charges in a fill behind a reinforced cancrate abutment mare than 5 feet thick and 20 feet ar less in height.

Section III. Destruction of Obstacles

15. CONCRETE OBSTACLES

o. Smoll Obstocles. Far smoll obstocles ($100 \mathrm{ft}^{3}$ or less), such as those found on beoches, use hond-ploced chorges. As shown in figure 13, use 1 pound of militory explosive, tetrytol or greoter, per cubic foot of reinforced cancrete.
b. Lorge Obstocles. For lorge obstacles (greoter thon $100 \mathrm{ff}^{3}$), use breoching, formulo or bar or costle chorge (fig. 14) accarding to the size of the chorge.

16. STEEL AND LOG OBSTACLES

o. Plocement. The illustrotions in figure 15 show severol obstocles and the plocement and sizes af chorges to destroy or cut them.
b. Chorges for Log Obstocles. Generally, the chorge should be ploced of o joint where the obstocle is weakest. Against log cribs, ploce 30 to 40 pounds of explosives in the center of the earth fill twothirds the depth of the crib and tomp thoroughly. Similor chorges ore ploced on 8 -foot centers for the full length of wooden posts. Log scoffolding (often under woter) is destroyed by tying three 15 -foot lengths of bongalare torpedo together and plocing them of right ongles to the line of scaffolding. This cleors o lone 12 feet wide. Chorges ploced an obstocles driven inta the ground should be ottoched below ar as close to the surface of the ground os passible.

17. WALLS

a. Concrete Walls Not Backfilled. On wolls up to 6 feet high ond 6 feet thick, use 160 pounds of explosive per foot of thickness. For lorger wolls, odd 80 pounds af explosive for eoch additianal foot of height ond thickness. Exomple: For o woll 8 feet thick ond 10 feet high, $(6 \times 160)+(4 \times 80)+(2 \times 80)=1,440$ pounds. The positions, omounts, ond potterns of chorges are shown in figure 14.

NOTE : SATCHEL CHARGES ARE USED TO DESTROY THESE OBSTACLES. IN COMPUTING THE NUMBER OF SATCHELS REQUIRED, ROUND UP TO THE NEXT FULL 2OLB. SATCHEL.

Figure 13. Explosive packs needed to destroy typical small concrete abstacles.

(1) CHARGE: 1000 LB.

(2) CHARGE: GREATER THAN 1000 LB.

Figure 14. Placement of charges for a wall 6 feet thick and for a wall aver 6 feet thick.

Figure 15. Plocement of chorges for destruction of steel and \log obstacles.
b. Bockfilled Wolls.
(1) Cancrete. Increase by 20 percent the charges specified for wolls nat bockfilled. On same wolls, where this may not be enough, use a second shot or cleor with dozers or hand labor.
(2) Lags. Ploce a 500 -paund chorge 10 feet long an top of the woll 2 feet from the face (fig. 16).

Figure 16. Breaching o bockfilled log woll.

Figure 17. Advanced demolition technıques.

18. MINIMUM EXPLOSIVE CHARGES

The demalition techniques shown in figure 17 provide the desired results with a minimum of explosives. These techniques are not intended ta replace canventional formulas. The diomand, soddle, and ribban charges ore used an structural steel and similor moteriols. Use C-4 os the explosive in these chorges ond the improvised shoped charge.

Sectian IV. Constructive Uses of Explosives

19. QUARRYING

a. Methods. Military quarries con be developed as either single or multiple benches. The methad is determined by the drilling depth capability of the equipment available. Figure 18 shows a multiple bench quarry.

Figure 18: Multiple-bench quorry.
b. Spacing Barehales. There is a relatianship between the burden, which is the distonce from ;he raw of borehales to the face, measured ot the battam of the foce (fig. 19), and the spacing af barehales in o row. This spocing olso deperds upan the type af borehales, of which there are twa-
(1) Vertical holes. The depth of verticol hales is limited by depth af rock, the length of drill, ond drilling equipment. Spocing is equal to, or o little more thon, the burden. When several rows are drilled in preporotian far instantaneaus blosting, the burden af the rear rows is 10 percent less than the burden of the frant row (fig. 19).

$$
\begin{gathered}
\text { (PLAN) } \\
B=\text { BURDEN }
\end{gathered}
$$

Figure 19. Arronging porallel rows of vertical borehales.
(2) Snokeholes. Drill at bose of quorry foce and begin from 2 ta 4 feet obove the flaor. Slope eoch hale downword of the some angle so thot the end af the hale is level with the quorry floar. Burden will equal ane-holf the height of foce, with spacing between 8 and 10 feet (fig. 20). Snokehales are sprung by drilling to the desired depth, then firing a small charge of the bottom of the borehale ta form o chamber in which the lorger chorge is ploced. The omaunt of explasives ar initiol ond successive springing must be determined by test.
c. Amount of Explosives. An approximate amount of explosives per foot of borehole is shown in table 10 for vertical holes ond in table 11 for snoke holes.

20. ROCK EXCAVATION

a. Overburden. After the loyout has been decided upon, the work of removing the overburden should be started os soon as possible.
b. Blosting.
(1) Drill holes. Use drill holes to bring through cuts or sidehill cuts to grade with one shot by drilling ahead of power shovel. When the whole cut connot be blosted of once, drill boreholes 100 to 150 feet ohead of the shovel and blost four or five rows at a time (fig. 21).
(2) Snakeholes. Use snokeholes to widen cuts (fig. 20). Drill them on 5 -foot centers and wherever possible fire them simultaneously.
c. Explosive Chorge. Determine weight of explosive charge required per borehole by test shots. Table 10 gives the explosive capocity per foot of borehole of various sizes.

Toble 10. Recommended Trail Shots for Verticol Boreholes

Figure 20. Snakeholes

21. BLASTING BOULDERS

o. Size of Chorge. See toble 12.
b. Methods of Blosting. See figure 22 for detoils.

Toble 11. Explosives Required in Snakeholes

Bench height (f)	Explosives per hale (Ib)
5	5
10	20
15	40
20	75
25	115
30	170

NOTES

1. The omounts of explosives ore based on militory dynomite in hard rock, with moximum hole spocing of 8 feet. Depth of holes equols $1 / 2$ bench height.
2. For medium rack, multiply omount of explosive by 0.8 .
3. For soft rock, multiply omount of explosive by 0.5 .
4. Holes normolly ore sprung to occommodote chorge.

Figure 21 . Benching.

SNAKEHOLING

FUSE OR LEAD WIRE.

Figure 22. Methods of blasting boulders.

22. DITCHING

a. Conditions. Raugh, apen ditches $21 / 2$ to 12 feet deep and 4 to 40 feet wide can be blasted in mast types af soil, except in gravel and sand. Trees, stumps, and large boulders ore charged separately, but ore fired simultoneausly with the ditching chorges.
b. Test Shats. Before beginning the ditching, run test shats ta determine the praper depth, spocing, and weight of charges far desired results. Begin with hales 2 feet deep and 18 inches opart for small ditches and increase in charges and depth as required (fig. 23 ond table 13).
c. Alinement and Grade. Mork ditch centerlines by chalk or transit line, and by drilling holes alang it.

Table 12. Chorges for Blasting Boulders

Bouldar diameter, 4	Lbs of TNT required		
	Blackholing	Snokaholing	Mudcopping
$1 / 2$	$1 / 8$	$1 / 2$	1
2	$1 / 8$	$1 / 2$	$1 / 2$
3	$1 / 4$	$1 / 4$	2
4	$3 / 8$	2	$3 / 2$
5	$1 / 2$	3	6

When a transit is used, the grade af the ditch can be occurately cantralled by checking the hole depth every 5 or 10 hales and ot each change in grade. Drill holes in saft graund with sharp punch or quick-

Figure 23. Chorge hales set by tronsif line.
sond punch (fig. 24). Load and tamp them immediately to prevent coveins and insure charge is at proper depth. Table 13 shows example of methad to determine depth af hales.

Table 13. Example Charge Points (See fig. 23)

(1) Chorge point	(2) Diteh. bottom line elevotion, ft	(3) Charge. depth. line elevotion,	(4) Line-ofsight elevotion, f	$\begin{gathered} \text { (5) } \\ \text { ROD } \\ \text { reading, } \\ f \end{gathered}$	(6) Ground elevotion (4)-(5)=(6), f	(7) Depth of hole (6) $\cdot(3)=7$. f
1	0	1	9	5.0	4.0	3.0
5	1	2	10	4.8	5.2	3.2
9	2	3	11	6.7	4.3	1.3
13	3	4	12	7.0	5.0	1.0
17	4	5	13	5.0	8.0	3.0

Figure 24. Punches used to place charges of proper depths in soft ground.
d. Detonation Methods.
(1) Propagation methods. Prime the hole, or hales, of one end of the proposed ditch; concussion will set off the succeeding charges. Use straight dynamite. It works only in maist soils, particularly with the ground under several inches af water (fig. 25). If more than ane line of charges is used to obtain a wide ditch, each line is primed. Overcharge the prime hale 1 ar 2 pounds.
NOTE. The propagation method con only be used with $\mathbf{5 0 \%}$ straight, ar greoter, commercial dymamite.

Figure 25. Propagation methad of detonation.
(2) Electrical method. Use ony high explasive in this method of ditching, and in any sail except sand regardless of moisture. Prime each charge with an electric cap. Blaw all charges simultaneously.
(3) Detonating card method. Use any high explasive with this method. This methad is effective in any soil except sand and grovel, regardless of the amount af maisture. Each charge is primed with detonating cord and connected to a ring main.
e. Laading Methods.
(1) The methad of loading for a deep, narraw ditch is pictured in figure 26.
(2) The relief method of loading for shallow ditches is depicted in figure 27. Ditches 1 and 3 are blasted first to relieve the charge in ditch 2.
(3) Figure 28 shows the posthole methad of loading far shallaw ditches in the mud.
(4) The cross sectian method of loading to clean and widen ditches is explained graphically in figure 29.

Figure 26. Method of looding o deep norrow ditch.

Figure 27. Relief method of looding for shollow ditches.

Figure 28. Post-hole method of loading for shallow ditches in mud.

Figure 29. Cross section method of looding to clean and widen ditches.

23. BLASTING TREES AND STUMPS

o. Size of Charge Required. The size of the chorge required vories with the size, voriety, and oge af the tree or stump, ond with the soil conditions. The rule of thumb (fig. 30) shows how the size af chorge varies with the size and age af the tree, using militory dynomite. To remove stumps properly, test shots are required.
b. Drilling Holes for Chorge. In drilling hales for the chorge, follow illustrotions in figure 30.

Rules of Thurab. Use dynomito os follows:
(1) For dead stumps -1 pound per foot of diameter.
(2) For live stump: -2 pounds per foot of diometer.
(3) For atanding timber ... odd 50 percent for afonding timber.

Figure 30. Stump blasting methods far various raat structures.

CHAPTER 3
 LAND MINE WARFARE

Sectian I. General Data

24. MINEFIELDS

a. Types. Data on the variaus types of minefields is cavered in table 14.
b. Siting. In the siting af minefields the fallawing factars must be cansidered:
(1) Overall plan af aperation.
(2) Nature of enemy threat (mechcnized, infantry, otc.).
(3) Terrain.
(4) Lacatian af ather abstacles.
(5) Likely ovenues af enemy appraach.
(6) Passibility of later expansion af the field.
(7) Site shauld campel channeling of on attacking farce inta on area cavered by massed fires.
(8) On large scale, site in patterns sa that penetration af the foremast field will be cantained by subsequent fields.
(9) Enemy capabilities far breaching, harassing, ar interfering with mine laying.
(10) Availability af mines and restrictians an use af certain types.
(11) Traaps and material available far mine laying, and their experience.

25. TYPES OF MINES

a. Live Service Mines.
(1) Antitank mines. Standard antitank (AT) mines are listed and described in table 15.
(2) Antipersannal mines. Standard antipersannel (APers) mines are listed in table 15.
b. Training Mines. Training mines are af twa types:
(1) Practice. Practice mines (blue with white lettering) may resamble a specific madel af service mine ar a basic type af service mine. They praduce a report and a puff af smake ta simulate detanation and are used an maneuvers and in training.
(2) Inert. Inert mines (painted black with white letters or O.D. with black letters) are service mines that have no explasive campanents added. They may be inert-laaded with sand, plaster, cancrete, and sa forth, and are used to familiorize traaps with the live service mine.

26. PERSONNEL PROTECTION

Traaps laying taxic chemical mines shauld be provided with field pratective masks, impermeable pratective clathing, pratective glaves and haad, chemical agent detector kits, decantaminating materials, protection and treatment set, and baats treated with vesicant gas-resistant leather dressing. This clathing and equipment is alsa required by traops engaged in breaching and clearing an area that is uncantaminated but is suspected of cantaining taxic chemical mines.

27. CAMOUFLAGE

The principles written in FM 20-32 apply ta all phases af installing o minefield, whether by manual ar mechanical means. All traces of mine laying activity shauld be remaved, such as baxes, crates, and wrappings. If mines are laid an the surface, they shauld be lightly cavered with lacal natural materials ta blend in with the surraundings. Dan't averda this because taa much will give away each mine lacatian.

Section II. Minefield Installation

28. PLATOON ORGANIZATION

The arganizatian of the platoon as the basic unit far installing a standard pattern minefield is presented in table 16.

29. STANDARD PATTERN MINEFIELD

a. Pattern. The standard pattern is illustrated in figures 31 and 32 and statistical details are given in table 14.
b. Clusters. The mine cluster (fig. 33) is the basic unit of the standard pattern minefield. A cluster may cantain fram ane ta five mines. Twa raws af clusters make up a minestrip, as shown in figure 32.
c. Numbering. The clusters in each strip are numbered fram the right end of the strip when facing the enemy (fig. 34). Cluster number 1 is the first cluster on the right when laaking down the strip.

Table 14. Cansalilated Minefield Data Sheet

See nates al end af table.

Table 14. - Continued

Removal Requirad	Roports Required	Records lequired	Oensity	Patterns	Remorks
Yos, removal required by laying unit unloss rolieving unit commender specificilly requests them to be leth in ploce. Cortificert of transion sent to lowest commander hoving commond over both units involved.	1. Intention to loy. 2. Initiatian af loying. 3. Complation of loplog. 4. Report of change, if ony. forward all reports to div. ha. or equivalent hq.	Standard form with at least minımum information. Exception: Urgency of toctical situation may somatimes preclude recording at time of loping. forward to division.	Ono per mater of front by mine type. (Minimum requiremants.)	Hand loid by the mathod bast suitad to the situation.	1. Locote within small orms ronge of the defenders but bayord hand granade range of the menemy to defendens position 2. Narmally laid an shart notica with mines laid from basit loods ond local stocks.
Mo, if responsibility is tronsforred, cartificate will be completod os tor - protective minafiald.	1. Intention to loy. 2. Initiotion of laying. 3. Completion of loying. 4. Prograss (if lorpe field). 5. Rupart of change. formerd complation raport to army hiq. or comporablo hq's. lawl.	Standard form with of loast minimum information. A recird of dangs is required If fiald is oltered. Forward to army tha's.	Onc A.T. and two Apans. par mater of front.	Standard, nomstandard patterns, and scottored mining is outhorized.	1. Minimum depth-100 maters. 2. Location coordinoted $w /$ diviston ond carps fire support plans. 3. Cover by artillery, machinegum and antitonk woppors ond when pessible by all forms of fire support.

Table 14.-Continued

Type of Fiald ${ }^{1}$	Pequired Authority ${ }^{2}$	Tactical Employment ${ }^{3}$	Types of Mines ${ }^{3}$	Marking İquired
Borrier	Carps and highar commanders. May not be dalagoted lower than division or camparable tommanders.	Employed. to black enemy attonk fermotion in seleded-arsos, especially ta the flanks ond reor oreas ond to deannel his opproech into selected bentle areas. Usually praplanned ond integrated into field army, corps and division barrier plans. Emplayed to channeliza, disrupt and delay eneny aftack. To provide the defender to cencentrate fire ond reserves. Also used to direst the eneny attack which mobles the defender to ottock with blocking or counter attocking forces.	All types of mines, booby trapping devices, and hlores moy be used. Extonsive use of complex fusing. Toxic chemical mines moy be used if outharized. 20\% of A.I. mines booby tropped.	As required to protect fiendly troops end civilians. Normolly she stonderd marking fence with markers is used.
Muisente	Army sommandor ar higher. Moy be delegated divisian ar comporoble commonders.	To deloy, disorgonize ond lower morole, of advoncing enemy; to hinder his use of on oreo or routte. Particulorly effective in raterograde mavement, denial operatoons and during evacuation.	Al types of A.I. ond A.P. mines, booby trops and dirty trick devices. If tima permits oll A.I. mines should be booby trapped	Mane unless initiolly to protect frlandly troops.

Seo notes af and af table.

Table 14.-Continued

Removal liequired	Reports Required	Records Required	Density	Potterns	Lemerts
Mo	1. Intention to loy. 2. Initiotion of loying. 3. Progress of leying. 4. Completion of laying. 5. Change of fiald. Completion roport to army hq.	Slonderd form with at leost minimum information. Formard to ormy ha. Record of chorge is required.	Three A.T., four tragmentotion Apers., and right Apers. blost miaes per Ilnear moter of trant.	Wormaily the cluster pattern will ba used.	1. Minimum depth -300 meters 2. Cover by chrervation and plars made to bring down atillary und/or air attecks, and te mow out direct fire alements te provide fire caver of threctened points.
N0	1. Intention to lay. 2. Initiofion of loying. 3. Progress (if Imge fiald). 4 Complation of laying. 5. Change of field Completion repori to ormy hq.	Standord form. formard to ormy ha.	Mone specified	Mone spiclited	1. Abandoned fields become muisance fittds. 2. Hay or may not be covered by for 3. A booby trapped oreo is considerad o nuisance minafield.

Table 14. - Cantinued

Type of Fiold '	Roquired Autherity ${ }^{2}$	Ioctiml Employment ${ }^{3}$	Types of Mines ${ }^{3}$	Morking Roguirsd
Phony	The commonder who hos tho outharity to employ the type fiold simuloted.	Used when lock of time, personnal, or moteriol provents loying o live mine fiald. Used to docaive the anemy into thinking areo is mined. Used to oxtond or supplemont livo fields. (Camoufloge gaps in live fiolds.)	Phony mines only. Ground disturbed to simulote ilvo mines. Motai (cuns, scop, atc) used to give foise sigrais on detector sots.	
Enemy (ony tho onem opportunit disposition	minefiold that loid or has an to infiuence the of minos thorein)		All types of minos, spaciol fuses ond beoby trops.	Markod ond/or guords posted to protoct friondly -troops, by first unit discovering the fiald.

${ }^{1}$ The besit clossificotion of minafialds is in otcordonco with the toctical purposs of thair omployment. Minafialds ore olse cotegesized occording to the iype of enemy movament being obstructed. This includes the ontipersonnel, ontitonk, antiomphibious and antioitborme minefields. Another cotegory olso describes the type of terroln in which the minafield is installed. It Inciudos routo mining, beoch mining, river mining ond fiald mining. Thus oborrior minafiald moy consist selaly of or include sogments of routo mining, field mining, river mınıng, otc.; or ontiomphibious minafiolds may be protactivo, dafonsive, borrier or nuisence deponding an its toctical purpose.

Table 14.-Continued

2emaval 2equired	Reports Required	Records Required	Oensity	Patters	Remorks
Same as for the rype field simulated					1 Plonning and coordination for laping ond fire coverage mug be done with same core as for type field being simulatad
Mo	Lacation (inelude apparent boundaries and known byposses). Forward to army hag. by unit lacoting field.	Standard record form with as much infarmotion as is avilable. Forword to army hq. by unit discovaring fisld. Herk at top with ''enemy mine fiold."	.		When additional informotion becomes avilable. another record form is prapared and farwardad through channels.

${ }^{2}$ Commanders may limit the amplayment of mines by suberdinate units by rastraining at revaking autharity ta lay cortain types of mines or thair use in specified aress.
${ }^{3}$ Mine amplayment at each command echelon must be cansistent with the avarall coneept of aparatian, prabable future mission and all ovailable resoures.

MOTE. All minefiald reports ore clossified 'secate."

Table 15. Mine Data

MIA BLAST ANTIPERSONNEL MINE	M25 ELAST AMTIPERSONNEL HINE [ELSIE]	M23 AND M: 1-GALLON CHEMBCAL LANDMINES	$\begin{aligned} & \text { M49AI } \\ & \text { TRIP FLARE } \end{aligned}$
		What anturi lon dissauce delenalion, Hoplace in sume manne us ite M15 an'ulank mant	hat is is 76 wec mplata buliting peries and an illumingly ion isuitis al appien
	Puith nowe wid givine is ty mand 		
		WI II is maded nat an blit bigth of be and tore electuc of tsis taty cxtalt en	Mlach liso wifitio archal Then In lift Ery Pull ligeter to werl cal poniten and secure
		Electis Ifling delmal int crid-le ulte of ming	Io Artis thence ialety clop
		Bul, rame in and urfacts anamating cyro it conluclind laing spitem	
	and loal of parciule a 12 alf lite and Inbe		Chert boik ends lat a cullall lig milt
Fround lienl In Diserif insert salali clip and ie man detonal bect to whe wisllon in il creales ancili ald	 	 Lamp suts. wist wfe paprcint HLSE and PRDTECIME C. DTHINE	Guvilan mivit coon dinfetit al bur Mitct rlart

Table 15.-Continued

M612 FUZE USED WITH M21 ANTIIANK MINE	M2 SERIES BUNDING ANTIPRSORNEL MINE	M16 SERIES BUNDING ANTIPRRSONEL MINE	$\xrightarrow[\text { migal }]{\text { matigntion }}$ antipersonnel MINE

Table 15.-Continued

	manmisum	
(8)		
Euck	zom	5
92		
g 暂		$E(\text { () }$
D	$\left(\left(\frac{8}{8}\right.\right.$	
	$\frac{5}{64 y}$	
	-ers	
$=5$	\%	
25x $=0$		-

Table 16. Plataan Organizatian ta Install Minefield

Persannel	Officer	NCO	EM	Equipment
Supervisary persannel	1	1		Officer: Map, lensatic campass, natebook, and minefield recard forms. NCO: Map, noteboak, and lensatic campass.
Siting party		1	3	Stakes or pickets, sledges, hammers, tracing tape on reels, and nails to peg tape.
Marking party	.	1	2	Babed wire an reels, marking signs, lane signs, wire cutters, glaves, sledges, pickets.
Recarding party	.	1	2	Sketching equipment, lensatic campass, minefield recard farms, map, and metric tape.
1 st laying party		1	$6 \text { ta } 8$	Nateboak for squad leader, picks, shavels, and sandbags.
2d laying party 3d laying party	$\cdots \cdot$	1 1	6 to 8 6 ta 8	$\begin{aligned} & \text {-do- } \\ & \text {-da- } \end{aligned}$
Tatal	1	7	25 ta 31	

Figure 31. Standard minefield, fenced, marked, and referenced.
d. Tripwires. If tripwires are used, they are placed an selected antipersannel mines in the raw an the enemy side af the strip centerline with nat mare than ane trip-wire-activated mine ta a cluster, and na claser than every third cluster (fig. 35).
e. Arrangement. The strips' are nat parallel, but their centerlines must be at least 18 paces apart at all paints. A centerline may have as many turning paints as desired (fig.36).

30. INSTALLATION PROCEDURE

a. Limitatians. The pracedure described here may be varied accarding to the persannel, terrain, materials, and praximity of the enemy.
b. Laying Out the Field and Installing Mines. When the OIC arrives at the site with his siting and marking parties, the OIC praceeds ta lay the minefield as shawn in figures 37 thraugh 42.

CLUSTERS ARE LAID ON BOTH SIDES OF STRIP \&
THE CENTRAL MINE IN EACH CLUSTER MAY BE EITHER ANTITANK OR ANTIPERSONNEL FRAGMENTATION ADOITIONAL MINES, ANTIPERSONNEL ONLY, ARE PLACED WITHIN EACH CLUSTER (SHADED AREA) IF DESIRED

Figure 32. Mine strip.

Figure 33. Mine clusters.

Figure 34. Method of numbering clusters in mine strips.

Figure 35. Use af trip-wires on front row af mine strip.

31. MINEFIELD MARKING

o. Rear Areo Minefields. Completely fence o rear-area minefield with twa stronds of borbed wire of the time of loying (fig. 43). As figure 31 depicts, the fence daes nat follaw the exoct baundary af the field, but is placed where it daes nat indicate the baundary. It is na claser than 20 paces fram the neorest mine. Standord markers (fig. 44) are hung on the upper strand so that the words "MINES,'" 'BOOBY TRAPS," ar, in the case af o taxic chemical minefield, the ward "GAS" face away from the field. If a minefield hos been contominated with taxic chemicol agents (chemical mines previausly detanated ar ather means), the standord chemical cantaminatian morker (fig. 44) with ward 'gos' facing away from minefield, is used olang with standord mine morker. Lanes ore morked os shawn in figure 45.

CLUSTER *3 IS LAST CLUSTER OF A STRIP SECTION CLUSTER \# $_{4}$ IS FIRST CLUSTER OF A STRIP SECTION

Figure 36. Turning points in a mine strip.

Figure 37. Initial steps in laying minefield.

Figure 38. Establishing the right hand boundary stakes of a minefield.

62

Figure 39. Laying out the IOE strip.

Figure 40. Laying out strip A and establishing mine dumps.

Figure 41. Minefield completely taped.

Figure 42. Laying mines on a sectian of a regular strip.
b. Forward Area Minefields. Mark forward area minefields the same as just described in a, with these exceptions:
(1) Minefields farward af the FEBA are sametimes fenced only an the friendly side, ar on the friendly side and flanks.

Figure $43 . \quad$ Standard minefield marking fence.
(2) Lanes in farward areas are marked incanspicuausly by placing wire, tape, ar clasely spaced abjects an the graund an each side af the lane, with the lane entrance identified by markers such as pickets marked with tape or piles af stanes, and the like. Do nat mark lane exits an enemy side. Fencing, marking, and camauflaging af minefields must be carefully maintained.
32. LANES AND GAPS
a. Lanes. A minefield lane is a safe path ar raute thraugh a minefield. Lanes thraugh triendly fields are 8 meters wide far ane-way vehicle traffic and 16 meters wide far two-way vehicle traffic.
b. Gops. A minefield gap is that partion of a minefield in which na mines have been laid. The purpase af a gap is ta enable a friendly farce ta pass through the field in a tactical farmatian. Gaps are af a specified width seldam less than 100 meters.
c. Siting and Lacatian. Site the lanes and gaps sa that the unit protecting the field, and adjacent units, may carry aut aperatianal plans such as patralling, attacking, and caunterattacking. The tactical cammander gives the general lacatian of lanes and gaps to the cammander af the laying unit. Skillful siting of the lanes and gaps will prevent the enemy from easily determining their lacatian. Change the lacatian af lones and gaps frequently ta prevent detectian and subsequent ambush af friendly patrals. Tactical commanders must always be cansulted regarding future lacations af lanes and gaps.

Figure 44. Standard marking signs.

Table 17. Minefield Requirements for $\frac{100 \text { Yards }}{100 \text { Meters }}$ of Front

AT Density ${ }^{\text {APf }}{ }^{\text {aps }}$			$\left\lvert\, \begin{gathered} \text { Strips } \\ \text { Req. } \\ \hline \end{gathered}\right.$	AT	$\begin{gathered} \text { AP } \\ \text { frag } \end{gathered}$	$\begin{aligned} & \text { AP } \\ & \text { Blast } \end{aligned}$	mines Croted		Veh. w/mines Crated St Cgo 5t Dump		Man Hours	Fencing Yords				
			W!. Tons				cu. fi.	Wre			Post	Tons				
1	1	1		3	153	153	153	4.67	212.44	. 41		1.57	115	1200	30	. 32
			164		164	164	4.98	226.85	. 44	1.68	124					
1	2	2	3	153	291	291	5.48	241.92	1.1	1.79	184	1200	30	. 32		
				164	312	312	5.86	258.74	1.17	1.92	197					
1	4	8	8	153	581	1131	7.32	313.53	1.46	2.32	467	2000	50	. 54		
				164	623	1213	7.84	335.8	1.57	2.49	500					
2	4	8	9	291	581	1131	10.7	475.99	2.16	3.53	501	2400	60	. 65		
				312	623	1213	11.46	508.96	2.3	3.77	537					
3	4	8	9	428	581	1131	14.06	635.28	2.81	4.70	535	2400	60.	. 65		
				459	623	1213	15.06	680.95	3.0	5.04	574					

mors.

1. Coiculation of mines strips:
2. $3 \times$ Density of AT mines $=$ number of strips.
b. $3 / 5 \times$ Sum of desired density $=$ number of strips.

Use $a \in d$, whlchower is greoter.
2. Totai mines by rype inciuve mines in strips pius ioE und 10% sofoty factor.

1. Colculation of mine rayuirements when frontage is expressed in yerds or maters.
2. Wines required pare pace of tront = Fromoge (yerds) -80 equals number of mines for main fisid. Divide this number by 9 far clustas in the loE. Add 10% of combined totol for grond tatal of mines ropuired for field.
b. Wine required per pace of thent = frontoge (metors) $\div .75$ oquais number of mines per poce for moin fisild. Divide this number by Ofa clusters in the i0E. Add 10% of combined totols for grond totol of miness required for field.
c. Cluster composition of 10E 1-2-2.
```
4. Mine weights bosed on the foilowing (Reference TM 9-1345-200):
M-15 AT Minesm-16 A Frog Mine
I mlee per crote 4 mines per crate
49 ibs per crate 45 lbs per crote
    5. Mine cuboge based on the foilowing (R|ferena F.
m-15 AT Mine m-16 N Frog mine
1.17 cu fl per mine . }77\mathrm{ cu fl per cote
    oraved (4-M16)
```

M-14 Af liost Mine 90 mines per crate 44 ibs par cote

M-14 AP liost Mine

1.7 cu Ho per ato
(0-M14)
6. Vehicies required bosed on offrood toonnape apocity ond/or cargo space.
7. Vehicie poyiood capocity (Enfornote FM 101-10):
Type Off-Road (Tons)

21/2 ton dump
$21 / 2$
$21 / 2$ ton cargo $21 / 2$
5
5 ton هrge 5
Corgo Spoce (Cu FH)
67.5

406
5 ton dump

```
8. Time Iequirements:
Bosed on 0 iayling rate of 4 mines per hour par man in on \(A / T\) ond \(A /\) Pors minafisid 9. Fencing Requiraments:
Bosed on 2 strond fence. with pests avery 25 yords. For each edditionoi 100 yords of freat add 250 yards wire ond 6 posts. Far matar of frant add \(10 \%\) to tobie.
```

Table 18. Lond Mine Logistical Dato Table

Table 18. - Continued

Copocity of indicoted army vehicles
(Hote: figures in parenthases Indicote maximum lood w/In 100\% overload capability ond/or moximum volume of cargo spoci)

M-105 $1 / 2$ tan trailar (Cargo Spact: $133 \times 87 \times 71 \mathrm{ins}$)					4-47 $21 / 2$ Ton Oump Irud (Cargo Spoce: $108 \times 70 \times 15+$ ins) (Volume determinas capocity)					m. 515 Ton Oump Truck (Corgo Space: $125 \times 82 \times 23 \mathrm{ins}$) (Volume determines capacity)				
Na. of crotes	$\begin{aligned} & \text { How } \\ & \text { corried } \end{aligned}$	Ho. of tiers of cratas	Total Ho. mines	$\begin{array}{\|c} \hline \text { Total } \\ \text { wt. } \\ \text { (tons) } \\ \hline \end{array}$	No. af crates	How corried	No. of Tiers of crotes	Total Ho. mines		Mo. of crotes	How coried	Mo. of fiers of crotes	Tatol Ho. mines	Tatol wt . (tns)
-	$\begin{gathered} \hline \text { flat } \\ (\text { (on edge) } \end{gathered}$	$\begin{gathered} 3 \\ (2) \end{gathered}$	$\begin{gathered} 150 \\ (300) \end{gathered}$	$\begin{aligned} & 1.5 \\ & \text { (3) } \end{aligned}$	-	on edge	1	165	1.65	-	flot	10	500	5
$\begin{gathered} 96 \\ (195) \end{gathered}$	flat	$\begin{gathered} 2 \\ (4) \end{gathered}$	$\begin{gathered} 96 \\ (195) \end{gathered}$	$\begin{gathered} 1.48 \\ (302) \end{gathered}$	140	an end	1	140	2.17	324	flat	6	324	5
$\begin{gathered} 50 \\ (100) \end{gathered}$	fot	$\begin{aligned} & 2 \\ & (4-) \end{aligned}$	$\begin{aligned} & 100 \\ & (200) \end{aligned}$	1.5 (3)	42	on end	1	84	1.26	60	flat (or an end)	$\begin{gathered} 2 \\ \text { (1) } \end{gathered}$	120	1.8
$\begin{gathered} 56 \\ (110) \end{gathered}$	flot	$\begin{gathered} 2 \\ (3) \end{gathered}$	$\begin{aligned} & 448 \\ & (880) \end{aligned}$	$\begin{array}{\|c\|} \hline 1.56 \\ (3.08) \end{array}$	72	an end	1	576	201	105	on end	1	840	3
$\begin{gathered} 41 \\ (85) \end{gathered}$	$\begin{gathered} \text { flat } \\ \text { (on and) } \end{gathered}$	$\begin{gathered} 2 \\ \text { (1) } \end{gathered}$	$\begin{gathered} 492 \\ (1020) \end{gathered}$	$\begin{array}{\|c\|} \hline 146 \\ 13.02) \end{array}$	63	an and	1	756	2.25	78	on end	1	936	2.78
-	$\begin{gathered} \text { fot } \\ (\text { on } \operatorname{edge}) \end{gathered}$	$\begin{gathered} 3 \\ (2) \end{gathered}$	$\begin{gathered} 100 \\ (200) \end{gathered}$	$\begin{aligned} & 1.55 \\ & (3.1) \end{aligned}$	-	an end (or flat)	(3)	105	1.62	-	flot	5	270	4.1
$\begin{gathered} 61 \\ (122) \end{gathered}$	flat	$\begin{gathered} 2 \\ (4) \end{gathered}$	$\begin{gathered} 61 \\ (122) \end{gathered}$	$\begin{gathered} 1.49 \\ (2.98) \end{gathered}$	56	on end	1	56	1.37	90	flat	3	90	2.2
$\begin{gathered} 37 \\ (75) \end{gathered}$	flot	$\stackrel{1-}{(2)}$	$\begin{gathered} 74 \\ (150) \end{gathered}$	1.48 (3)	40	on end	1	80	1.6	98	flat	2	196	3.9

Table 18.-Continued

Table 18.-Continued

Copacity of indicated army vathicles
(Meto: figures in porontheses indiote moximum lood $\mathbf{w / \text { in }} 100 \%$ oveslood copobility
and/or moximum volume of corgo space)

m. $10511 / 2$ ton troiler (Corgo spoce $133 \times 87 \times 71$ ins)					M-47 21/2 Ion Oump Irudk (Corgo Spoce: $108 \times 70 \times 15+$ ins) (volume determines copacity)					M. 515 Tan Dump Truck (Corgo Spoce. $125 \times 82 \times 23 \mathrm{~ms}$) (volume deternines copacity)				
Mo. of crotes	How corriod	Ho. of fiers of crotes	Tatal Mo. mines	Tatol w. (tons)	Mo. of crotes	How cossiad	Mo. of tivers of crates	Totol Mo. mines	$\begin{array}{\|c\|} \hline \text { Totol } \\ \text { wl } \\ \text { (tns) } \\ \hline \end{array}$	Mo. of crotes	Нош corried	No. of tiers of crates	Totol Mo. mines	Tatol w. (tons)
$\begin{gathered} 33 \\ (66) \end{gathered}$	flot	$\begin{gathered} 1+ \\ (3-) \end{gathered}$	$\begin{gathered} 132 \\ (264) \end{gathered}$	$\begin{array}{\|c\|} 1.48 \\ (296) \end{array}$	40	on end	1	160	1.79	$\begin{gathered} 48 \\ (60) \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { flot } \\ \text { (on ond) } \end{array}$	$\begin{gathered} 2 \\ (1) \end{gathered}$	$\begin{gathered} 192 \\ (240) \end{gathered}$	$\begin{gathered} 21 \\ (2.7) \end{gathered}$
$\begin{gathered} 60 \\ (120) \end{gathered}$	flot	$\begin{gathered} 1 \\ (2) \end{gathered}$	$\begin{gathered} 360 \\ (740) \end{gathered}$	$\begin{aligned} & 1.5 \\ & (3) \end{aligned}$	70	on end (or flot)	$\begin{gathered} 1 \\ (2) \end{gathered}$	420	1.75	128	flot	2	768	3.2
$\begin{gathered} 41 \\ (83) \end{gathered}$	flat	$\begin{aligned} & 1 \\ & (2-) \end{aligned}$	$\begin{gathered} 246 \\ (498) \end{gathered}$	$\begin{array}{\|c\|} \hline 147 \\ (2.98) \\ \hline \end{array}$	70	on end (or fot)	$\begin{aligned} & 1- \\ & (2-1) \end{aligned}$	420	2.52	108	flot	2	648	35
$\begin{gathered} 68 \\ (136) \end{gathered}$	flot	$\begin{gathered} 3 \\ (5) \end{gathered}$	$\begin{gathered} 6120 \\ (12,240) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.49 \\ (2.99) \\ \hline \end{array}$	48	on end	1	4320	105	72	flot	3	6480	15
$\begin{gathered} 66 \\ (133) \end{gathered}$	flot	$\begin{gathered} 1+ \\ (2+) \end{gathered}$	$\begin{gathered} 264 \\ (532) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.48 \\ (2.99) \end{array}$	80	on end (or flot)	$\begin{gathered} 1 \\ (2) \end{gathered}$	320	180	168	flot	3	672	3.7
$\begin{gathered} 938 \\ (1875) \end{gathered}$	upright	$\begin{gathered} 3- \\ (5) \end{gathered}$	$\begin{gathered} 938 \\ (1875) \end{gathered}$	$\begin{aligned} & 1.5+ \\ & (3) \end{aligned}$	864	on end	2	864	138	1782	on end	3	1782	2.8
$\begin{gathered} 140 \\ (280) \end{gathered}$	upright	$\begin{aligned} & 2 \\ & (3+) \end{aligned}$	$\begin{gathered} 700 \\ (1400) \end{gathered}$	$\begin{gathered} 15+ \\ (3+1 \end{gathered}$	96	on end	2	480	1.03	252	flot	4	1260	27

Toble 18. - Continued

Table 18.-Continued

Table 18.—Continued

		Mine packoging doto					Copocity of indicoted ormy vehicles (Mote: figures in parentheses indicote maximum lood $w /$ in 100% ovarload copability ond/or moximum volume of corgo spece)				
Mine Model	$\begin{gathered} \text { Wt } \\ \text { (Ibs) } \end{gathered}$		Wr. (Ibs) par crate	Crota dimansions (ins)			M-35 $21 / 2$ ton cargo truck (Corgo spoce: $147 \times 88 \times 60 \mathrm{ins}$)				
$\underset{\text { type }}{8}$	par mine	par crote		Lgth.	Width	Hgt.	No. of crotes	How carried	No. of Hers of crates	Totol Ho. minas	Total wt. (tons)
m-48 para. chute flare	5	4. w/fuzes \& trip wire	41	147	13.13	11	$\begin{gathered} 122 \\ (244) \end{gathered}$	flat	$\begin{gathered} 2+ \\ (4+1) \end{gathered}$	$\begin{gathered} 488 \\ (976) \end{gathered}$	$\begin{aligned} & 2.5 \\ & (5) \end{aligned}$
M. 49 static flare	1.4	o. 16, w/fuien \& trip wire	45	21.25	14.5	11	$\begin{gathered} 111 \\ (180) \end{gathered}$	flot	$\begin{gathered} 3+ \\ (5) \end{gathered}$	$\begin{gathered} 1776 \\ (2880) \end{gathered}$	$\begin{gathered} 2.49 \\ (4.04) \end{gathered}$
		b. 25, w/luzes 8 trip wirs	59	21.25	14.5	11	$\begin{gathered} 84 \\ (170) \end{gathered}$	flot	$\begin{gathered} 3- \\ (5) \end{gathered}$	$\begin{gathered} 2100 \\ (4250) \end{gathered}$	$\begin{aligned} & 247 \\ & \text { (s) } \end{aligned}$

MOTES.
I. Loods limited ta: $16,000 \mathrm{lbs}$ on roods; $6,500 \mathrm{Ibs}$ (3.25 tons) cross-country.
2. Moximum poylood: $1,024 \mathrm{lbs}$ (0.5 ton) internol; $3,000 \mathrm{lbs}$ (15 tons) externol
3. Moximum poylood. 4, 182 lbs (2.09 tons)

Table 18.-Continued

Capacity of indicoted ormy vehicles (Wete: figures in.porantheses indicote moximum lood w/ in 100% overlood copability ond/or moximon volume of corgo spact)														
$m-105$ 1/2 ton troilar (Carga Space: $133 \times 87 \times 71 \mathrm{ins}$)					m-47 21/2 Ton Oump Truck (Corgo Spact. $100 \times 70 \times 15+$ ins) (Volume determions copacity)					M-51 5 Tan Oump Tiuck (Caigo Space: $12 \mathrm{~S} \times 82 \times 23 \mathrm{in}$) (Volume deter mines capacity)				
	How corried		Total Mo. mines		No. of cuates	How colliad	No. of tiens of crotus	Totol Mo. mines	$\begin{aligned} & \text { Total } \\ & \text { (rans) } \\ & \text { (tans) } \end{aligned}$	$\begin{gathered} \text { Mo. } \\ \text { ol } \\ \text { crates } \end{gathered}$	How carried	Mo. of tiers of cuotes	Tatal No. mines	Tatol wl. (tons)
$\begin{gathered} 73 \\ (146) \end{gathered}$	Alt	$\begin{gathered} 2+ \\ (1-1) \end{gathered}$	$\begin{gathered} 292 \\ (584) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.49 \\ (2.98) \end{array}$	70	flot	2	280	143	96	flot	2	384	2
$\begin{gathered} 66 \\ (132) \end{gathered}$	flot	$\stackrel{2}{(4-)}$	$\begin{gathered} 1056 \\ (2112) \end{gathered}$	$\begin{gathered} \hline 1.49 \\ (2.96) \end{gathered}$	42	on end	1	672	0.94	50	flot	2	800	1.1
$\begin{gathered} 50 \\ (101) \end{gathered}$	fot	$\begin{aligned} & 2 \\ & (3-) \end{aligned}$	$\begin{gathered} 1250 \\ (2525) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.47 \\ (2.97) \end{array}$	42	on end	1	1050	1.23	50	fot	2	1250	4.5

4. Mines are transported unarmed and w / a being assambled with firing choin components. Thase tables also ate applitable ta cuated minas only
5. Sofety in transparting mines and explosive items must be observed for oll modes of Ironsportolion.

Toble 19. Minefield 8reaching/Cleoring Average Time ond Moteriol Requirements

Method	Width of cleored lone (in meters)	Mon-hours req'd per 100 meters	Remorks
Manuol			
Locotion by probing	1 (footpoth)	16-22	See note.
Removal by rope or explosives	8 oneway (vehicle lane)	38-44	See note.
Locotion by detector, ossisted by probing	8 onewoy (vehicle lone)	27-33	See note.
Removol by rope or explosives		220-247	See note.
Explosive			
Demolition snokas, M3A1	6	40-100	
Demolition snake M157 (Diamond Lil)	3.5-4.5	6-8	+6-8 manhours to ossemble
Bongalare torpedo.	1 (foatpoth)	3.5-4.5	See note.

NOTE. Based upon average conditians af visibility and moderate enemy activity and narmal U.S. cauntermeasures, i.e. screening af enemy abservatian and counter-battery fires against hastile artillery ar ather weapans cavering the field.

Figure 45. Standard minefield lane marking in rear area.

33. LOGISTICAL DATA

a. Lagistical ond Planning Data. See tables 17 and 18.
b. Material and Manpawer Requirements. See table 19.

Section III. Reparts and Recards

34. REPORTING AND RECORDING

o. Reparts.
(1) Three reports are required far every minefield laid. First is the repart af intentian ta lay, which is made as saan as it is decided to install the minefield. The secand repart is the initiatian af laying and is made when the laying unit is ready ta begin. Third is the repart of the campletian of laying. All reparts are classified SECRET. See FM 20-32.
(2) In additian, there is the written repart of transfer made to the relieving cammander by the commander af the unit respansible far the field when the transfer af responsibility is effected.

figure 46. Minefield record with minimum informotion.

Figure 47. Minefield record with moximum informotion.
(3) A report of removal is made ta the next higher commander immediately when friendly mines ore remaved.
(4) When any chonges ore mode in a friendly minefield, a repart of chonge is sent by the commonder responsible far the minefield to the headquorters which maintoins the written mine recard.
(5) Progress reports ore initioted according ta unit SOP.
b. Recards.
(1) The standard minefield record form is o single printed sheet as shawn in the samples in figures 46 ond 47. A standard minefield record form is prepared by the commonder of the laying unit, signed by him, and sent to the next higher heodquoiters. It is clossified SECRET. The number of copies prepored depends an the type af minefield ond SOP. Narmolly one capy is forwarded to higher headquorters. The SOP should provide for dissemination of recards up, dawn, and loterolly. For this purpose, the record is phatagraphically reproduced.
(2) When chonges are made ta a friendly minefield, a completely new recard must be prepared an the standard form. It is morked REVISED, but retoins the same minefield number.
(3) Boobytropped oreas are recarded as nuisonce type minefields.
35. MINE SYMBOLS

Type unknown

AT, boobytropped

Apers

AT, double or multiple

Toxic chemicol

Section IV. Enemy Minefields

36. RECONNAISSANCE

o. Types.
(1) Ground reconnoissance.
(2) Aerial reconnoissonce.
(3) Reconnoissonce by fire.
(o) Attillery, mortor, or rocket.
(b) Bombing.
b. Reconnoissance Potrol.
(1) A minefield reconnoissonce potrol is normolly comprised of on experienced officer or senior NCQ, four to six troined men, and o security element armed with light outomotic weopons ond grenodes (fig. 48).
(2) Depending upon the potrol's mission ond types of mines it moy encounter, equipment moy include composses, wirecutters, probes, mine detectors, disorming implements (wires, sofety pins, ond the like), tape ond protective body ormor. If secrecy is not essentiol, it moy include prepored demolition chorges, gropnels, light lines, ond similor means for mine remaval. Where taxic chemical mines may be encountered,

Figure 48. Minefield reconnoissonce potrol.
take such equipment as protective clothing, chemical ogent detector set, first oid supplies, ond decontamination equipment.
(3) Where reconnoissonce is preliminory ta breoching, the potrol records informotion by a tape laid on the centerline of the path. Indicate locotion of tripwires or types of mines by knots tied on tope os follows:

Type

Apers mine
AT mine
Tripwire
New type mine
Toxic chemicol mine

No. of knots
12

37. REPORTING AND RECORDING

a. Reporting. Report any knowledge or suspicion of the existence of an enemy minefield to the next higher commonder immediately. This report is forwarded to Army heodquarters ond shauld include os much of the following informotion as is obtoinoble:
(1) Location and apparent boundaries of the enemy minefield.
(2) Bypasses oround the field, if any.
(3) Type ond density of mines.
(4) Potterns.
(5) Enemy defenses, fortificotions, fire coverage, ond observotion.

A unit encountering on enemy minefield erects temporary worning signs, pending instal!ation of standord markings as prescribed in porograph 31 far friendly reor orea minefields. A report is mode to the next higher headquorters whenever enemy mines are removed.
b. Recording. Use the stondord NATO, if avoiloble, ar the U.S. minefield record form when preparing a record of an enemy field. This record contains the identity of the unit preparing it and is identified of the top by the words ENEMY MINEFIELD. Include a full deseription of the markings, a sketch or overlay showing lacotion, ond other informotion as outlined in poragroph 34. Whenever odditionol information becomes ovailoble, another record is prepared ond submitted to higher headquorters.

Section V. Breaching and Cleoring Operotions

38. MINE DETECTION METHODS

a. Visuol. Visuol search is on importont method of locating mines. Experience with the mine hobits of an enemy is aften of greot help in locating his mines.
b. Probing. In this method, the earth is penetrated with a sharp instrument such as a mine prabe, a bayanet, ar a stiff wire. Probing is the best way ta lacate buried nanmetallic mines, particularly the small anti-personnel type similar ta the M14. When prabing, the saldier maves an hands and knees with sleeves ralled up ta lacate tripwires and pressure prangs.
c. Electricol Defection. When used in connectian with visual inspectian and probing, mine detectars (metallic and nanmetallic) are effective aids in locating mines. Bath types af detectars, metallic ar nanmetallic, may give a signal when items ather than mines are detected; experience in operating each type enables the user ta recagnize the characteristics af the signal ta be expected far each type af mine. Far the saldier assigned ta this task, it is an exacting job, and he must canstantly watch far baabytraps and tripwires. Twenty minutes at a time shauld be the maximum period for each soldier.

39. METHODS OF BREACHING MINEFIELDS

a. Hasty and Deliberate Methods. Breaching is the use af any means avoilable ta apen a lane thraugh a mined area far the possage of vehicles ar persannel. It is either hasty ar deliberote.
(1) Hasty breaching requires speed with a minimum af planning. Leading cambat units must aften clear a lane of all mines. Special mechanical ar explasive devices, atillery ar aerial bambardment, ar specially trained teams accamplish this. See table 19, Minefield Breaching/Clearing Average Time and Material Requirements.
(2) Deliberate breaching requires extensive planning, and is normally dane by engineers ar ather trained persannel, supparted by cambined arms. Deliberate breaching is usually made in the fallawing phases:
(a) Recannaissonce
(b) Plans and preparatians.
(c) Breaching ond attack.
(d) Passage af farces.
b. Explasive Methods. The use af explasives is the easiest method af remaving mines. One paund af explasive, with a standard firing assembly, placed an tap af a mine will detanate mast mines. A detanating card firing system may cannect a graup af mines ta fire them simultaneausly. Several different rigid and flexible line charges ore available far breaching foat and vehicle lanes thraugh minefields. They range in size fram the man-carried bangalare tarpeda ta the tank pushed "snakes". The variaus madels available are described in TM 9-1375200, Demalitian Materials.
c. Mechanical Methads. The term, mechonical methads, refers to use af rallers, flails, derelict vehicles, etc., pushed by armared vehicles.
d. Platoon Organizotion and Equipment for Monuol Breaching. Table 20 and figure 49 show the arganizotion af this plataan and the operotian of a breaching party, respectively.

Table 20. Plataan Organizatian ond Equipment far Monual Breaching

Figure 49. Minefield breaching party.

40. METHODS OF CLEARING MINEFIELDS

a. Intraduction. Ta clear a minefield is ta remave or destray all mines, enemy ar friendly, in the field. The methads used in mine clearance are similar ta thase in breaching, but are mare deliberate and carefully applied. Minefield recards are used ta the maximum. Brush and ather caver in the minefield area may be remaved by burning.
b. By Prabing. Ta clear mines fram an enemy.field ar a friendly field far which recards are unavailable, the pracedure described here is ta be cansidered as a guide anly. The plataan is used as the basic unit, and mines are blawn in place ar remaved by rape.
(1) The platoon is arganized as shawn in table 21 . The clearing parties aperate as depicted in figure 50.
(2) The use af explasive is described in paragraph 39.
(3) Rape remaval is safer than remaving mines by hand. Praceed as fallaws:
(a) Uncaver tap of mine.
(b) Attach rape ar wire at least 45 meters lang ta mine.

Toble 21. Plotoon Orgonizotion and Equipment for Monuol Cleoring

Persannel	Officer	NCO	EM	Equipment
Officer in charge	1		\cdots	Map, lensatic compass, partable radio, ond all available informarian on mines in area.
Na. 1 elearing party		1	10	Mine prabes, tracing tope on reels, mine markers, grapnels, rope or wire in 45 meters lengths, $4 \mathrm{~S} . \mathrm{cm}$ lengths af 10 and 16-gage wire, demalition equipment, shavels ar ontrenching tools, and portable radios
No. 2 cleoring party	-•••	1	10	Same as Na 1 cleoring party
No. 3 clearing porty	- - \cdot	1	10	Same as Na. 1 clearing party
Cantrol porty	\cdots	1	2	Map, Iensotic compass, partable radia (2 preferably, 1 far platoon ond 1 for campany net)
TOTAL	1	4	32	

(c) Moke sure oll personnel neorby hove token cover.
(d) Toke cover ot leost 45 meters from mine and pull it from hole. (Moke sure the ploce of cover, such os o foxhole, is checked for enemy boobytrops prior to this oction.)
(e) Woit 30 seconds before opprooching mine.
(f) Recheck hole for odditionol mines.
(g) Remove fure or cut the firing choin.
(h) Corry mine to o dump for disposol or reuse.
c. By Use of Detectors.
(1) The plotoon is organized the some os for probing, except thot eoch cleoring porty hos three electricol mine detectors ond is reduced by one mon. The duties ond procedures ore bosicolly the some os for probing.

Figure 50. Number 1 clearing party in aperation.
(2) Figure 51 shows the clearing party in actian, using electrizal detectars.

Figure 51. Clearing party using electrical defectors.

CHAPTER 4
 FIELD FORTIFICATIONS

Section I. General Data

41. PRIORITY OF TASKS

Many of the jabs involved in preparing a defensive positian are carried an concurrently, but same will be executed in priority. The commander, therefore, specifies the sequence for the preparation of the position and ony special precautians ta be taken regarding camouflage. The following is a recammended sequence.
o. Establish security.
b. Position weapons.
c. Clear fields of fire, remave abjects, mask observatian ond determine ranges to probable target locations.
d. Provide for signal communications and observation systems.
e. Prepore weapons emplacements and individual pasitions to include overhead cover, and camouflage them cancurrently.
f. Lay minefields and prepare important demolitions.
g. Prepare obstacles (other than minefields) and less vital demolitions.
h. Prepore routes for movement and for supply and evacuation.
i. Prepare alternate and supplementary positions.
j. Prepare CBR pratective shelters as required.
k. Prepare deceptive installations in accordance with deceptive plans of higher headquarters.

42. CLEARING FIELDS OF FIRE

o. Principles. There is little opportunity to clear fields of fire when a unit is in cantact with the enemy. Individual riflemen and weapons crews must select the best natural pasitians available. Usually, there is only time ta clear areas in the immediate vicinity of the pasitian. However, in preparing defensive positions for expected contact with the enemy, suitable fields of fire are cleared in front af each pasitian. The following principles are pertinent:
(1) Excess of careless clearing will disclose firing positions.
(2) In areas arganized for close defense, clearing shauld start near the pasition and work forward for at least 100 meters ar to the maximum effective range of the weapon if time permits.
(3) A thin natural screen of vegetation shauld be left ta hide defensive positions.
b. Pracedure.
(1) Remove the lower branches of large scattered trees in sparsely wooded areos.
(2) In heavy woods, fields of fire moy neither be possible nor desiroble within the time available. Restrict wark to thinning the undergrowth and remaving the lower bronches of large trees. Clear narrow lanes of fire for outomatic weapons.
(3) Thin or remave dense brush since it is never a suitoble obstacle and obstructs the field of fire.
(4) Cut weeds when they obstruct the view from firing positions.
(5) Remove brush, weeds, and limbs that have been cut to areas where they cannot be used to conceal enemy movements ar disclose the position.
(6) Do only a limited amount of clearing at one time. Overestimating the capabilities of the unit in this respect may result in a field af fire improperly cleared which would afford the enemy better concealment ond caver than the natural state.
(7) Cut or burn grain, hay, and tall weeds.
c. Manhours Required. The manhours required to clear 100 square meters are tabuloted in table 22.

Table 22. Manhours Required to Clear 100 Square Meters

Description of clearing	Tools used	Manhaurs required**
Medium clearing: Clearing undergrowth and trees less than $12^{\prime \prime}$ in diametor	Sows, axes	5
Light clearing: Cleoring amall brush	Axes, bruahhacks, machotes, and hatchets	2.5

* Figures are for daylight; for wark as night, increase labor by 50 percent

Section II. Emplocements

43. TYPES

a. Requirements. Emplacements shauld be so constructed as to permít each individual or weapon crew to meet the following requirements:
(1) Permit each individual ar eoch weapons crew to occomplish ossigned fire missions.
(2) Be simple and easily constructed.

Figure 52. Open one-man foxhole.

Figure 53. Open two-man faxhale.
(3) Provide maximum protection with minimum time and lobor.
(4) Be comaufloged and canceoled.
(5) Provide pratection agoinst mechonized ottock.
(6) Provide pratection ogainst nucleor attack.
b. Types. See figures $\mathbf{5 2}$ through 57 for different types.
c. Lobor Requirements for Emplacements. See tobles 23 and 24.

44. REVETMENTS

a. Retoining-Woll Type. This type af revetment is used in relotively unstoble soils. The horizontal loyers of the woll ore tied together so

Table 23. Time and Material Requirements for Personnel and Individual Weapans Emplacement

Type of emplocement ar shelter	Totol construction time in mon hours for construction with 0 hondle shovels and ordinory compentry tools					Weight ond volume af materials							
						Revetment materiols for cover suppart only				Complete revatment			
	Revetmen! mote. rials for cover support only		Complete revatment		Harever-mentmoteriolsused	Carrugated metal construction		Sized lumber construction		Corrugated metol construction.		Sized lumber construction	
	Corru- goted metol constr.		Corru- 8oted metal constr.	$\begin{array}{\|c} \text { Sized } \\ \text { lumber } \\ \text { consir } \end{array}$		Weight (b.)	$\begin{aligned} & \text { Voluma } \\ & \text { (cu. ft.) } \end{aligned}$	Weighs (lb.)	$\left\|\begin{array}{c} \text { Volume } \\ \text { (cu. ft } \end{array}\right\|$	Werght (lb.)	$\left(\begin{array}{l} \text { volume } \\ \text { (cu. ft.) } \end{array}\right.$	Weight (lb.)	Volume (cu. ft.)
Improved crater	N/A	N/A	H/A	H/A	0.5	N/A	N/A	H/A	H/A	N/A	H/A	N/A	H/A
Skirmishers trench	W/A	H/A	H/A	N/A	0.5	N/A	N/A	W/A	W/A	N/A	H/A	N/A	H/A
Prone emplocoment	W/A	W/A	H/A	N/A	1.5	W/A	W/A	H/A	H/A	H/A	H/A	N/A	H/A
Open one man foxhole	W/A	W/A	3.5	4.5	2.0	W/A	N/A	N/A	H/A	190	3.5	240	8
Open one man foxhole with offsat	9.0	14.0	10.0	16.0	H/A	50	0.6	180	55	240	4.0	420	13.0
One mon foxhole with half coves	2.5	30	45	5.5	H/A	10	0.1	20	0.6	200	3.5	260	8.0
One mon foxhole with hall cover ond offset	100	14.0	12.0	18.0	W/A	60	0.7	200	6.0	250	4.0	440	14.0
Open two mon foxhole ..	N/A	W/A	6.0	8.0	3.0	H/A	W/A	N/A	H/A	280	5.0	320	10.0
Oeepened two mon faxhole........	N/A	H/A	80	10.0	5.0	M/A	N/A	N/A	H/A	309	5.5	375	12.0
Iwo mon foxhole with holf caver.	4.0	4.0	8.0	10.0	H/A	15	0.2	32	1.0	280	5.0	350	11.0
Iwo mon loxhole with hall cover and two offsets.	20.0	30.0	22.0	35.0	H/A	120	1.5	400	12.0	380	6.0	700	22.0
Two mon foxhole with holf covor ond odjorning shalter.	11.0	17.0	13.0	22.0	N/A	100	12	560	18.0	460	7.0	880	28.0
Open fighting trench (25' length)...	W/A	N/A	28.0	32.0	21.0	W/A	W/A	N/A	N/A	490	80	710	22.0
Fighting trenth with full cover (25^{\prime} length).	27.0	29.0	35.0	40.0	N/A	240	4.0	360	11.0	730	12.0	1060	33.0

Table 24. Characteristics of Crew Served Infantry and Artillery Weapons Emplacements

Type of emplacement ar shelter	Total construction time in mon hours tor construction with 0 -hondle shovels and ordinory carpentry tools					Weight ond volume of moteriols							
						Reverment moteriols for covet support only				Complete lavatment			
	Revelment mote. rials far cover support only		Complate revetment		No revet ment moleriols used	Corrugoted metal construction		Sizedlumberconstruction		Corrugated metol construction		Sized lumber construction	
	Corry. goted metal constr	sized lumber constr.	Corrv. goted metal constr.	$\begin{gathered} \text { Sized } \\ \text { lumber } \\ \text { constr. } \end{gathered}$		Weight (lb.)	Volume (cu. h.)	Weight (lb.)	$\left(\left.\begin{array}{l} \text { Volume } \\ \text { (cu. it.) } \end{array} \right\rvert\,\right.$	Weight (lb.)	$\left\|\begin{array}{l} \text { volume } \\ \text { (cu. fer) } \end{array}\right\|$	Weight (lb.)	Volume (cu. (t)
Characieristics of crew serveo weapons emplacements													
Open outomatic rifle emplocement	N/A	N/A	7.0	8.0	4.0	N/A	H/A	N/A	N/A	170	30	200	6.0
Automotis rifle emplocement with $18^{\prime \prime}$ of cover.	4.0	50	6.0	7.0	N/A	45	0.5	70	20	220	4.0	270	10.0
Open harseshae type 30 cal mothinegun emplocement	N/A	N/A	5.0	7.0	20	W/A	M/A	N/A	N/A	280	5.0	450	14.0
Open 2 one-man foxhole type fight mochinegun emplocement.	N/A	N/A	6.0	7.0	40	H/A	W/A	N/A	N/A	530	100.	640	20.0
Horsestoe typa light mochinegun emplocement with full cover	9.0	110	11.0	14.0	N/A	190	4.0	250	70	720	13.0	890	27.0
2 one mon foxhole lype II. mochinegun type emplocement with $1 / 2$ cover and adjaining shelter	15.0	22.0	190	28.0	H/A	250	2.5	830	20.0	520	75	850	30.0
Circular type 50 cal machinegun emplocement	N/A	H/A	14.5	16.5	10.0	H/A	N/A	N/A	N/A	300	5.0	420	13.0
Pit type emplocement for 3.5 rocket launcher.	N/a	H/A	5.0	60	3.0	N/A	N/A	N/A	N/A	110	1.0	160	5.0

Table 24.—Continued

Type of amplocement or shalter	fotal construction time in mon hours for consifuctian with D-handle shavals and -، ordinary corpontry toals					Weight ond valume of moteriols							
						tavatmant matarials for cover support only				Complets revatmont			
	Revetment moteriols for covar support only		Complete revatmant		No rever. mant mate. ríals usad	Corrugoted matol - construction		Sizod lumber - canstruction		Corrugoted matol construction		Sized lumber construction	
	Corru. goted motal conslr	SIIOd lumbar canstr.	Corru- goted matal constr.	Sizad lumber constr.		Waight (lb.)	Volume (cu. ft.)	Waight (lb.)	$\begin{array}{\|l} \text { Valume } \\ \text { (cu. H } \end{array}$	Weight (lb.)	Yalume (cu. H.)	Werght (b.)	$\left\{\begin{array}{l} \text { volume } \\ \text { (cu } \end{array} \text { f. }\right)$
81 -mm mortor emplocemant	N/A	N/A	12.0	N/A	N/A	N/A	N/A	N/A	N/A	210	3.0	N/A	N/A
4.2 inch mortor amplocement.	N/A	N/A	290	N/A	N/A	N/A	N/A	N/A	N/A	370	6.0	N/A	N/A
Recoilless rifte positran (maunted)	N/A	N / A	H/A	N/A	300	N/A	N/A	N / A	N/A	N / A	N/A	N/A	N/A
Recoilloss rifto position (dismaunted).	N/A	N/A	H/A	N/A	17.0	N/A	N/A	H/A	W/A	N/A	N/A	N/A	N/A
characteristics of artillery weapons emplacements													
105 -mm howitrar emplacement	N/A	N/A	N/A	N/A	1000	N/A	N/A	W/A	N/A	N/A	N/A	N/A	N/A
ISS.mm howiter emplacoment.	N/A	N/A	N/A	N/A	1700	N/A	N/A	W/A	N/A	N/A	N/A	N/A	N/A

Figure 54. Two -mon foxhole with half cover.
that the wall acts os a structural unit without any sliding of one part upon another. This type of revetment (fig. 58) may be constructed of sondbogs, sod blocks, and various expedients os described below. The methods of building with these construction moteriols ore os follows:
(1) Sondbogs ore useful for temporary revetments. Lay them as follows:
(o) Fill to three-fourths of full copocity $\left(5^{\prime \prime} \times 10^{\prime \prime} \times 20^{\prime \prime}\right)$.
(b) Ploce o double raw of olternote heoders and stretchers as shown in figure 58.
(c) Ploce about 800 sondbogs per 25 square meters of revetted surface.
(d) Stabilize bogs to prolong their life by filling them with 1 port cement to 10 ports dry earth; in o sond-grovel mixture, increase ratio to 1 to δ.
(e) Tuck in bottom corner of bogs offer filling.
(f) Slope the wall toward revetted face of slope of 1 to 4 .
(g) With stabilized sondbogs the foundation should be about 15 centimeters below floor level.

$$
785-094 \quad O-66-7
$$

(h) Place bags perpendicular ta slape.
(i) Place all bags an battam raw as headers (fig. 58).
(i) Alternate intermediate raws as headers and stretchers.
(k) Have tap raw cansist of headers.
(1) Place side seams and chaked ends an inside.
(2) Sad blacks of thick sad with gaad raats pravide satisfactary revetting material. Cut sad blacks inta 20-by 45 -centimeter sectians and lay them flat, using the alternate stretcher-methad as with sandbags ((1) abave). Lay sad grass-ta-grass and sail-ta-sail except far the tap layer which is placed with grass upward far camauflage purpases. Drive twa waaden pegs thraugh each section af every layer as it is campleted. Lay this sad revetment ot a slape of 1 ta 3.
(3) Expedients may be used, such as ice blacks in cald weather. They are stacked the same as sandbags ar sad. Water is run over them

Figure 55. Harseshae type emplacement.

Figure 56. Rocket launcher emplacement.

Figure 57. Two one-mon foxhole types.

Figure 58 . Retoining woll type af revetment.
ta bind by freezing. Another expedient is earth-filled pocking coses or ammunition baxes, which ore ploced in pasitian ond nailed to the loyer belaw. The boxes ore then filled with eorth ar rack. In wooded oreas, smoll timber moy be used as revetting moterial.
b. Facing Type. This type of revetment serves mainly ta protect revetted surfaces from weather ond damoge coused by occupation. This rëvetment cansists of facing (revetting) moterial and suppart which hald this moteriol in place: The top of the focing is set belaw ground level so that the revetting is not damoged by tonks crossing the emplocement.
(1) Moterials used in focing may be brushwaad bundles, continuaus brush, pale ond dimensianol timbers, corrugated metal, ar burlap ond chicken wire. Construction methods af each type ore described in (3) below.
(2) Methods of suppart.
(a) Timber frames af dimensianed timber ore built ta fit the battam and sides of the pasition and hald the facing moterial opart. This insures that the excovated width remains stable.
(b) Pickets ore driven inta the ground an the pasition side of the facing moterial and held tightly against the facing by bracing the pickets opart or fastening their tops ta stokes ar holdfosts (fig. 59).
(3) Methads af canstructing facing type revetments.
(a) The size af pickets depends upan the soil type ond the kind
of focing moteriol, but timber pickets should not be smoller thon 7.6 centimeters in diometer. Moximum spocing between pickets should be 1.8 meters. Steel wire fence U-shoped pickets ore excellent for revetting. Pickets ore driven of least 0.46 meters into the floor of the position. Where the pickets ore anchored of the top, proceed os shown in figure 59.
(b) A brushwood bundle (hurdle) is o woven revetment unit usuolly 1.8 meters long ond of required height.
(c) The pole revetment is similor to the continuous brush revetment, except that o loyer of smoll horizontal round poles cut to woll length is used. If ovoiloble, boords or plonks ore used.

Figure 59. Method of onchoring pickets.
(d) Corrugated metal sheets or pierced steel planks ore strong, durable, and rapidly installed. They may be used for any height or length of revetment. Smear metal surfaces with mud to eliminate possible reflection of thermal radiation and to aid comouflage.

45. BUNKERS

o. For protection against shells and bombs, see tobles 25 and 26.

Table 25. Material Thicknesses in Centimeters Needed Against Projectiles and Bombs Exploding 15 Meters Awoy

${ }^{1}$ Figures based on dry material. If wet moterial, double figures.
2 Figures given to nearest 15 cm .

Table 26. Material Thicknesses in Cëntimeters Needed for Protection Against Direct Hits by Direct-Fire Weapons

Material	Small-aims and machine-gun $1792-\mathrm{mm})$ fira at 100 m 1	$\begin{gathered} \text { Antitonk } \\ \text { rile } \\ (792 \mathrm{~mm}) \\ \text { fire ot } \\ 100 \mathrm{~m} \\ \hline \end{gathered}$	20 -mm antitank flie of 200 m	37-mm ontstank fire at 400 m.	$50 \cdot \mathrm{~mm}$. antitank fire at 400 m.	75 mm . direct fire, 500 to $1,000 \mathrm{~m}$.	$\begin{gathered} \text { B8.mm } \\ \text { direct lire, } \\ 500 \text { to } \\ 1,000 \mathrm{~m} \\ \hline \end{gathered}$	Remarks
Solid wolls. ${ }^{\text {? }}$								
Brick mosonry	45	60	76	152	\cdots	
Cancrete, nat ieinfarced'	30	45	60	107	120	137	198	
Conciete, rennforced .	15	30	45	90	107	120	198	Structurally reinfarced
5 m 年 masonry .	30	45	76	107	137	152	1	These figures can be taken os
Waod	60	90	120	\cdots	\ldots		Theses ligures can be taken as
Timber	90	152	$\cdots \cdots$	-...........		guides only. These ligures can be taken os
Walts af laose material								guides only
Grick rubble	30	60	76	152	180			
Cloy, diy. . . .	90	120				-..........	
Loom, diy. Grovel or smoll erushed	60	90	120	Add 100% il wet
rack .	30	60	76	152	180		
Sand, dry. .	30	60	76	152	180		Add 100\% if wet.
Sondbogs filled with								Add 100% \% wol.
Buck rubblo.	51	76	76	157	178		
Clay, dry . .	102	152	Add 100\% of wel
Loam, dry Concrete, grovel or	76	127	152			,	Add 50\% A wet
small crushod rock	51	76	76	152				
5and. dry . . .	5	76	76	152	178			Add 100% if wet
Loose paropets of ${ }^{2}$								Add 100\% if wet.
Cloy.	107	152	\cdots	---.........		
Loam.	90	120	152	Add 50%, wet.
Sandl)	60	90	120		

NOTE. Protective thieknesses given ore for o single shot only (except') where direct fire weopons ore oble to get five ot six huts in the seme areo, the required protective thickress is appraximately twice thot indicoted
I Ono burst of five shots.
2 Thicknes ses given to newest 15 cm
${ }^{3}$ Far 3,000 psi concrate.
b. The pratective cover and at least the roof of the supporting structure of an emplocement should be a design unity thot freely moves in unison. Thot is, the overall cover and roof must be rigid enough to displace as a unit, yet the construction must be able to absorb or dampen the shock of an exploding shell.
c. Proctical fulfillment of this design unity is o sandwich construction in which the two outer loyers, burster course, ond roof structure, possess a certain amount of both rigidity ond resiliency, and the middle layer is a cushion of porous consistency.
d. The most effective test example of the design unity for resistance to direct hits of $155-\mathrm{mm}$, fuze-delay shells was the following design (see fig. 60).
(1) Burster course -1 foot ($301 / 2 \mathrm{~cm}$) of 6 inches $(15 \mathrm{~cm})$-to 8 inches (20 cm) rock.
(2) Cushion layer-1 foot ($301 / 2 \mathrm{~cm}$) thick of dry uncompacted soils.
(3) Structure roof- 10 inches (25 cm) thick of 2 inch (5 cm) by 12 inch ($301 / 2 \mathrm{~cm}$) planks laid in five layers, each layer 90° to adjacent layers.

Figure 60. Bunker.

Figure 60-Continued.

Figure 60 - Continued.

Figure 60-Continued.

ITEM	DESCRIPTION	NO. PCS
ROOF	$5 \mathrm{~cm} \times 30 \mathrm{~cm} \times 2.11 \mathrm{mLong}$-Wood	48 pcs
	$5 \mathrm{~cm} \times 30 \mathrm{~cm} \times 4.54 \mathrm{~m}$ Long	14 pcs
SIDE WALLS	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 2.42 \mathrm{~m}$ Long - Wood	26pes
ENTRANCE WALL	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 1.21 \mathrm{mLong}-$ Wood	20pcs
FIRING PORT AND		
ENTRANCE DOOR	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 30 \mathrm{~cm}$ Long - Wood	26pcs
FRONT AND REAR		
WALLS	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 1.51 \mathrm{mLong}$ - Wood	13pcs
FIRING PORT AND		
RETAINING WALL	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 1.00 \mathrm{~m}$ Long - Wood	8pcs
SIDE POST	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 2.85 \mathrm{~m}$ Long - Wood	6 pcs
SIDE POST	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 1.95 \mathrm{mLong}-$ Wood	2 pcs

Figure 60 - Continued.
e. In obtaining protection from direct hits of deloyed-fuze shells, it is impartant thot the burster caurse be thick and rigid enough ta effect detonation before the shell has passed through it. A l-faat ($301 / 2 \mathrm{~cm}$) thickness of 6 -inch (15 cm) -ta 8 -inch (10 cm) stane seems to be optimum for ammunition up through 155 mm .
f. The camouflage loyer of sail aver the burster caurse should be obaut 2 inches (5 cm) thick.
g. In timber canstructian, notching or grooving shauld be ovaided.
h. Timber fietd fortificotians with solid walls are undoubtedly stranger than the past, cap, and stringer type but require cansiderably mare timber.

Figure 61. Support of overheod cover on eorth banks.
i. It is preferoble thot o field fortificotion structure be bosed on the excovation floor, insteod of the ground-up type. If bosed on the groundup type, columns (past) should extend down into the ground ot the four corners for the purpose of onchoring ond supporting the structure.
i. See figures 60 and 61.
46. IMPROVISED OBSTACLES

See figures 62 through 66.

Figure 62. Belt of imbedded sharpened stakes.

Figure 63. Panii jungle trop.

ENEMY

Figure 64. Abatis used as roadblock.

Figure 65. Wire-rope roadblock.

Figure 66. Belt of log post obstocles.

Section III. Wire Obstocles

47. ESTIMATING BARBED WIRE REQUIREMENTS

When the length of front is token os stroight line distonce between limiting points, the totol length of wire obstocles moy be estimoted os follows:
o. Toctical Wire. Length of toctical wire is $11 / 4$ times the length of front times number of belts. This con be either three belts of 4- ond 2-poce double opron fence or two belts of triple stondord concertino.
b. Protective Wire. Length of protective wire entonglement for o defensive position is 5 times the length of the plotoon front times number of belts, times the number of plotoons. Becouse protective wire usuolly encircles eoch platoon, the length of entanglement per individuol plotoon is $21 / 2$ times the plotoon frontoge. This con be 1 belt of 4 - ond 2 -pace double opron fence or 1 belt of triple stondord concertino.
c. Supplementory Wire. Supplementory wire in front of the FEBA breoks up the line of toctical entonglements. It is $11 / 4$ times the unit frontoge, times the number of belts, times the number of plotoons. Behind the FEBA, it is $21 / 2$ times the unit depth, times the number of belts. Supplementory wire should be of identicol construction to the wire it supplements.
d. Supply ond Lobor. For construction estimotes of monhours ond moteriols, see tobles 27 ond 28.

Toble 27. Wire Entonglement Moteriols

Moterial		Approx wight, Kg	Approx length, M	Na. corriod by 1 man	Approx weight of mon-lood, Kg
Reel Bobbin		47.5	366	$1 / 2$	24
		3.5-4.0	27.5	4-6	14.5-24.5
5tandard barbad-wire concertina Expedient barbed-wire concertino		25	15.2	1	25
		13.5	6.1	1	13.5
Screw pickets	Long	4	1.6	4	16.3
	Medium	2.7	0.81	6	16.3
	Short	1.8	0.53	8	14.5
U-shoped pickets	Exira Long	7.25	2.4	3.4	21.8-29.0
	Long	4.5	1.5	4	18.1
	Medium	2.7	0.81	6	16.3
	Short	1.8	0.61	8	14.5
Wooden pickets	Extro Long	7.7-10.5	2.13	2	15.4-20.8
	Long	5.4.7.25	1.5	3	16.3-21.7
	Short	1.4-2.7	0.75	8	11.0-21.7

Table 28. Material and Labar Requirements far 300-meter Sections of Various Barbed-Wire Entanglements

Type of entonglement	Pickets				Borbed wire, no. of 400 m , $47.5 \cdot \mathrm{Kg}$ reels	No. of cancertinas	Staples	Kgs of materials per lin m of entanglement ${ }^{-}$	Man-haurs 10 erect 300 m of entanglement ${ }^{*}$
	$\begin{gathered} \text { Exira } \\ \text { lang } \end{gathered}$	Lang	Me. dium	Shart					
Dauble-apron, 4-and 2-pace		100	.	200	14-15	-	.	4.9	59
Double-apron, 6- and 3-poce		66	-	132	$13 \cdot 14$.		3.5	49
High wire (less guy wires)	.	198			17.19	.		59	79
Low wire, 4- and 2-pace	-	$\dot{\sim}$	100	200	11	.		3.7	49
4 -strond fence		100		2	5.6		-	1.9	20
Double expedient concertino		101		4	3	100	295	6.9	40
Triple expedient concertino	51	101		7	4	148	295	10.4	99
Triple stondord concertino	.	160	-		3	59	317	7.9	30

${ }^{1}$ Lawer number of reels applies when screw pickets are used; high number when U-shaped pickets ore used. Add difference between the twa to the higher number when wood pickets ore used.
${ }^{2}$ Average weight when ony issue metol pickets ore used.
${ }^{3}$ With the exception of the triple-standard concertinos, man-hours are based an the use of screw piekets. When driven pickets are used, odd 20 percent to man-hours. With experienced traops, reduce man-haurs by one-third. Increase mon-hours by 50 percent far night wark.
${ }^{4}$ Bosed an cancertınas being made up in rear oreos and reody for issue. One expedıent concertina apens ta 6 -meter length, os compored with 15 meters far a stordard cancertina; it requires 92 meters of stondord borbed wire, al so smoll quantities of No. 16 smooth wire for ties.
48. BARBED WIRE TIES

See figure 67.

top-eve tie

intermediate-eye tie

Figure 67. Barbed wire ties.
49. FOUR AND TWO PACE DOUBLE APRON FENCE
a. Erect from right to left (as yau face the enemy).
b. Spacing of pickets.
(1) Long pickets are four paces apart.
(2) Anchor pickets are placed two poces from the line of center pickets ond opposite the midpoint of the spoce between the center pickets.
(3) Anchor pickets ore olso ploced on ends of fence, four paces from the first and lost long pickets.
c. See figure 68.

Figure 68. Double opron fence.

50. SIX AND THREE PACE DOUBLE APRON FENCE

o. Erect from right to left (os you foce the enemy).
b. Spocing of pickets.
(1) Long pickets ore six poces oport.
(2) Anchor pickets ore ploced three poces from the line of center pickets ond opposite the midpoint of the spoce between the center pickets.
(3) Anchor pickets ore olso ploced on ends of fence, six poces from the first ond lost long pickets.

51. CONSTRUCTION PROCEDURE FOR DOUBLE APRON FENCES

o. First operotion - loyout ond instollotion of pickets (3 crews).
(1) First crew loys out long pickets.
(2). Second crew loys out short pickets.
(3) Third crew instolls oll pickets.
b. Second operotion-loyout ond instollotion of wire (men ore broken into 2-4 man crews to instoll wire).
(1) First wire, enemy diogonol.
(2) Second wire, enemy trip wire (5-10 cm off ground).
(3) Third ond fourth wire, enemy opron.
(4) Fifth, sixth, seventh, eighth, center fence (instoll from bottom up).
(5) Ninth wire, friendly diogonol.
(6) Tenth ond eleventh wire, friendly opron.
(7) Twelfth wire, friendly trip wire.
52. TRIPLE STANDARD CONCERTINA
o. Erect from right to left (os you foce the enemy).
b. Spoce pickets os follows:
(1) Long pickets ore five poces oport.
(2) Anchor pickets ore ploced two poces from end long pickets.
(3) Enemy ond friendly rows of pickets ore 3 feet (.9M) oport.
(4) Friendly picket row is offset from enemy row.
c. See figure 69 .

53. CONSTRUCTION PROCEDURE - TRIPLE STANDARD CONCERTINA

o. First operotion (3 crews).
(1) First crew loys out all pickets.
(2) Second crew instolls all pickets.
(3) Third crew loys out concertinos.
(o) One concertino in front of third picket on enemy side.
(b) Two concertinos to reor of third picket on friendly side.

Figure 69. Installing cancertinos.
(c) Remove binding wire and place on hondles.
(d) Repeot same perfarmonce every faurth picket thereafter.
b. Second aperation (All personnel).
(1) Instoll frant row concertina ond harizantol wire.
(a) Drap concertinas over pickets.
(b) Method of jaining (fig. 70).

1. Battom of old concertina on jaining picket.
2. Battom and top af new cancertino on jaining picket.
3. Tap af ald concertino on joining picket.
(2) Install reor row concertina ond horizontal wire.
(3) Install top raw concertina and rock to the reor horizantal wire.

Q
PLace BOTM Botton ans Top porino of ficcomp col OVEP PHCKET

(3)

PLACR TOP PORTION OF

Figure 70. Joining cancertinos.

54. LOW WIRE FENCE

This is like a 4-and 2-poce dauble apran fence, except that medium pickets instead of lang pickets are used in the centerline. The Nas. 5, 6 , and 7 wires ore not used, which results in all opran ond diagonal wires being much closer ta the graund. Being law ta the graund, this obstocle is easily hidden in tall grass ar shallow woter. For best results, it should be used in depth.

55. FOUR-STRAND CATTLE FENCE

This is the four-st:and center section of a double-opran fence. In farm cauntry, such an obstacle blends with the landscape. Waoden pickets at 2- ta 4 -pace intervals ore set up. If guy wires are used, they should be added separately when estimating because this material is nat included in the amounts listed in table 28.
a. Use eight men an short sectians of this fence. On 300-meter sectians, use up ta 17 men .
b. In the first operatian the working party is divided into two appraximately equal graups. The first graup lays aut lang pickets of 3meter intervals. It begins ond ends the section with an anchar picket, including anchor pickets for guys, if needed. The secand graup installs the pickets.
c. As each man campletes the first aperatian, he moves to the fence. These teams af twa ar faur men are organized ta instoll wires. In fourman teams, twa men carry the reel, and twa makes ties and tighten the wire. In the twa-man teams, the wire is unralled far 50 ta 100 meters, then the men make the ties. The first team installs the battom wire, and succeeding teoms instoll the next wires in order.

56. COMBINATION BANDS

Many types af fence may be combined in bonds ta form abstacles mare difficult ta breach thon single belts. Other voriatians moy be readily develaped.

57. PORTABLE BARBED-WIRE OBSTACLES

Standard concertinas are in this category becoase they ore reodily moved. Other portable barbed-wire obstacles are listed belaw.
a. Spirals of laase wire ore used to fill open spoces in and between wire entanglements. Prepore them by driving faur 1 -meter posts into the graund ta form a diamond 1 meter by 0.5 meter. Wind 75 meters of wire araund therr from bottom ta tap. Remove wire from the frame, tie it of the quorter points, then corry the spirals to the site where they are apened and used.

Figure 71. Knife rest.
b. The knife rest (fig 71)
with barbed wire. It is about portable wooden or metal frome strung
It must be securely fixed in po 4.5 meters long on 1.2 meters high.
ion. c. Right offer o defensive position. meters long and 1.2 meters high. ground and stretch on pick eth the wires about outside of grenade range in long gross, on the side of o Doth, 1.5 -meter intervals. 25 centimeters obove the d. Tanglefoot is irregular potto, or of the edge of Conceal them it in o minimum depth of where concealment edge of o field. Ploce of from 0.75 to 3 meth of 9 meters. Plocent is needed (f gig. 72). Use
to 0.75 meters. Height of supports for port of the this wire in scrub barbed wire irregular intervals e. The trestle apron fence and short pick, if possible. varies from 0.25 of 5. to 6 -meter intervals fence (fig. 73) pickets in open arose bushes os - 6-meter intervals to corny. 73) hos inches in open ground. on the enemy sides -pieces spaced

Figure 72. Tanglefoot.

Figure 73 . Trestle apron fence.

CHAPTER 5

MARKING OF BRIDGES AND VEHICLES

58. MARKING OF BRIDGES

o. Clossificotion.
(1) The closs number of o bridge represents ${ }^{\text {th }}$ he sofe lood-corrying copocity of o single-lone bridge, or o single lone of o multilone bridge under normal crossing conditions. The bridge closs number moy be a single closs number, which will permit either o wheeled or trocked vehicle to cross if the vehicle closs number is equal to or less thon the bridge class number. The bridge closs number may be o duol closs number, which indicotes one normol closs number for wheeled vehicles ond onother normal closs number for tracked vehicles. Dual classificotion moy be used for bridges with o copocity greoter thon Closs 30 . For reconnoissonce reports and tobles, duol closs numbers are written (70)/ $50,(80) / 60,(50) / 70$, ond so on, with the wheeled closs number in porentheses obove the trocked vehicle closs number.
(2) The normal closs number is the lorgest bridge closs number (single or duol) which permits the normol crossing of vehicles whose vehicle closs numbers ore equal to or less thon the bridge closs number.
(3) A speciol closs number represents the lood-corrying copocity of - bridge under special crossing conditions. These numbers ore not posted on stondord bridge morking signs, but on supplementory signs.
(4) Width requirements. See toble 29.
b. Bridge Signs.
(1) For prefobricoted bridges ond ferries, bridge signs indicote the closs number given in technical monuols. For bridges fixed in place or for nonstondord fixed bridges designed in the field, bridge signs sholl indicate the closs number found by methods shown in chopter 7.
(2) All single-lone bridge signs ore o minimum of 16 inches in diometer. For multilone ond duol closs bridges, the signs ore of leost 20 inches in diometer. Numerols ore block on o yellow bockground, with - block border $11 / 2$ inches wide.

Toble 29. Bridge Width Requirements

Bridge class	$4 \cdot 12$	$13 \cdot 30$	$31 \cdot 60$	$61 \cdot 100$
Ono-lane width	$9^{\prime} 0^{\prime \prime}$	$11^{\prime \prime} 0^{\prime \prime}$	$13^{\prime} 2^{\prime \prime}$	$14^{\prime \prime} 9^{\prime \prime}$
Twa-lane width	$18^{\prime} 0^{\prime \prime}$	$18^{\prime} 0^{\prime \prime}$	$24^{\prime} 0^{\prime \prime}$	$27^{\prime \prime}$

(3) A multilane bridge hos o roodway wide enough to corry ot least two lones of troffic simultaneously. If each lone hos the some closs, the signs ore the some as for single-lane bridges. If the lones ore of different closses, eoch lone has o class sign. Two-lone bridges moy corry a combinotion circular sign (fig. 74), which gives the normol twowoy classificotion on the left ond the computed, one-way clossification on the right.
(4) Duol clossificotion is used for bridges with a copacity greater than class 30 . Two numbers are then shown on the sign: the upper one for wheeled vehicles, the lower one for tracked vehicles (fig. 74). Dualcloss two-lone bridges may be designated by o composite sign indicating both dual-class and combination classes (fig. 74).

Figure 74. Bridge classificotion signs.
c. Traffic Contral. Ta expedite passage of vehicles and to prevent damage to the bridge, rigid contral af bridge traffic must be maintained. This is done by the fallowing control measures wherever possible.
(1) A troffic park is set up where vehicles con be halted and dispersed so as to avaid congestion.
(2) A turnout area is pravided for vehicles ta turn aff the raad and out of the line of traffic. It is meant primarily far vehicles having mechonical troubles, but it can be used as a limited troffic park.
(3) Telliales are provided for bridges having overheod framing, trolley wires, or ather features which limit averhead clearonce (fig. 75).
(4) A normal crassing is defined as one in which the vehicle class number is equal ta ar less than the bridge classification number, where vehicles mointain 30 -yord gops, and where speed is restricted ta 25 miles per hour. On flaating bridges, sudden stopping or acceleration is farbidden.
(5) Special crassings are outharized by the lacal tactical commander under exceptional aperoting canditians in the field to permit o vehicle ta crass a bridge, or other crassing meons, whose class number

Figure 75. Exomple of telltale, turnaut, ond sign arangement for singlelone bridges.
is less thon thot of the vehicle. Speciol crossings ore either coution crossings or risk crossings.
(0) In o coution crossing of o bridge, vehicles with o clossification up to 25 percent above the copocity of the nonstondord bridge ore ollowed to cross under strict troffic control. Coution crossings also require thot the vehicle remoin on the centerline, mointoin o 50 -yord distonce from other vehicles, not exceed 8 miles per hour, not stop, not occelerote, ond not hove its geors shifted on the bridge.
(b) A risk crossing may be mode only on stondord prefobricated fixed and flooting bridges. Risk crossings ore mode only in the grectest emergencies. The vehicle moves on the centerline, does not exceed 3 miles per hour, is the only vehicle on the bridge, does not stop, is not occeleroted, ond does not shift geors on the bridge. The vehicle closs number must not exceed the published risk class. After the crossing, ond before other troffic is permitted, the eng ineer officer should reinspect the entire bridge.

59. MARKING OF VEHICLES

o. Weight Clossificotion. All vehicles with o gross weight over 3 tons ond all troilers with roted paylood over $11 / 2$ tons ore ossigned classificotion numbers. These numbers indicote o relotionship between the lood carrying copocity of o bridge ond the effect produced on it by a vehicle (fig. 76).
b. Vehicle Signs.
(1) Clossificotion numbers ossigned to vehicles ore whole numbers ronging from 4 through 150 . Front signs on o vehicle ore 9 inches in diometer ond the side signs are 6 inches in diometer. The signs hove block numerols on a yellow bockground, and the numerols ore os lorge os the sign will permit. Ploce the front sign obove the bumper to the driver's right ond below his line of vision; ond the side sign on the right side of the vehicle in a ploce where normal use of the vehicle does not conceol it from view.
(2) With o combinotion vehicle (two or more single vehicles spaced less thon 30 yords oport), the front sign shows the normol vehicle closs for the combinotion with the letter " C '' in red obove the closs number. Eoch vehicle in the combinotion corries o side sign which shows its closs os o single vehicle.
(3) If one vehicle is towing onother, they ore considered seporote. However, if they ore both on the some spon ond the distonce between them is less thon 30 yords, they ore considered os o combinotion vehicle with o temporory front sign showing the closs number. If the sum of the closs numbers of the two vehicles is 60 or less, use the formulo

EFFECT OF VEHICLE ON BRIDGE DEPENDS ON:

1. GROSS WEIGHT OF VEHICLE
2. WEIGHT DISTRIBUTION TO AXLES
3. SPEED AT WHICH VEHICLE CROSSES BRIDGE

Figure 76. Effect of vehicle on bridge.
$9 / 10(A+B)$ to obto in the combinotion closs, where \dot{A} is closs of the first vehicle, ond B is the closs of the second vehicle. If the closs nombers odd to more thon 60 , use the sum os the combinotion closs.
60. DIMENSIONS, WEIGHTS, AND CLASSIFICATION OF VEHICLES For informotion concerning specific vehiclos see oppendix II.

CHAPTER 6 FLOATING EQUIPAGE

Sectian 1. Bridges

61. ANCHORAGE SYSTEMS

a. Ancharages must be pravided to secure the bridge between the abutments and ta insure cantinued alinement. The selectian of an anchorage system is influenced by the width af the river; its velacity, turbulence, variatians in stage; debris flaw; nature af material in the river bed and embankments; and the time, materials, and persannel available. The ancharage system is designed ta withstand the warst canditians anticipated. The basic ancharage systems used are: avarhead cable-bridle line systems, share guys, kedge anchars, and a cambinatian af kedge anchars and share guys. The mast satisfactary method af ancharing a flaating bridge is the averhead cable bridle-line system supplemented by share guys. Flaat supparted cables, share guys, and kedge anchars shauld nat be used as the final ancharage system except when it is nat passible ta install an averhead cable system. Althaugh cambinatians of the basic ancharage systems may be used during assembly and far reinforcement, the laad cannat be praperly divided between twa systems; ane system must supplement the ather. Overhead cable systems can hald in currents up ta 11 fps ; cambinatian kedge anchors and share guys up ta 5 fps; and kedge anchars ar share guys alane up ta 3 fps. Kedge anchars are used on every bay upstream and every ather bay dawnstream. Share guys are used an every sixth bay upstream and every tenth bay dawnstream. When an averhead cable system is used, a bridle line is used an every panton.
b. See figure 77 far a typical layaut of an averhead cable-bridle line system. Table 30 can be used ta select the required size ar the required number af averhead cables for a particular situatian.
Example: a 400-faat span reinfarced M4T6 bridge in a maximum current af 9 fps wauld require 1 each $11 / 4$-inch-diameter cable, ar 2 each 1 -inch-diameter cables, ar 3 each $3 / 4$-inch-diameter cables (fram table 30).

62. ALUMINUM FLOATING FOOTBRIDGE

a. The aluminum faatbridge is the standard means af crassing foot traaps. This faatbridge set furnishes 472 feet 6 inches af bridge, and

Figure 77. Typical anchor cable system.
can be used in currents up to 11 feet per second. One bay of bridge consists of one panton, one treadway, and four handrail posts, which provides 11 feet 3 inches of bridging. The bridge is erected by successively connecting individual bays to the near share end and pushing the entire bridge toward the far shore. Capacity, in men per minute with a current velocity up to 8 feet per second, is: day - 75 ; moon-light-40; blackout-25. This is based on troops crossing single file at a 2-pace interval in daylight and moanlight at double time. Reduce the capacities by 20 percent in currents af 9-11 fps.

Table 30. Anchor Cable Requirements

$\begin{gathered} \text { BRIDGE } \\ \text { SPAM } \\ \text { (ft) } \\ \hline \end{gathered}$	brides TrPE ASSI	SIZE (IN.) AND NUMBER OF CABLES FOR SPECIFIEO STREAM VELOCITIES												
			5 FPS			7 FPS			9 FPS			11 FPS		
			SIMELE	DUAL	T819.15	SIMELE	DJal	TRIPLE	Sbugle	OUAL	TRIPLE	SIMELE	OUAL	TRIPLE
200	M4	N	3/6	3/6	1/4	59	5/8	1/6	1/2	5/6	F\%	1/2	$1 / 2$	5/a
		R	$1 / 2$	\%	\%	1/2	5\%	\%	5	1/2	5\%	\%	1/2	1/2
	M4T6	N	1/2	F/3	5/8	5/6	1/2	1/2	$1 / 4$	5	$1 / 2$	7/8	$3 / 4$	5
	a CL 60	R	Y/8	1/2	5/5	3/4	5/8	1/2	7/8	$3 / 4$	\%	11/6	\%	$3 / 4$
400	M4	N	1/2	3/	\% $/ 1$	$1 / 2$	$1 / 2$	\%	5/8	$1 / 2$	\%	1/4.	$5 /$	$1 / 2$
		R	\%	1/2	\%	$5 /$	1/2	1/2	$1 / 4$	5	1/2	1/8	1/4	$5 / 4$
	M4T6	N	9	1/2	1/2	1/4	5/6	1/2	1	1/8	5/9	11/4	1	$3 / 4$
	8 CL 60	R	$3 / 4$	593	1/2	1	3/4	5/6	11/4	1	1/4	11/2	11/4	7/8
600	M4	N	5/8	$1 / 2$	3/1/	5/8	$1 / 2$	\%/4	$1 / 4$	場	1/2	7/8	$3 / 4$	\%/8
		R	$1 / 4$	$1 / 2$	$1 / 2$	$3 / 4$	5 4	t/2	7/6	$3 / 4$	F/8	1	\%	7/4
	M4T6	N	$3 / 4$	F/8	$1 / 2$	1	$1 / 4$	5	11/4	1	$3 / 4$	$11 / 2$	11/4	7\%
	8 CL 60	R	1	$1 / 4$	\%	11/8	1	$3 / 4$	11/2	11/4	7/8		$11 / 2$	1\%
800	M4	N	\%/8	1/2	\%/9	$3 / 4$	5	1/2	7/6	$1 / 4$	5	1	7/10	$3 / 4$
		R	$1 / 4$	94	1/2	1/8	1/4	5/9	1	\%	$3 / 4$	11/8	1	7/8
	M4T6	N	1/8	$3 / 4$	5	11/6	1/8	$3 / 4$	178	11/6	7/6		11/2	11/8
	\& CL 60	R	11/9	\%	$3 / 4$	1\%8	11/2	/ $/$		17/4	1			11/4
1000	M4	N	3/4	9	1/2	7/8	\%	1/2	1	$4 / 4$	59	11/8	\%	$3 / 4$
		R	7/0	$3 / 4$	9/6	1	$3 / 4$	㐌	11/6	\% $/ 8$	$3 / 4$	11/4	11/2	7/2
	$\begin{array}{\|l\|} \hline \text { M4T6 } \\ \text { \& CL } 60 \\ \hline \end{array}$	N	1	7/8	$1 / 4$	11/4	1	7/8	$11 / 2$	173	1	\cdots	11/4
		R	11/4	1	$3 / 4$	$11 / 2$	$11 / 4$	1	.		11/8	. .	\cdots	1\%6

b. Construction and transportation data are found in table 31.
c. As an expedient vehicle bridge, the aluminum footbridge can be assembled with pontons butted next ta one another and offset alternately left and right of the centerline. Two treadways are used as vehicle tracks. One-quarter ton vehicles with trailers can be crossed on this bridge. Use appropriate anchorage system. See paragraph 61 and figure 78.

Toble 31. Aluminum Flooting Faotbridge Doto

8ridge set	Bosis of issue	Suggestad working porty		
		Oetoil	HCO	EM
Nommol Assembly: 472 ft 6 in.	One set to eoch engineer floot bridge compony*	Neor-shore onchor coble.. for-shore onchor coble..	1	6 7
Light vehicle	Vehicles required for	8ridle line..		2
bridge: 100 ft .	tronsportation of bridge	Guy line		5
Expedient rofts:	set:	Shore os sembly.........	1	6
3	Two, $21 / 2$-tan 6×6	Assembly corrying.. ...		6
Mojor items:	corgo trucks with	River ossembly...	1	4
Ponton 42	21/2-ton pole-type	Hondroil.		3
Treodwoys 42	troilers or 3, $21 / 2$-ton corgo trucks.	Plus 2 EM par 100 ft of bridge.		

* Also ane set to eoch Aiborna Engineter Bn.

63. LIGHT TACTICAL BRIDGE

o. The light toctical flooting bridge is ossembled fram the light tacfical raft equipment. Both raft and bridge cansist of a deck built af oluminum sections supported on oluminum pontons. With a trained crew, during daylight hours, ond in still woter, this bridge can be hond erected at o rote of $31 / 2$ feet per minute. Each boy provides 11 feet of bridging with a deck width of 9 feet. This equipment is issued os o light tacticol raft set.
b. See table 32, for bridge capacities. Organizotion of ossembly crews is given in table 32.

64. M4 FLOATING BRIDGE

0. The M4 bridge boy consists of two M4 aluminum holf pontans joined stern to stern with a deck of hallaw aluminum balk. The deck bolk pattern is sa designed thot a "cantinuous beam" oction results which distributes the lood over mare thon one ponton. With 18 bolk ocross the deck, the roodway width is 166 inches. The effective length af ane boy is 15 feet.
b. The M4 bridge is currently stacked as a Standard B item ond may be requisitioned against existing needs by length of bridging needed rother thon by bridge sets.
c. For a layaut of the M4 bridge see figure 79 ond for canstruction and tronspartotion data see table 34. Copacities may be found in toble 32.

TWO BRIDGE 8AYS CONNECTED
Figure 78. Assembly of light vehicle bridge.

Table 32. Flaating Bridge Capacities

Type of bridge	Iype of crossing	Stream velocities in feet per second for spacifiad ossembly ${ }^{\text {i }}$						Streom velocities in feat per second for specified ossembly'					
		Normal ${ }^{\text {- }}$						Reinforced*					
		3	5.	7	8	9	11	3	5	7	8	9	11
M4 ${ }^{\text {s }}$	Mormol	60	60	${ }^{(45)}{ }^{4} 50$	(45) 45	(30) 35	(18) 20	95	95	$\begin{array}{\|ll\|} \hline(75) & \\ & 80 \\ \hline \end{array}$	(60) 65	(45)	(24)
	Caution	88	65	(58)	(52) 53	(44) 46	(29) 31	100	$\begin{array}{\|c\|} \hline(100) \\ \\ \hline 9 \end{array}$	(88)	$\begin{array}{\|cc\|} \hline(75) & \\ & \\ \hline \end{array}$	62	(35) $\begin{array}{ll} \\ & 37 \\ & \\ \end{array}$
	Risk	72	68	(61) 62	(58) 59	(53) 54	(37) 39	$\begin{array}{ll} (105) & \\ & 100 \end{array}$	${ }^{(105)}$	(101)	(88) 85	(74) 73	(45) 46
Closs 600°	Normal	(60)	(55)	(45) ss	(40) 50	(35) 45	(22)	65	65	65	65	65	(30) 35
	Coution	(65) 70	67	(56) 61	(52) 56	(45)	(34)	75	75	75	75	75	(47) 51
	Risk	(75)	(72) 11	(67) 72	(62) 67	(57) 62	(46) 50	85	85	85	85	85	(70) 74
M416 ${ }^{5}$	Narmal	(50) 55	(45) 55	(40) 30	(35) 45	(30) 40	(25) 30	75	75	(70)	(65) 70	(55) 60	(27)
	Coution	(60) 61	(58) 59	(54) 55	(49) 51	(45)	(35) 37	80	80	79	73	(66) 67	(43) 45
	Risk	(68) 69	(66)	(62) 63	(59) 60	(54) 56	(43)	90	90	90	87	81	(59) 60

See footnotes of ond of toble.

Table 32. - Continued.

Type af bridge	Type of crassing	Stream valacitles in feel per second for spacified assambly ${ }^{1}$						Stream valoclities In feet per second far spectifed assambly ${ }^{1}$					
		Normol ${ }^{2}$						lainforced ${ }^{\text {s }}$					
		3	5	7	8	9	11	3	5	. 7	8	9	11
Light toctical roft floating bridge	Normol	16	16	13	11	8	2						
	Coution	18	18	15	12	9	3						
	Risk	21	21	17	14	11	5						

${ }^{1}$ Use 2 -spoce distonce far 3ips only; 1 boy distonce for 4 ond 5 fps; 2 -bay distance for 6 ond 7 fps.
${ }^{2}$ Bosed upon obutment deck level within 10 inches of flooting bridge dack level, except for hinged or other special and spans. Where limitations ore axareded, capacities must be reduced.
${ }^{3}$ Reinforced by placing 3 flooting supports under 2 boys of decking. 50 parcent reinforced.
${ }^{4}$ (Wheeled veticle classification)/Trocked vehicle classification. Single classificatian indicates both clossificotions ore the same.
${ }^{5}$ Copocities based on roadway with hs of 18 bolk ond deck width of 22 bolk. Reinferced ossembly requires a $38^{\prime} 4^{\prime \prime}$ superimposed end spen.
${ }^{6}$ Reinforced bridge copocities up to 9 fps ore contralled by end spon limitotions.

65. CLASS 60 FLOATING BRIDGE

a. The Closs 60 bridge bay cansists af twa steel deck-tread panels, twa curbs, and ane filler panel with an effective bridging length of 15 feet and a raadway width af 162 inches. The flaating suppart far one bay cansists of twa pneumatic half flaats jained stern to stern and, when praperly saddled with the equipment pravided, it is rated at 24 tons capacity. The bridge requires cranes and air campressars far assembly.
b. Canstructian and transpartatian data are listed in table 35, and capacities are given in table 32.
c. Twa trestle assemblies are furnished with each set. See parographs 69 thraugh 79.

66. M4T6 FLOATING BRIDGE

a. Thraugh the use af deck balk stiffeners and saddle adapters, the deck balk fram the M4 flaating bridge and the pneumatic. flaats fram the class 60 flaating bridge can be cambined ta build a hand erected

Figure 79. Flaating bridge, M4.
high capacity bridge. An air compressor is required for assembly. The deck farms a continuous beam action over the pontons and provides an effective bridging length of 15 feet per bay with a roadway width of 166 inches. See figure 80 for deck balk layout.
b. Construction and transportation data are listed in table 36 and capacities are given in table 32.
c. Two trestle assemblies are furnished with each set. See section II, this chapter.
d. For information about connection of the M4T6 bridge to the M4 and class 60 floating bridges, see TM 5-210.

Table 33. Organization for Assembly of Light Tactical Bridge by Successive Pontons

Details	NCO	EM	Summary of Tasks
Pontan	1	10	Unload, launch, and join half pontons.
Deck	1	10	Unload and place deck panels, curbs and filler panels on pontons.
Ponton delivery		2	Deliver complete bays to bridgeconnecting site.
Bridge connecting. . .	1	4	Connect assembled bays to the bridge.
Near-shore abutment.	1	8	Construct near-shore abutment; conneat articulator and ramps; and maintain bridge alinement.
Far-shore abutment. .	1	8	Construct far-shore abutment, install end section articulator and ramps.
Anchorage	2	12	Install anchar cable, bridle lines, and shore guys (see TM 5210 and para 61 FM 5-34)

Toble 34. Construction and Transportation Data of M4

9ridge sel	Standord 8 Stock Bosis of Issua	Suggestod working party		
	Closs iy	Oetail	HCO	EM
Fleating bridga: 608 ft 4 in.	Vohides required for manspertation of bridge set:	Neor-shore abutment Pontan autfiting (2 atas). Ponton delivary (2 craws). .	1	36 10
Fixed bridges:		Anchorage	2	12
2-23 ft	3/2.ton cargo truck	Solk cortying	2	88
2-30 fr	21/2.tan cargo truck	Bolk loying.......	1	8
2-38 ft	21/2-ton truck, bolstor	Forshore abutment.	1	16
2-45 f	$21 / 2 \cdot \operatorname{ton}$ holster trailen 21/.ton pole type frailes	Pin thecking	1	3
tofts:	5.ton demp truck	Iotal....	14	181
4-4-panton	Iransported by			
4-6.penton 4-7-penton	ergonis vchicles of the using unit.			

Table 35. Canstruction and Transpartatian Data af Class 60

Bridge sat	Bosis of issua*	Suggested working perty		
		Dotail	MCO	EM
Floating bridge: 135 ft .	Closs iv	Supervisory Crone craw	2	
	Vahislos required for		2	1
Fixed tridges:	transportotion of	Floot inflotion.	2	20
$4,30 \mathrm{ft}$ 3,45	tridge sef:	Oack panal	1	9 6
2, 60 f		Floot hondling . . .		0
1, 75 ft	9 ea. 5-ton 6×6 militory	Single bay, cannecting......	1	6
1 multispan	bridging trucks corry	800t trew		4
from 85 to	one camplote bay eoch.	Bridge ossambly	1	0
92 ft	3 so. corry otcossorias	Ancharage.	1	10
Rofts:	came	Trastle	1	8
4, 5, or 6 floot.	M4T6 see toble 36.	Tatal. .	10	80

[^0]Table 36. Canstructian and Transportatian Data af M4T6

midge sat	Rasis of issue*	Suggosted working porty		
Mormal floating bridge.	Divisional Engr. 4 sets.	Detal	MCO	EM por crew
One 4.float and one 5 -floct r sinforced rofs. 2 fleating bridges, 75 h ., ons without reinforting balk an and flact, 338 ft .4 in . span fixed bridges.	nene. Enginest fleat bridge campony (S bridge sets of $141^{\prime} 8^{\prime \prime}$ eoch for a float bridge compony at foll strungh, and 3 sats for o company at raduced strength).	Float inflotian. Saddle assembly Assembled floot delivery Bolk-carrying from shase Balk-laying \qquad Ancharage. ... Near-shore abutment Far-shore abutment.	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 8 \\ 20 \\ 4 \\ 40 \\ 12 \\ 12 \\ 8 \\ 8 \end{array}$

*Moy bo partiol issue af class 60 steel treodway bridge transportation same as slass 60 bridge set. See toble 35.

OFFSET SADDLE ADAPTER REINFORCED END SPAN ASSEMBLY

Figure 80. Bridge, flaating, aluminum deck-balk superstructure (M4T6).

67. AMPHIBIOUS RIVER CROSSING EQUIPMENT (ARCE-FRENCH)

o. Descriptian.
(1) This omphibiaus river-crossing equipment consists af these twa majar items: the amphibious bridge vehicle, class 60 (ABV-60); the amphibious romp vehicle, closs 60 (ARV-60).
(2) The basic unit of each omphibiaus vehicle is a welded steelplate water-tight hull mounted an a four-wheel drive chossis.
(3) Ta insure stobility ond buoyoncy during novigotion, eoch vehicle is equipped with twa pneumotic floots obaut 36 feet in length ond $41 / 2$ feet in diometer, attoched ta the sides. A compressor is kept in operation during water travel ta maintoin o constont pressure on the floots.
(4) An integral port af eoch ABV-60 is 26 feet 3 inches af decking, folded for rood tronspart, and pivated ond widened far bridge canstruction. After entering the water, the deck sectian is rototed 90°, widened to 13 feet 2 inches, ond deck-filler ponels ore added.
(5) The effective length af the ramp af he ARV-60 is 26 feet 3 inches. It is 13 feet 2 inches wide.
(6) See toble 37 for vehicle specificotions.
b. Copacity. The French ARCE is classified as o closs 60 bridge in currents up ta 9.8 fps .
c. Operatian.
(1) A four-man crew, cansisting af o driver, pilat, and two crewmen, is required to operate the vehicle an lond, in the woter, ond during bridge constructian.
(2) The ABV-60 enters the woter, reody far incorparotian onta o bridge ar raft, os 026 foot 3 inch flooting sectian. All mavements of the decking during canstructian ore hydroulicolly controlled. As successive units enter the water they are joined until the required length of bridge or raft has been built, then romps ore odded ta eoch end.
(3) The end ramp is tronsported by the ARV-60. The corrier unit positions the romp far connection to the bridge ar raft and is disengoged when the cannectian has been made. All mavement of the ramp during construction and operotion is dane by the hydroulic system of the carrier ond bridge vehicle to which it is cannected.

68. MOBILE FLOATING ASSAULT BRIDGE/FERRY
 (MFAB/F-U.S.)

a. Description.
(1) This omphibious river crassing equipment consists of a bosic hull of aluminum plote with either on intermediote superstructure ar on

Table 37. Mabile Flaating Assault Bridge Vehicles

Specificatian	U.S.	French
Vehicle length	42'-3'	$36^{\prime}-0^{\prime \prime}$
Vehicle width - Land travel	$12^{\prime}-0^{\prime \prime}$	10'-0"
-Intermediate		$13^{\prime}-0^{\prime \prime}$
-Water travel	12'-0"	19'-8"
Vehicle height - Interiar bay	10'-6"	
-End bay..	$11 \text { " }$	$12^{\prime}-10^{\prime \prime}$
Draft-unlaaded		
Atmaspheric wheel well	$2^{\prime}-7^{\prime \prime}$	-
Air pressure wheel well.	2'-0"	$2^{\prime}-0^{\prime \prime}$
Weight-Tans - Interiar bay	23.75	29.70
-End bay.	25.13	30.20
Tuming radius	40'-0"	57'-5"
Vehicle speed - Land travel - MPH	35	37
Fuel tank capacity -U.S. gallans.	100	132
Engine harsepawer	335	222
Superstructure dimensions		
Length - Interiar bay.	26'0'0'	
—End bay	$37^{\prime}-0^{\prime \prime}$	26'-3"'
Width	13'-6"	13'-2"
Ramp articulatian -Abave harizantal	$6^{\prime}-3^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$
-Belaw harizantal	$\overline{6}^{\prime}-3^{\prime \prime}$	$1^{\prime}-0^{\prime \prime}$

articulating ramp end sectian mounted an tap of it. The hull alane pravides all the buayancy for the vehicle and the bridge laad.
(2) The faur wheels which prapel the MFAB/F unit an lond retract in-the water and the wheel wells can be air-pressurized for added buayancy.
(3) Similar ta the French ARCE, the U.S. MFAB/F has a superstructure which is ratated 90° ta farm ane bay af bridge decking.
(4) See table 37 far vehicle specificatians.
(5) Effective length af the ramp is 37 feet, and the interiar bay is 26 feet.
b. Capacity. The U.S. MOFAB is classified as a class $\mathbf{0 0}$ bridge.
c. Operatian. A three man crew aperates the bridge unit an land and in the water, ratating the superstructure and maneuvering to cannect the unit to onather interiar bay ar ramp unit. The ramp daes not discannect fram the ramp vehicle os with the french ARCE.

Section II. Rofts, Fixed Spon Assemblies, and Boats

69. RAFT POWER AND PERSONNEL

All stondard rafts built from stondord bridge sets may be powered by properly rigged 19 -faat ar 27 -faot bridge erectian power boats. One 19 -taat baot may be used in currents not aver 5 fps . In currents aver 5 fps, normally two 19 -foat baots moy be substituted far one 27 -foat baot. Rafts built from the light toctical roft set ore normolly pawered with from ane ta faur autbaard motars. All standard rofts require appraximotely one squad af men far aperation plus pawer baot aperatars. Where stream velacities ore so high os ta prevent avoilable pawer sources fram pushing a roft stroight ocross the streom, the unlaading point must be dawn streom fram the looding point. Use steel pickets in hord soil and wood pickets in softer sails to form haldfosts to secure rofts far looding ond unloading.

70. EXPEDIENT RAFTS USING ALUMINUM FOOTBRIDGE

Expedient persannel or vehicle rafts moy be constructed by plocing one or three widths af oluminum footbridge treodway, side by side ocross o row of two, three, ar five pontons fram the some set, olso butted side by side. Treadwoys connected ta the twa outside deck treodways will farm a ramp far vehicle looding. A single $1 / 4$-tan truck ar a single $1 / 4$-tan troiler (securely blocked ar tied down) is the maximum laad thot shauld be ottempted with the vehiculor roft. The rofts ore propelled by poles, poddles, or outbaord matars (fig. 81).

Figure 81. Expedient rofts built fram the aluminum faatbridge set.

142
Table 38. Raft Capacities

Type of roft	No. of pontons or floots	Type of crossing	Class of roft				Length	
			Stream Velocity, fos				Overoll, including romps	Avoiloble for looding*
			5	7	9	11		
Class 60	4, normol		(40)	(40)	(35)	(25)	$92^{\prime}-5^{\prime \prime}$	$51^{\prime}-0^{\prime \prime}$
		Normal	45	45	40	30		
		Risk	$\begin{gathered} (50) \\ 55 \end{gathered}$	$\begin{gathered} (50) \\ 55 \end{gathered}$	(45) 50	(35) 40		
	4, reinforced	Normol	(45)	(40)	(35)	(25)	83'-1"	$40^{\prime}-0^{\prime \prime}$
		Wormol	55	45	40	30		
		Risk	(55)	(50)	(45)	(35)		
		Risk	-60	55	50	40		
	5, normol	Normol	(50)	(50)	(40)	(30)	107'-5"	$66^{\prime}-0^{\prime \prime}$
			55	55	45	35		
		Risk	(60)	(60)	(50)	(40)		
			65	65	55	45		
	5. reinforced	Normol	(55)	(55)	(45)	(35)	$92 \cdot$-5'	54' $-6^{\prime \prime}$
			60	55	50	40		
			(60)	(60)	(55)	(45)		
		Risk	70	65	60	50		
	5, with one short deck boy reinforced	- Normal	(60)	(55)	(50)	(45)	83'-1"	$43^{\prime}-9^{\prime \prime}$
		- Normol	65	60	55	50		
		Risk	(65)	(65)	(60)	(55)		
	6, reinforced						92'-5"	$57^{\prime}-0^{\prime \prime}$
		Normol	75	$\begin{array}{r} 109 \\ 75 \\ \hline \end{array}$	$\begin{array}{r} 04 \\ 65 \\ \hline \end{array}$	55		
		Risk	(80)	(80)	(70)	(60)		
		Risk	90	90	80	70		
	6, with one short deck boy rainforced	Mormol	(60)	(60)	(55)	(45)	98' $9^{\prime \prime}$	$50^{\prime}-10^{\prime \prime}$
		Hormol	70	70	60	50		
		Risk	(75)	(75)	(65)	(55)		
M4	4, normol							
		Mormol	(50)	(50)	55	(40)	$87^{\prime}-0^{\prime \prime}$	$51^{\prime \prime}-8$
			(55)	(55)				
		Risk	60	60	60	50		
	6, partiolly reinforced	Mormol	(70)	(70)	(65)	(50)	87'-0'	$51^{\prime}-8^{\prime \prime}$
			75	75	70	55		
		Risk	(75)	(75)	(75)	(55)		
		Risk	80	80	80	60		

	7, fully	Normal	$\begin{gathered} \text { (85) } \\ 90 \end{gathered}$	$\begin{gathered} (85) \\ 90 \end{gathered}$	(80) 85	(55)	87'-0"		-8'		
	reinforced	Risk	$\begin{gathered} 90) \\ 95 \end{gathered}$	$\begin{gathered} (90) \\ 95 \end{gathered}$	(90) 95	$\begin{gathered} (65) \\ 70 \end{gathered}$					
M4T6	4, normol		(50)	(45)	(35)	(30)	$87^{\prime}-1{ }^{\prime \prime}$	$51^{\prime}-8{ }^{\prime \prime}$			
		Nomal	55	50	40	35					
			(60)	(55)	(45)	(35)					
		Risk	65	60	50	40					
	5, reint forced		(60)	(60)	(55)	(45)	889'-9'	$50^{\prime}-1 /$			
		Mormal	65	65	60	50					
		Risk	(70)	(70)	(65)	(55)					
			75	75	70	60					
Light tactical roft w/ ariculators	4 pentens	Normal	12	12	8	0	58				
	3 bays	Risk	14	14	12	4					
	5 pontons	Mormal	9	9	8	2	80				
	5 boys	Risk	11	11	11	6					
	6 pantons	Mormal	13	13	13	5	69				
	4 boys	Risk	15	15	15	11	5heom width fi.				
Operating characteristios of rafts											
							250	500	1,000		
Mo. of r 50\% Mo. of	aund trips or night or fits which	hr in dverse co a	rents	5 fps \ldots y of	doy site	(rod	$\begin{array}{r} 10 \\ 1 \end{array}$	6	4 3		

-Meesured fram autside edge to autside adge of end pontans or float soddle beams. MOTES.

1. Mumerals in parentheses reprosent wheeled vehicle class; numerals without parenthases represent troded vehicle class.
2. Capacities are based on looding rafts with center of gravity of loads $6^{\prime \prime}$ downstream fram top af roft and an properly inflated floats.
3. Extrome coution is requirod in looding and unlaoding vehicles weighing mare than 70 tons.
4. Roodway width consists of 18 balk between curbs with 22 bolk overall (M4 8 M4T6). MAT6).
5. Coporitios af LTR moy be increased by 4 if no articulators are used.

71. LIGHT TACTICAL RAFT

o. The deck of the light tactical raft consists af twa aluminum deck treads and filler panels. The unit of issue of this raft pravides components of one 4 -pontan normal raft.
b. See toble 38 for roft classification by construction and stream velocity. See table 39 far classes of French-ARCE rafts.
c. Construction transportation, ond operation is as follaws:
(1) The construction time for assembly of the light roctical raft is given in toble 40 .
(2) The light tactical roft camponents are normolly tronsparted on two $21 / 2$-tan corga trucks and one $21 / 2$-ton pale-type trailer. With each raft set there ore four chain slings, four binders, and ane crodle. The chain slings and binder secure the raft sets on vehicles, and the crodle nests the half pontans on troilers. The eight deck panels, eight filler panels, ond eight lang curbs of the superstructure are transported on the $21 / 2$-ton truck used to houl the trailer. Another $21 / 2$-ton truck transports the articulating ossemblies, ramps, ponels, orticulator ond romp curbs, orticulatar and ramp fillers, onchors, and holdfasts.
(3) The party operating the roft is normolly under the supervision of an NCO ond camprises o roft crew, o nearshore crew, and a forshare crew. Toble 41 autlines their duties.

72. M4 RAFT

a. The M4 roft (fig. 82) can be assembled from the components of the M4 floating bridge set, (para. 64). The basic 4-ponton roft con be converted to a reinforced roft with greoter lood capacity by adding reinforcing pontons. The ather recommended types of rafts ossembled from M4 bridge equipment ore the 6 -panton and 7 -ponton, both reinforced (fig. 82).

Table 39. ARCE Raft Copacities

Raft construction	Current velacity fps		
	$0-4.9$	$5.0-6.6$	$6.7-8.2$
2—Bay	55	49.5	4.4
	88	80.3	71.5
4—Bay	121	110	99

Copacities are given in short tons.

(NORMAL CONSTRUCTION)
NOTE: PONTONS ON 15^{\prime} CENTERS

(2) 6 PONTON
(REINFORCED CONSTRUCTION)
NOTE: PONTONS ON 7'- $6^{\prime \prime}$ CENTERS

Figure 82. M4 raft.
b. The amaunt af time and the number af trained men required for the assembly of M4 rafts are given in table 42. Raft classificatians are given in table 38.
73. CLASS 60 RAFT
a. The class 60 raft (fig. 83) can be assembled fram the camponents of the class 60 flaating bridge set, (para. 65).
b. Raft classifications are given in table 38.
74. M4T6 RAFT
a. The M4T6 raft (fig. 84) can be assembled fram campanents of the M4T6 flaating bridge set, (para. 66).
b. Raft classifications are given in table 38.

REINFORCED 6-FLOAT RAFT WITH FOUR NORMAL DECK BAYS

Figure 83. Class 00 raft.

Table 40. Canstructian Time far Light Tactical Roft

Type of assembly	NCO	EM	Time required, minutes
4-ponton, 3-bay. . .	3	27	15
5-ponton, 5-boy. . . .	3	27	20
6-ponton, 4-bay. . . .	3	27	30

75. ARCE RAFT (FRENCH)

a. Far rafting, the canstruction pracedure far 2-, 3-, 4-, and 5 -unit rofts is similar ta thot used far the bridge. Time required varies from 15 minutes (2 -unit) ta 25 minutes (5 -unit). In eoch cose, abaut 10 minutes are required far cannection af the romps.
b. See toble 39 far raft constructian ond classificotion.
76. MFAB/FERRY (U.S.)
a. Far rafting, the canstruction pracedure is similor ta that used far the bridge. A faur-unit ferry cansisting af two end bays and twa interior bays and copable af corying o closs 62 vehicle ar a tatal of 72 tans payload, at 8 mph con be assembled by its crew of three men per unit in obout 12 minutes.
b. Tentotive MFAB/Ferry classificatians ore given in table 43. These classifications ore subject to change with funther develapment af the units.

Toble 41. Duties af Porty Operating Light Tactical Raft

Crow	No. of men	Dusios
Roft	8	4 men operate autboard mators; 4 men place and remave chocks from wheels of vehicles.
Near shore	1	1 man guides vehicles anta raft and instructs drivers in proper aperation of vehiclos while being laaded and unlaaded.
Far shore	1	1 man guides vehicle aff raft.
Guy line	4	Handle guy lines.

Toble 42. Time ond Lobor to Assemble M4 Roff

Type of ossembly'	Time, hr. $=$
4-ponton roft, 1 5-ft. spocing	2
4-ponton roft, short deck	2
Reinforced rofts	$21 / 2$
5-ponton	3
6-ponton	$31 / 2$
$7 \cdot p o n t o n$	
5-ponton roft, short deck	$21 / 2$

${ }^{1}$ One platoon is required for each type af assembly.
${ }^{2}$ For night assembly, increase time 50 percent.
The lorger rafts (5-, 6 -, ar 7 -ponton) are assembled by adding one, or mare, pontons 10 this 4 -ponton raft. The reinfarcing ponton(s) is centered between the center pontons ond fostened to them by four reinforcing ponton spacers. Fram five to seven bolster-body trucks, depending upon the number of odded pantans, are required far transportation.

Figure 84. M4T6 reinforced roft.

Figure 85. Loyout of deck-bolk fixed bridge.

77. EXPEDIENT AVLB RAFT

The ormored vehicle launched bridge may be launched in the usual monner from o suitable embankment onto four fully saddled 24 -tan pneumatic Aoats from the closs 60 flooting bridge set or the M4T6 flooting bridge set to build on expedient roft. The bridge is centered lengthwise across the floats ond offset downstreom from the roft centerline enough so os not to rest on the treodwoy halddown lugs. Four raller choin rachet hoists are used to tie the bridge down to the floats. They are connected to the hook rings on eoch side of the bridge and to the outermost saddle beoms an the end flaats. The floots are tied together securely with rope befare the bridge is lounched. Power is supplied by bridge erection boots. The roft should not be used in fost currents ond should be used only os o necessory expedient. Four hinge pins must be ploced in the top center connectors when the AVLB is used as o raft. These pins ore nat kept with the bridge becouse they serve no function in the normal use of the bridge.

Figure 86. Class 60 fixed bridge.

Toble 43. MFAB/Ferry Classification (Tons)

Raft construction	Type crossing	
	Narmol	Risk
2 end bays	..	25
4 boys	.	72°
5 bays...	90°	55
6 bays	108^{*}	81

- Provided that no single vehicle in the payload exceeds class 62. All closes are tentatively designated.

Table 44. Deck Balk Fixed Bridges (Span Capacities)

Type of Crossing	$23^{\prime} 4^{\prime \prime}$	Capacity far Specified Span Lengths (feet) and Ratio of Deck/Roadwoy Width 1													
		$30^{\prime \prime}{ }^{\prime \prime}$			38'4''				$45^{\prime \prime} 0^{\prime \prime}$						
	$\begin{aligned} & 22 \\ & 18 \end{aligned}$	22	$\begin{aligned} & 22 \\ & 16 \end{aligned}$	24	$\begin{array}{r} 22 \\ 18 \end{array}$	$\begin{array}{r} 22 \\ 16 \end{array}$	$\left.\begin{array}{\|r\|} 24 \\ 18 \end{array} \right\rvert\,$	$\begin{aligned} & 26 \\ & 18 \end{aligned}$	20	$\left.\right\|^{22} 8$	${ }^{22} \begin{array}{r} 22 \\ 16 \end{array}$	$\left.\right\|_{18} ^{24}$	$\begin{aligned} & 24 \\ & 16 \end{aligned}$	x 18	${ }^{26}$
Normal	3 (120) 100	(85) 65	$\left\{\begin{array}{l} (90) \\ 70 \end{array}\right.$	(90)	$\begin{array}{r} (45) \\ 35 \end{array}$	(50) 40	(55) 45	(65) 50	$\begin{array}{r} 24) \\ 25 \end{array}$	$\begin{array}{r} (24) \\ 25 \end{array}$	$\begin{array}{r} (30) \\ 30 \end{array}$	(30)	(40)	(40)	(45) 40
Coution	$(120)^{2}$ 100^{2}	(100) 80	(100)	(105)	$\left.\right\|_{51} ^{(70)}$	(70)	$\begin{array}{r} 75) \\ 55 \end{array}$	$\begin{array}{r} (82) \\ 50 \end{array}$	(40) 35	$\begin{array}{r} (46) \\ 40 \end{array}$	(46) 40	$\int_{43}^{(51)}$	(51) 43	(56)	(56)
Risk	$\left(\left.\begin{array}{c} (120)^{2} \\ 100^{2} \end{array} \right\rvert\,\right.$	$\begin{array}{r} (10) \\ 90 \end{array}$	$\begin{array}{r} (110) \\ 90 \end{array}$	$\left.\begin{array}{r} (115) \\ 95 \end{array} \right\rvert\,$	(78) 57	(78) 57	(85) 62	(90) 67	(47) 40	${ }_{45}^{(54)}$	$\begin{array}{r} (54) \\ 45 \end{array}$	$\begin{array}{\|r} (60) \\ 49 \end{array}$	(60)	(66) 53	(66)

${ }^{1}$ Deck width (number of balk) $-\ldots-\ldots-\ldots \frac{22}{18}$
Roadwoy width (numbar of balk)
${ }^{2}$ Limited by roodwoy width
${ }^{3}$ Whaeled vehicla clossificotion $-\ldots-\ldots \begin{array}{r}(45) \\ 50\end{array}$ Tracked vahicle classification

78. FIXED SPAN CONSTRUCTION

o. The decks fram either the class 60 flaating bridge sets ar the M4 and M4T6 bridge sets can be assembled as fixed bridges ta crass small gaps. Twa trestle sets are furnished with each class 60 and M4T6 bridge set. Tliese must be used as sets af twa and crass braced ta each ather ta attain the praper classificatian.
b. Tables 44 and 45 and figures 85 and 86 list the classificatians far variaus spans af M4 balk and class 60 fixed spans. The span is the clear distance between abutments, trestles, ar suitable expedient supports.

79. LIGHT STEAM CROSSING EQUIPMENT

Data on the characteristics af engineer stream-crassing equipment is campiled in table 46.

Table 45. Classes of Fixed-Span Assemblies Shawn in Figure 86

Clear span (feet)	Type af assembly	Classes		
		Narmal	Cautian	Risk
24	ABCDE	(120*) 100	(120*) 100*	(120*) 100*
26	ABCD	(120*) 95	(120*) 100	(120*) $100 *$
	E	(120*) 100	(120*) 100	(120*) 100^{*}
28	ABCD	(115) 80	(120*) 87	(120*) 100
	E	(120) 85	(120*) 92	(120*) 100*
30	ABCD	(105) 65	(110) 65	(120*) 90
	E	(110) 70	(120) 80	(120*) 95
32	BCDE	(95) 60	(105) 70	(120) 85
34	BCDE	(85) 55	(90) 63	(110) 75
36	BCDE	(75) 50	(81) 58	(100) 68
38	CDE	(65) 45	(75) 53	(90) 65
40	CDE	(60) 40	(68) 50	(83) 60
50	CDE	(30) 30	(36) 36	(50) 45
60	CDE	(20) 22	(22) 25	(28) 30

[^1]Table 46. Engineer Light Stream-Crossing Equipment Dato

Item	Uso	Ooscription	Copocliy	lomorks
Three-mon reconnoissence bon'	Roconnoissonce	```Coovos w/5 com- portments lssued w/ towllne ond 3 poddlos. Total wgt 30 pounds.```	3 men in curront speods up to 4 MMPH.	loat is breoth-inflated or hond pumped. Eosily carriad by ane mon when defiated and pocked in cose.
Plastic assoult boot	Initiol crassing	Pastic, hand poidded Woight 300 pounds Length $16^{\prime} 5^{\prime \prime}$ Widith 5'4"	12 Inlantrymen w/fuli equipmant of equilvolent In current speeds up to 4 IMPH.	Marmol crew, thres onglneors. Maximum ω pacity $w /$ no current is 3300 pounds. Con be propolled by ono $\mathbf{2 5}$ - HP outboard mator of spoed of 12.8 MMPH $\mathbf{w / O}$ o lood roduc. tion.
Storm boot	5peod aossing	Plywood, double. bottomed. Weight 440 lbs. w/o motor.	7 Infontry w/full equipmeot	Mormol crew, two onginests. Powar supplied by two 25.HP motors Moximum spood 32 to 40 KMPH. Copable ol cresh-londing of full spead. Engr CI IV Supply.
Plostic ossoult bool Employed os storm boot	Speed erosslng	Ses plostic ossoult boat obove.	5 Riflemen w/full equipment and 1 .mon craw.	Moxlmum speod 32 KMPH. Copoble of cresb.londing of full sperd. Con be used in currents up to 12 IMPH. Power supplled by one $\mathbf{2 5}$-HP mator.
light toctical roft (alum)	$\begin{aligned} & \text { Farry high- } \\ & \text { priorlty } \\ & \text { vohiclas } \end{aligned}$	4 olum pontons ond solld alum deck. 33 foot loading orso.	Class 16 lood In cur. rent velocity of 1 KMPH. Class 8 lood lo current velocity of 9.6 KMPH .	Two ratts orgonle to Olv. Engr. En.
Assault boat pneumatle	Assoult crossling	Meoprene coated nylon, pnoumotlc, woight 250 lbs. length 17 foot, widtb $S^{\prime} \mathbf{b}^{\prime \prime}$	12 fully equippod Infontrymed. cravis mar.	It in Olv. Engr. In. Con be poddled or pown suppliad by 25 . m : f motor. 13 raph in orreat of 7 - x (1)

CHAPTER 7

FIXED BRIDGES

Sectian 1. Timber Trestle 8ridge

80. INFORMATION

A timber trestle bridge (fig. 87) is one of the simplest types of bridge built in o theater of aperations. Steel ar timber stringers rest on near ond far-shore obutments and intermediate supparts. The intermediat supports moy be timber bents, timber piers, pile bents, ar a cambination of these supparts. Spans are usually limited to 25 feet when using timber stringers. Deep woter, swift current, ar odverse faoting canditions demand the use af piles (fig. 88). The laad corrying component of the superstructure is the stringer system, which moy be rectangulan timber, round timber, ar steel beams. Steel stringers ore either l-beams, wide-flange beams, chonnel beams, ar built-up beams. Maximum span will depend on the size beam and capacity required. See figures 8892 ond table 47 for nomenclature. See chopter 5 far pasting of classification signs. See TM 5-312 for further reference.

Figure 87. Timber trestle bridge.

Table 47. Bridge Campanents of Timber Trestle Bridge

Na.	Bridge Companents	Camman Sizes of References
1	Tread	$2^{\prime \prime} \times 10^{\prime \prime} \times$ Randam Length
2	Open-laminated deck.	Variable Size
3	Curb	$6^{\prime \prime} \times 6^{\prime \prime} \times$ Randam Length
4	Curb riser black	$6^{\prime \prime} \times 10^{\prime \prime} \times$ Randam Length
5	Handrail	$2{ }^{\prime \prime} \times 4^{\prime \prime} \times$ x \times Randam Length
6	Handrail past	$4^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}-0^{\prime \prime}$
7	Handrail kneebrace	$2^{\prime \prime} \times 4^{\prime \prime} \times$ Length ta Suit
8	End dam	Use tread material (1)
9	Timber stringers	See paragraph 82a
10	Steal stringers	See paragraph 82b
11	Cop	See paragraph 82c
12	Pasts	See paragraph 82c
13	Transverse bracing	$2^{\prime \prime} \times 10^{\prime \prime}$ or $3^{\prime \prime} \times 8^{\prime \prime}$
14	Longitudinal bracing	$4^{\prime \prime} \times 6^{\prime \prime}$ or $3^{\prime \prime} \times 8^{\prime \prime}$
15	Scabs.	Use tread material (1)
16	Sill	Same size as cap (11)
17	Foatings	See paragraph 82c
18	Abutment sill	Same size as cap (11)
19	Abutment faatings	Same size as faatings (17)

Soe figures 87 through 92

figure 88. Pile bent.

Figure 89. Timber trestle bent.

Figure 90. Timber trestle pier.

81. TIM8ER TRESTLE FIELD CLASSIFICATION

a. Highway Bridge With Timber Stringers.
(1) Count number of stringers (N) in ane lane of weakest span. (If weakest is unknown, use procedure for each span.)
(2) Measure width and depth of stringers in inches and span length in feet.

NOTE. Span length (L) measured fram center to center af caps.
(3) Entering table 48 with the width (b) af the stringer and the depth (d), read ' m " " which is the resisting moment of ane stringer. Determine " M," the total resisting moment, by the formula.

$$
M=N m
$$

If the stringer size is not listed, compute " M '" by the formula For
$\begin{aligned} & \text { rectangular } \\ & \text { sections }\end{aligned}$
(4) Mark this value of " M " on the left side of the graph in figure 93 and draw a horizontal line through this paint.
(5) Draw a vertical line on the graph along span length (see bottom of graph).
(6) The intersection of the lines drawn in steps 4 and 5 gives the bridge class based on moment. If intersection falls between the two class curves, estimation should be used to determine class.

Figure 91. Placement of stringers on trestle bent.

Table 48. Properties of Timber Stringers

Actual size, in. (breadth and depth)	m**	\checkmark	Maximum spon length, ff:	Actual sixe, in. (breadth and depth)	m**	\checkmark.	$\begin{gathered} \text { Maximume } \\ \text { s.man } \\ \text { lonpeh, } \\ \mathrm{h} . \end{gathered}$
4×8	8.53	1.42	12	12×20	160.0	10.67	30
- 4×10	13.33	1.78	15	12×22	193.6	11.73	33
* 4×12	19.20	213	18	12×24	230.0	12.80	36
6×8	12.80	2.13	12	14×14	91.5	8.71	21
6×10	20.0	2.67	15	14×16	119.5	9.96	24
6×12	28.8	3.20	18	14×18	151.2	11.20	27
* 6×14	39.2	3.73	21	14×20	186.7	12.44	30
-6×16	51.2	4.27	24	14×22	226.0	13.69	33
* 6×18	64.8	4.80	27	14×24	289.0	14.93	36
8×8	17.07	284	12	16×16	1365	11.38	24
8×10	26.7	3.56	15	16×18	172.8	12.80	27
8×12	38.4	4.27	18	16×20	213.0	14.22	30
8×14	52.3	4.98	21	16×24	307.0	17.07	36
8×16	68.3	5.69	24	18×18	194.4	14.40	7
* 8×18	86.4	6.40	27	18×20	240.0	16.00	30
* 8×20	106.7	7.11	30	18×22	290.0	17.60	33
* 8×22	129.1	7.82	33	18×24	346.0	19.20	36
* 8×24	153.6	8.53	36	$8{ }_{6}$	10.05	2.51	12
10×10	33.3	4.44	15	$9 \dot{\phi}$	14.31	3.18	13.5
10×12	48.0	5.33	18	10\%	19.63	3.93	15
10×14	65.3	6.22	21	11\%	26.1	4.75	16.5
10×16	85.3	7.11	24	12\%	33.9	5.65	18
10×18	108.0	8.00	27	138	43.1	6.64	19.5
10×20	133.3	8.89	30	14\%	53.9	7.70	21
* 10×22	161.3	9.78	33	16 ¢	80.4	10.05	24
*10 $\times 24$	192.0	10.67	36	18.6	114.5	12.72	27
12×12	57.6	6.40	18	20ϕ	157.1	1571	30
12×14	78.4	7.47	21	22.6	209.0	19.00	33
12×16	102.4	8.53	24	24ϕ	271.0	22.6	36
12×18	129.6	9.60	27				

* Lateral braces requirad at midpoint and ends of span.
** Section madulus may be found by solving $5=5 \mathrm{~m}$.
ϕ Piometer of buft end.

Figure 92. Curb and hondroil system.
(7) Entering toble 48 with the width (b) of the stringer ond the depth (d), reod " v " which is the resistonce to sheor for one stringer. Determine V, the totol sheor resistonce, by the formulo.

$$
\dot{v}=N \mathbf{v}
$$

If the stringer size is not listed, compute \mathbf{V} by the formutofor
rectongulor $V=\frac{2 N b d}{45}$ or circulor $V=\frac{N \pi d^{2}}{\text { sections }}$
(8) Mork this volue of V on the left side of the groph in figure 94 ond drow o horizontol line through this point.
(9) Drow o vertical line on groph olong spon length.
(10) The insection of the lines drown in steps 8 ond 9 gives the bridge closs bosed on sheor.

Figure 93. Moment graph for rapid field design method.
(11) The lawer of the classes abtained in steps 6 and 10 is the class af the bridge. Check capacity of intermediate supparts.

NOTE. The closs found obove is the only number necessory for o one-lone bridge sign. For a two-lane bridge this is the two-way closs number ploced on the left side of the sign.
To determine the one-woy closs number for a two-lone bridge, chonge steps 1 ond 2 os follows:
Step 1. Count TOTAL number of stringers in the weokest span. Measure width and depth of stringeri, the span length ond the width of roodwoy (toble 29).
Step 2. Multiply totol number of stringers by 15
roadwoy width in feet to obtoin ' N, " the offective number of stringers.

Steps 3 to 11 . No chonge.

Example 1.

Given: One-lane bridge; wood stringers; 16 -ft span; 7 stringers, each $6^{\prime \prime} \times 12^{\prime \prime}$ (actual dimensians); $10 . f+$ raadway width. Ta find bridge class: since there is anly ane lane, all seven stringers are effective in that lane. From table 48 far $b=6^{\prime \prime}$ and $d=12^{\prime \prime}$, read $m=28.8$. Therefare, $M=7(28.8)=201.6$. Mark this " M " an the left side af the groph in figure 93 and draw a line harizantally ta intersect the vertical 16 -ft span length line. Read class 25 fram curve. Fram table 48 read $v=$ 3.20. Therefare, $V=7(3.20)=22.4$. Mark " V " an the left side af the graph in figure 94 and draw a line harizantally ta intersect the vertical 16 -ft-span line. Read class 31 wheeled and tracked fram curve. Bridge is class 25, but because width is less than $11^{\prime}-0^{\prime \prime}$ (table 29), a width restrictian sign must be pasted directly under the class sign (see chapter 5).

NOTE. If bridge specificotions do not comply with porogroph 82c, or if members ore domaged, reinforcement or repair will be necessory prior to finol clossification.
b. Highway Bridge With Steel Stringers. Use same methad as far timber stringers, a abave, except change steps 2, 3, and 7 as fallaws:

Step 2. Measure width, depth, average flange thickness, and webthickness af stringers in inches and span length in feet.

Step 3. If the stringer is a beam listed in table 49, read " m " fram the table. Determine " M " by the farmula

$$
M=N m
$$

If the stringer is nat listed or if daubt exists, campute " M " by the formula $M=2 \mathrm{Nd}_{1}\left(A_{1}+\frac{A_{W}}{\delta}\right)$ (see example 2 belaw)

Figure 94. Shear graph for rapid field design method.

Step 7. If the stringer is o beom listed in toble 49, reod " v " from the toble. Determine " V "' by the formulo

$$
v=N v
$$

If the stringer is not listed or if doubt exists, compute " V '" by the formulo

$$
\mathrm{V}=5 \mathrm{Ndt}_{2}
$$

Example 2.

Given: Two-lone bridge: steel stringers; 43 -ft-spon; 4 stringers, eoch $301 / 4^{\prime \prime}$ deep, $101 / 2^{\prime \prime}$ wide flonge, $1^{\prime \prime}$ thick flonge, ond $5 /^{\prime \prime}$ thick web; 24-ft roodwoy width.
To find bridge closs: roodwoy width limits two-woy closs to closses 4 to 60. Number of stringers per lone $=2$. Since toble 49 does not list this stringer, find " M " and " V " os follows (fig. 95):

$$
\begin{aligned}
M & =2 N d_{1}\left(A_{f}+\frac{A_{W}}{6}\right) \\
d_{1} & =d-2 t_{1}=28.2 \overline{5} \\
A_{f} & =b \times t_{1}=10.5 \\
A_{W} & =d_{1} \times t_{2}=17.66 \\
M & =(2)(2)(28.25)\left(10.5+\frac{17.66}{6}\right)=1519 \\
V & =(5)(2)(30.25)(5 / 9)=189
\end{aligned}
$$

Two-woy closs: bridge is closs 60 wheeled ond closs 48 trocked.
One-woy closs: effective no. of Str.
$=\frac{15}{\text { roodwoy width in feet }} \times$ no. of Str.
$=\frac{15}{24} \times 4=2.5$
$M=2(2.5)(28.25)\left(10.5+\frac{17.66}{6}\right)=1899$
$V=5(2.5)(30.25)(5 / 8)=236$
Bridge is closs 85 wheeled ond closs 63 trocked. Check copocity of intermediote supports.

NOTE. If the bridge specifications do nat comply with poragraph $82 c$, ar if members are damoged, reinfarcement or repoir will be necessary priar ta final classification.
c. Copocity of Trestle Bents. In olmost all coses the stringer is the most critical member of the bridge (figure 91). However, o check of the copocity of the posts moy be mode. To check post copocity of the weokest support:
(1) Count posts ond meosure size of posts.
(2) Use toble 50 and determine moximum lood per post, or use this formulo:
Mox. Lood (in tons) $=\frac{A_{p}}{4}$
$A_{p}=$ Cross sectional areo of post (sq. in.)

164
Table 49. Properties of Steel Beams

Naminal sixe	Actual depth d	Actual widsh b	Flange thick. ${ }^{n}{ }^{n} \mathrm{~F}_{1}$	Web thick. " ${ }_{2} 8$	m^{1}	v	Max span length	Max bracing space
${ }^{2} 51 \mathrm{BU} 278$	51-1/4	14	1-5/8	3/4	2727	192	128	15
$339 W F 211$	39-1/4	11-3/4	1.7/16	3/4	1574	147	98	15
337WF206	37-1/4	11-3/4	1-7/16	3/4	1472	140	93	15
36WF 300	36-3/4	16-5/8	1-11/16	15/16	2210	172	92	25.5
36WF194	36-1/2	12-1/8	1-1/4	13/16	1327	148	91	14
36WF182	36-3/8	12-1/8	1-3/16	3/4	1242	136	91	13
36WF 170	36-1/8	12	1-1/8	11/16	1158	124	90	12
36WF 160	36	12	1	11/16	1082	124	90	11.5
36WF230	35-7/8	16-1/2	1-1/4	3/4	1671	194	90	19.5
236WF150	35-7/8	12	15/16	5/8	1006	112	90	10.5
336WF201	35-3/8	11-3/4	1-3/16	3/4	1374	132	88	16
$333 W \mathrm{~F} 196$	33-3/8	11-3/4	1-3/16	3/4	1274	125	83	17
33WF220	33-1/4	15-3/4	1-1/4	13/16	1481	135	83	20
33WF 141	33-1/4	11-1/2	15/16	5/8	894	104	83	11
33WF130	33-1/8	11-1/2	7/8	9/16	810	93	83	10
33WF200	33	15-3/4	1-1/8	3/4	1339	124	83	18.5
331 WF180	31-1/2	11-3/4	1-5/16	11/16	118	108	79	16.5
30WF124	30-1/8	10-1/2	15/16	5/8	709	94	75	11
30WF116	30	10-1/2	7/8	9/16	656	84.5	75	10
30WF 108	29-7/8	10-1/2	3/4	9/16	598	84	75	9
330 WF 175	29.1/2	11-3/8	1-5/16	11/16	1028	102	74	17.5
$327 W F 171$	27-1/2	11-3/4	1-5/16	11/16	942	94.5	69	18.5
27WF102	27-1/8	10	13/16	1/2	533	68	68	10
277WF94	26-7/8	10	3/4	1/2	486	67	67	9
36WF157	25-1/2	11-3/4	1-1/4	5/8	814	79.5	64	19
24WF94	24-1/4	9	7/8	1/2	442	60.5	61	11
24WF84	24-1/8	9	3/4	1/2	393	60	60	9.5
24WF100	24	12	3/4	1/2	498	60	60	13
241120	24	8	1-1/8	13/16	502	97.5	60	12.5
241106	24	7-7/8	1-1/8	5/8	469	75	60	12
24180	24	7	7/8	1/2	348	60	60	8.5
24WF76	23-7/8	9	11/16	7/16	351	52	60	8.5

Table 49-Continued

Naminal sle	Actual depth d	Actual width b	Flonge thick. ngs: t_{1}	Wob thick- ${ }^{n}{ }^{2} 18$	m^{1}	\checkmark	Man span length	Max brac. ing spact
$3_{24 W F 153}$	23-5/8	11.3/4	1-1/4	5/8	736	74	59	20.5
${ }^{3} 241134$	23.5/8	8-1/2	1-1/4	13/16	564	96	59	15
${ }^{3} 22175$	22	7	13/16	1/2	274	55	55	8.5
$3_{21 \text { WF } 139}$	21.5/8	11-3/4	1-3/16	5/8	622	67.5	54	24.5
$3_{21} 1112$	21-5/8	7-7/8	1-3/16	3/4	440	81	54	14.5
21 WF73	21-1/4	8-1/4	3/4	1/2	301	53	53	9.5
21WF68	21-1/8	8-1/4	11/16	7/16	280	46.5	53	9
21WF62	21	8-1/4	5/8	3/8	253	39.5	53	8
20185	20	7-1/8	15/16	11/16	300	69	50	11
${ }^{3} 20165$	20	6-1/2	13/16	7/16	218	44	50	9
${ }^{3} 20$ WF 134	19-5/8	11-3/4	1-3/16	5/8	552	61.5	49	23.5
18W F 60	18-1/4	7-1/2	11/16	7/16	216	40	46	9.5
${ }^{3} 18186$	18-1/4	7	1	11/16	290	62.5	46	13
18WF55	18-1/8	7-1/2	5/8	3/8	196	34	45	8.5
${ }^{3} 18180$	18	8	15/16	1/2	260	45	45	14
18WF50	18	7-1/2	9/16	3/8	178	34	45	8
18 1 55	18	6	11/16	1/2	177	45	45	7.5
${ }^{3} 18$ WF 122	17-3/4	11-3/4	1-1/16	9/16	576	50	44	23.5
${ }^{3} 18162$	17-3/4	6-7/8	3/4	3/8	212	33	44	9.5
${ }^{3} 18177$	17-3/4	6-5/8	15/16	5/8	250	55.5	44	11.5
${ }^{3} 16$ WF 112	16-3/4	11-3/4	1	9/16	400	47	42	23.5
${ }^{3} 16170$	16-3/4	6-1/2	15/16	5/8	212	52.5	42	12
16WF50	16-1/4	7-1/8	5/8	3/8	161	30.5	41	9
16WF 45	16.1/8	7	9/16	3/8	145	30	40	8
16WF64	16	8-1/2	11/16	7/16	208	35	40	12.5
16WF40	16	7	1/2	5/16	129	25	40	7.5
${ }^{3} 16150$	16	6	11/16	7/16	138	35	40	8.5
16WF 36	15-7/8	7	7/16	5/16	113	25	40	6.5
${ }^{3} 16$ WF 110	15-3/4	11-3/4	1	9/16	307	44.5	39	25
${ }^{3} 16162$	15-3/4	6.1/8	7/8	9/16	178	44.5	39	11.5

Soe footnotes at end of table.

166
Table 49-Continued

Naminat bixe	Actual depith d	Actual width b	Flange thick- ngss \qquad	Web thick. nets 12	m^{1}	v	Mox span length	Mox brac. Ing space
${ }^{3} 16145$	15-3/4	5-5/8	5/8	7/16	134	34.5	39	7.5
${ }^{3} 15$ WF 103	15	11-3/4	15/16	9/16	328	42	38	24.5
${ }^{3} 15156$	15	5-7/8	13/16	1/2	154	37.5	38	10.5
15143	15	5-1/2	5/8	7/16	118	33.5	38	7.5
${ }^{3} 14$ WF101	14.1/4	11-3/4	15/16	9/16	306	40	36	26
${ }^{3} 14140$	141/4	5-3/8	5/8	3/8	106	26.5	36	8
${ }^{3} 14151$	14-1/8	5-5/8	3/4	1/2	134	35.5	35	10
${ }^{3} 14170$	14	8	15/16	7/17	182	30.5	35	18
${ }^{3} 14157$	14	6	7/8	1/2	136	35	35	12.5
${ }^{3} 14140$	14	5-1/2	5/8	3/8	108	26	35	8
14WF34	14	6-3/4	7/16	5/16	97	22	35	7.5
14WF30	13-7/8	6-3/4	3/8	1/4	84	17.5	35.	6
${ }^{3} 14$ WF92	13-3/8	11-3/4	7/8	1/2	264	33.5	33	25.5
${ }^{3} 14146$	13-3/8	5-3/8	11/16	1/2	112	33.5	33	9
${ }^{3} 13135$	13	5	5/8	3/8	76	24.5	33	8
${ }^{3} 13141$	12-5/8	5.1/8	11/16	9/16	96	35.5	32	9.5
12WF36	12-1/4	6-5/8	9/16	5/16	92	19	31	9.5
${ }^{3} 12165$	12	8	15/16	7/16	162	26	30	21
12WF27	12	6-1/2	3/8	1/4	68	15	30	7
12150	12	5-1/2	11/16	11/16	101	41	30	10
12132	12	5	9/16	3/8	72	22.5	30	7.5
${ }^{3} 12134$	11-1/2	4-3/4	5/8	7/16	72	25	29	8.5
${ }^{3} 11$ WF76	11	11	13/16	1/2	108	27.5	28	27
310129	10-5/8	4-3/4	9/16	5/16	60	16.5	27	8.5
10WF25	10-1/8	5-3/4	7/16	1/4	53	12.5	25	8
${ }^{3} 10140$	10	6	11/16	3/8	82	19	25	14
10135	10	5	1/2	5/8	58	31	25	8
10125	10	4-5/8	1/2	5/16	49	15.5	25	7.5
10WF21	9-7/8	5-3/4	5/16	1/4	43	12.5	25	6.5
${ }^{3} 10 W \mathrm{~F} 59$	9-1/2	$9.1 / 2$	11/16	7/16	118	21	24	23

Toble 49-Continued

Naminal sise	Actual depth d	Actual width b	Flange thick. nes: t_{1}	Web thick ness t_{2}	m^{1}	\checkmark	$\begin{aligned} & \text { Max } \\ & \text { span } \\ & \text { length } \end{aligned}$	Max brac. ing :pan
30125	9-1/2	41/2	1/2	3/16	46	15	24	8
3150	9	7	$13 / 16$	3/8	92	17	23	21
38135	8	6	5/8	5/16	58	12.5	20	15.5
38128	8	5	9/16	5/16	44	12.5	20	11.5
8WF31	8	8	7/16	5/16	55	125	20	14.5
$3_{\text {8WF }} 44$	7.7/8	7.7/8	5/8	3/8	72	15	20	21
37WF 35	7-1/8	7-1/8	$9 / 16$	3/8	52	13.5	18	18.5
$3_{6} \mathbf{W F} 31$	6-1/4	6-1/4	9/16	3/8	40	11.5	16	18.5
	GEND							

(3) Multiply moximum lood per post by number of posts. (Result • is moximum laad support will carry.)
(4) Add the lengths of the spons which are supported by the trestle bent.
(5) For a one-lane bridge or the ane-woy closs of o two-lone bridge, use the values abtained in steps (3) and (4) in the graph in figure 94, to determine the closs of the trestle bent. For the two-woy closs of o two-lane bridge, divide the value abtained in step (3) by twa and use this value in the groph in figure 94.
(6) Campore this result with the stringer class and use the smoller value os the bridge class. See chapter 5 for classificatian signs.

NOTE. If bridge specifications da not camply with poragraph 82c, ar if members are damaged, reinforcement and/or repar will be necessory prior to final clossificotion.

Toble 50. Copacities of Posts ond Piles

Rectongulor				Round		
Size, in.	Mox. Lood, tons	Height, * ft.	Size, in.	Mox. Lood, tons	Height,* ft.	
6×6	9	18	8	12	22	
6×8	12	18	9	15	24	
8×8	16	24	10	19	27	
8×10	20	24	11	23	30	
10×10	25	30	12	28	32	
10×12	30	30	13	33	35	
12×12	36	36	14	36	38	

- Maximum unbraced height-see page 82d.

82. TIMBER TRESTLE DESIGN

o. Design Procedure for Timber Stringers.
(1) Moment design.
(0) Determine the volue of M from the moment groph (fig. 93) by entering the groph with the spon length ond drowing the line verticolly to the desired closs curve. From there drow o line horizontolly to the left ond intersect the volve of M.
(b) Determine " m ' from toble 48 by entering the toble with the stringer dimensions b ond d.
(c) Compute the totol number of stringers required from the formulo:

$$
N_{s}=\frac{M}{m} \times N_{L}
$$

where N_{L} is the number of lones.
NOTE. If the stringer size is nonstandard, ond " m " cannot be obtained from table 48, then the totol number of stringers con be computed from the following formulo for rectongulor sections:

$$
N_{S}=\frac{30 M}{b d^{2}} \times N_{L}(M \text { in kip-feet })
$$

(2) Sheor design.
(o) If the rotio $\frac{L \times 12}{d}$ is*less than 13 , sheor will probobly be criticol. If $\frac{\mathrm{L} \times 12}{\mathrm{~d}}>13$, then sheor design is omitted.
(b) Compute the value of sheor (V) thot will accur in the span by entering the sheor chart (fig. 94) with the span length and drow a line vertically to the desired closs curve. Fram this paint drow a line horizontolly to the left, intersecting the value of shear (tans) occurring in a lane of the bridge.
(c) Determine the volue of " v ' from table 48 tar the particular size of stringer being used.
(d) Campute the total number of stringers required fram the formula:

$$
N_{S}=\frac{V}{v} \times N_{1}
$$

NOTE. If the stringer is a nonstondord size and connot be obtoined from toble 48, then compute the number of stringers from:
$\underset{\substack{\text { FoI } \\ \text { rectongulor } \\ \text { sections }}}{ } \mathrm{N}_{\mathrm{s}}=\frac{.225 \mathrm{~V}}{b d} \times N_{L}(V$ in tons $)$
For
$\underset{\substack{\text { circulor } \\ \text { sections }}}{ } N_{s}=\frac{80 V}{\pi d^{2}}$
b. Design Pracedure for Steel Stringers
(1) Mament design.
(a) Determine the volue of M_{R} fram the mament graph (fig. 93) in the same manner as far timber stringers.
(b) Determine " m "' by extrocting the value from table 49. If the stringer size is not listed in toble 49, then the value of " m " con be camputed fram the farmula:

$$
\mathrm{m}=2 \mathrm{~S}(\mathrm{~S}=\text { sectian madulus }=1 / 2 \mathrm{~m})
$$

(c) Campute the total number of stringers required in the same way os for timber stringers ($O(1)(c)$ obove).
(2) Shear design.
(0) If the ratia $\frac{L \times 12}{d}<10$, then shear will probobly be critical rather than moment. If the ratia is equal to or greater than 10 , the shear design is omitted.
(b) Determine the volue of shear (V) in the spon by following the pracedure far the timber stringers ($a(2)(b)$ obove).
(c) Determine ' v '" by taking the proper volue fram table 49 far the stringer size being used.
(d) To compute the number of stringers required, follow the procedure far timber stringers (a(2)(d) above).

NOTE. Should the atringer in question not be listed in toble 49, then the totol number of stringers required is computed from the formulo:

$$
\begin{aligned}
N_{s}=\frac{V \times N_{L}}{5 d t_{2}} t_{2} & =\text { web thickness } \\
d & =\text { depth of beam }
\end{aligned}
$$

c. Rules of Thumb.
(1) Posts. Maximum c-to-c spacing is 5 times depth of cap or sill. C-to-c distance of outside posts equals the distance face-to-face between curbs. Maximum unsupported length of rectangular posts is 36 times least dimension. Maximum unsupported length of a round post is 32 times its diameter. The total number of pasts required is computed as follows (fig. 96):

$$
N_{\text {post }}=\frac{V}{\text { cap/post } \times N_{L}}
$$

\mathbf{V} is taken from figure 94 after computing $L_{e}=L_{1}+L_{2}$. In figure 96 this would be 35 feet. By using figure $94, V$ would be 47 tons. The value of cap/post is taken from table 50.
(2) Caps and Sills. With round timber, diameter must be at least 2 inches greater than that of post. Hew timber to fit at top and jaints. With rectangular timber, use at least same size timber as posts with larger dimensions vertical, 6 inches $\times 8$ inches minimum.
(3) Bracing. If bents are mare than 4 feet high, use transverse cross bracing on all bents and longitudinal bracing between bents in every other span. Transverse bracing on pile bents may be amitted if pile is exposed less than 11 feet above ground line. The minimum size of bracing material is 2 inches $\times 10$ inches (see table 50).
(4) Footings. Maximum length is 8 times thickness for SBC less than ar equal to 4 tons per square foot and 6 times thickness far SBC over 4 tons per square faat (see table 51 for SBC).
(5) Flooring. Thickness exclusive of tread is c-to-c stringer spacing divided by 8 . Use a minimum of 3 inches.
(6) Tread. At least 2 inches thick.
(7) Curb and handrail. For specification, see figure 92.

Figure 95. Beom cross section dimensions.

d. Substructure Design With o Pile Bent.

(1) Use horizontol braces ot midpoint of piles when pile height exceeds that shown in toble 50.
(2) For a bent under odjocent spons, odd the odiocent spon lengths to find the effective spon length (Le). Using 'Le' find " V ' from the sheor groph figure 94.
(3) Determine copocity of one post from toble 50 . If post is not listed, cop/post $=\frac{\dot{A}_{D}}{4}$ (tons)
where $A_{D}=$ cross section of post, squore inches.
Toble 51. Soil Beoring Copocities (SBC)

Soil description	Bearing values, tons persq ft.
Hardpan overlaying rack.	12
Very compoct sandy grovel.	10
Laose grovel and sandy grovel, compact sond and grovelly sand, very compact sond-inorgonic silt soils	6
Hord, dry consolidated clay	5
Laose coarse-to-medium sand; medium campact fine sand	4
Compoct sand clay.	3
Loose fine sand, medium compact sand-inarganic silt sail:	2
Firm or stiff clay	1.5
Ĺoose saturated sand-clay soils, medium soft cloy	1

(4) Determine the allowable lood (P) for o skin friction pile by ane of the fallawing:
for piles driven by
Double-acting pneumotic, steam, or clased end diesel hammer

Timber

> Drophommer

$$
P=\frac{2 W_{d} h}{(S+1)} \quad P=\frac{2 W_{r} H}{(S+0.1)}
$$

Steel

$$
P=\frac{3 W_{\mathrm{d}} h}{(S+1)} \quad P=\frac{3 W_{\mathrm{r}} H}{(S+0.1)}
$$

Single-octing pneumatic or steam hammer

$$
P=\frac{2 E}{(5+0.1)}
$$

Where: $\quad P=$ estimoted sofe copocity of pile (lb)
$W_{d}=$ weight of drophammer (lb)
$W_{r}=$ weight of ram of steom or pneumatic hommer (lb)
$h=$ overoge height of fall of drophammer for last 6 blaws (ft)
$\mathrm{H}=$ stroke of rom (ft) '
$S=$ overoge pile penetrotian, in inches per blow, for last 6 blows of a draphommer or lost 20 blows of steom or pneumatic hammer
$E=$ driving energy (ft -lbs/blow), steam ar pneumatic
(5) Determine number of effective piles required Np.e. $=\frac{V \times 2000 \times N_{L}}{\text { capacity per pile }}$ where $\frac{\text { capocity }}{\text { pile }}$ is the smallest af the values found in d(3) and d(4).
(0) Determine $\frac{S_{p}}{D}=\frac{W_{R} \times 12}{\left(N_{p} . e .-1\right) D}$
$W_{R}=$ width af roodway-H $D=$ diometer af pile
(7) Using the pile chart, figure 97, determine Np. (Minimum number of piles per bent $=4$.)
(8) Moximum pile $\mathrm{S}_{\mathrm{p}} .=5 \times \mathrm{d}_{\text {cap }}$ is depth of cap, in.

Example 3.
Given: $\mathrm{L}_{1}=20^{\prime}, \mathrm{L}_{2}=30^{\prime}$, Class $60, \mathrm{Hp}_{\mathrm{P}}=15^{\prime}$, cap $12^{\prime \prime} \times 12^{\prime \prime}, 10^{\prime \prime}$ \varnothing pile, $=10^{\prime} ; \mathrm{W}_{\mathrm{d}}=2000$ lbs., penetration for lost 6 blows $=6^{\prime \prime}$, $W_{R}=14^{\prime}$.
(1) $H_{D}=15^{\prime}$ which is less than 27^{\prime}, therefore no mid-point bracing is required.
(2) $L_{e}=L_{1}+L_{2}=20^{\prime}+30^{\prime}=50^{\prime} ; V=63$
(3) Copacity $/$ pile $=19.6 \times 2000=39,200$
(4) $P=\frac{2 W_{d} h}{S+1}=\frac{2 \times 2000 \times 10}{\left(-\frac{6}{6}+1\right)}=20,000 \mathrm{lbs}$.
(5) Np.e. $=\frac{V \times 2000 \times N_{L}}{c a p / \text { pile }}=\frac{63 \times 200 \times 1}{20,000}=6.3$
(6) $\frac{S_{p}}{d}=\frac{W_{H} \times 12}{(N p . e .-1) d}=\frac{14 \times 12}{(6.3-1) 10}=3.2$
(7) $\mathrm{N}_{\mathrm{p}}=8$
(8) Actual $S_{p}=\frac{W_{R} \times 12}{\left(N_{D}-1\right)}=\frac{14 \times 12}{(8-1)}=24^{\prime \prime}$
(9) $5 \times d_{\text {cap }}=5 \times 12=60$ Therefore, S_{p} is all right.

Figure 96. Example bridge spans.

EFFECTIVE NUMBER OF

Figure 97. Pile design charts.

Section II. Ponel Bridge, Boiley Type, M2

83. INTRODUCTION

o. The ponel bridge, Bailey type, M2 (fig. 98) is o through-truss bridge supported by two main trusses farmed from 10 -foot steel "ponels."
b. Panel bridge ports moy be transported on twenty-five 5 -ton dump trucks ond 8 pole trailers. The loading plan is bosed an the experience that the dauble-single truss ossembly provides far most bridging problems which require the ponel bridge, Bailey type, M2. The loods have been orranged on the bosis of the obove vehicles copable of corrying all parts issued for 0130 -foot DD bridge, including spares. The engineer panel bridge campony is the TOE unit designated to carry one bridge set and provide technical personnel and equipment to transport ond supervise erectian af ponel bridging. Two 80 -fool DS bridges or one 130 -foot DD bridge may be constructed fram one bridge set. Eoch bridge set hos 126 panels (weighing 577 pounds eoch), 56 tronsams (618 pounds eoch), 96 stringers (260 ta 267 pounds each), 48 ribonds (215 paunds eoch), 48 ramps (338 ta 349 paunds eoch), and chess, end posts, brocing ond erectian equipment.

84. CONSTRUCTION DATA

o. Organizotion of ossembly crews is given in toble 52.
b. Figures 99 and 104 depict roller loyout and suggested equipment loyaut.
c. Other doto is shawn in tobles 53 through 58.

85. CLASSIFICATION

Toble 59 gives the dual clossification, by type of construction, type of crassing, and span length of the M2 panel bridge.

Figure $98 . \quad$ Steel panel fixed bridge, Bailey type, M2

Figure 99. Transom used as template.

Figure 100. Plain roller, SS, DS, bridges.

Figure 101. Plain roller, TS, DD, TD, DT, TT, bridges.

Figure 102. Layout of rocking roller template.

Table 52. Organization of Assembly Crews-Bailey Bridge

	MO. OF NCO: AND EM								
	Type of bridge								
	Single. single	Double. single	Triple single	Doubledoubie.	Triple. dauble	Double. triple	Tripletriple	Doubletripie	Tripletriple
	Construction by manpower only							Using 1 crane*	
CRANE.	-••	-••	$\cdots \cdot$	-••	-••	-••	-	0-3	0-3
Truck driver	(1)	(1)
Crone operator	-	- .	(1)	(1)
Hoak mon	-••	- .	- •	-	(1)	(1)
PANEL.	1-14	1-14	2-28	2-32	3-50	3-50	3-68	3-30	3-30
Carrying . . .	(12)	(12)	(24)	(28)	(44)	(44)	(60)	(24)	(24)
Pin	(2)	(2)	(4)	(4)	(6)	(6)	(8)	(6)	(6)
TRANSOM	1-9	1-10	1-10	1-10	1-10	2-28	2-28	2-20	$2-20$
Carrying	(8)	(8)	(8)	(8)	(8)	(24)	(24)	(16)	(16)
Clamp.	(1)	(2)	(2)	(2)	(2)	(4)	(4)	(4)	(4)
BRACING	1-4	1-6	1-8	1-12	1-20	1-32	1-40	1-32	1-38
Sway brace	(2)	(2)	(2)	(2)	(2)	(6)	(6)	(6)	(6)
Raker	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)
Brocing frame	(2)	(2)	(4)	(4)	(8)	(8)	(10)	(8)
Chard bolt	. .			(4)	(8)	(10)	(14)	(10)	(14)
Tie plate	- .	\cdots	(2)	-	(4)	-••	(4)	- .	(4)
Overheod supp't . . .	- ${ }^{-}$. .	\cdots		\cdots	(6)	(6)	(4)	(4)
DECKING	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12
Stringer	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)
Chesa ond riband	(4)	(4)	(4)	(4)	(4)	(4)	$=(4)$	(4)	$\frac{(4)}{7}$
Totol	4-39	4-42	5-58	5-66	6-92	7-122	7-148	7.97	$7-103$

[^2]Toble 53. Bailay Bridge Lounching Construction

LAUNCHING TT BRIDGES 1 Lounch until noor-bank rocking ralless aro undor lost TT boy of initial construction. 2 Add up to six boys TT bays to tail of initiad construction. This complatos all bevt 210 -loat span. 1 Continue launchung until near-benk rockeng rolleas ore under lost TT bay
 6 Launch larward unill first thres DT bridge bays ore bey ond far bank rallers. 7. Complate lirsi throe bridge boys by converting to TT and addeng transoms. 8. Puil bridgs bock to linal position, removs DS toil, odd decking whass needed, and pock da m.

180
Table 54. Boiley Bridge Spans Launched Incamplete

Type	Span, f.	No. of bays, decking \& stringers	Omitted of top story
SS	100	4	
DS	140	6	
TS	150 160	6 10	
DD	160	7	
	170	7	
	180	12	2
	160	3	
TD	170	10	
	180	All	
	190	All	$31 / 3$
	170	3	
DT	180	8	
	190	All	
	200	All	3
	210	All	5
		No. of bridge bays in initial canstruction *	
	160	3	14
	170	6	14
TT	180	6	14
	190	All	15
	200	All	14
	210	All	13

* First three bridge bays ore constructed DT with only one transom per bay. Lost bridge buy is consiructed DT because of staggered construction necessory when odding subsequent boys.

Table 55. Number of Jacks Needed at Each End af Bailey Bridge

Type	Span, f.	No. of fock: noed od ot noch ond of
SS	$30-100$	2
DS	$50-140$	4
TS	$80-100$	4
	$150-160$	6
DD	$100-120$	4
	$130-180$	6
TD	$110-140$	6
	$150-190$	8
DT	130	6
	$140-180$	8
	$190-210$	10
TT	$160-170$	10
	$180-210$	12

Table 56. Number of Racking Rallers Needed far Bailey Bridge

Type	Spon, f.	Near bank	Far bank
SS.	30.100	2	*
	50-80	2	*
DS	90-100	2	2
	110-140	4	2
TS	80.160	4	2
DD	100-130	4	2
	140-180	4	4
TD	110-120	4	2
	130-190	4	4
DT	130-210	4	4
TT	160-210	4	4

Toble 57. Weight per Bay of Boiley Bridge

| Canstructian | | Waighti per boy, |
| :---: | :---: | :---: | :---: |
| tans | | |$|$

NOTE: Foarwalks, wear traads, and truss guards not includad. Overhead bracing included an DT and TT.

Figure 103. Vertical clearonce necessory for removing first pair of near shore ploin rollers ofter links pass rocking rollers.

Figure 104. Layout of equipment at bridge site for training purposes.

Table 58. Critical Dimensions of Bailey Bridge

Rood width between steel ribands	12'6"
Rood width between timber truss guords	$13^{\prime \prime}$
Loteral distonce between centerlines of trusses:	
Inner trusses	14'10'
Middle trusses	17' 10'
Outer trusses	19'3'
Lateral distance between centerlines of base plates:	
S truss bridge.	14'10'
D truss bridge	16' '" $^{\prime \prime}$
T truss bridge	17'312'
Lateral distonce between outside edges of base plotes:	
S truss bridge.	19' ${ }^{\prime \prime}$
D truss bridge	$20^{\prime} 11^{\prime \prime}$
T truss bridge	21' 10\%'"
Loterol distance between measuring lugs of rocking roller templotes	11'61/2'
Loteral distance between measuring lugs of plain roller templotes:	
SS, DS bridges	11'6/2'
TS, DD, TD, DT, TT bridges.	10' 10\%"
Longitudinal spocing between plain rallers	25'
Height from bose of bose plate to top of chess.	28 5/16"
Height from base of rocking roller template to top of rocking roller	16 5/16"
Height from base of plain roller templated to top of plain roller	8 15/16'
Height from base of ramp pedestol to top of ramp chess.	17 1/1"
Height from bottom of holf round lug under sloping end of ramp to top of ramp chess	5 7/8'
Height from top of chess to overhead bracing:	
Normal. .	14'7''
Expedient	$12^{\prime \prime} 3^{\prime \prime}$
Herght from bose of bearing to bottom of ponel	5 17/32'
Height from bottom of ponel to top of chess	$2011 / 16^{\prime \prime}$
Height from bottom of holf round lug of end post to top of ehess	22 13/32'
Height from base of rocking rollor bearing to top of rocking roller	13 5/16'

Toble 59. Duol Classification by Type of Construction and Crossing-Boiley Bridge

SPAN IN	SINGLE SINGLE			00UBle SINGLE			TRIPLE SINGLE			$\begin{aligned} & \text { OOUBLE } \\ & \text { OOUBLE } \end{aligned}$			TRIPLE DOUBLE			$\begin{aligned} & \hline \text { DOUBLE } \\ & \text { TRIPLE } \end{aligned}$			$\begin{aligned} & \text { TRIPLE } \\ & \text { TRIPLE } \end{aligned}$		
FEET	N	C	R	N	c	R	N	c	R	N	C	R	N	c	A	N	c	R	N	c	R
30	3930	$42 / 37$	$47 / 42$																		
40	24	$38 / 34$	40/30																		
50	24	33/31	$36 / 35$	75	1836	8															
60	20	19	35	$\begin{aligned} & 65 \\ & \hline 65 \\ & \hline \end{aligned}$	$77 / 7$	$65 / 78$															
70	20	24	130	6	6	$78 / 55$															
80	16	20	24	5155	$60 / 60$	66/	$\begin{array}{\|c\|} \hline 65 \\ \hline \end{array}$	$95 / 50$	100												
90	12	16	19	$40 / 45$	$50 / 50$	$55 / 55$	65	$74 / 15$	$\frac{82}{192}$												
100	8	12	14	130	$37 / 39$	142	$50 / 55$	$57 / 60$	184	50	$\frac{18}{90}$	59									
110				20	$30 / 32$	34	$55 / 40$	$47 / 49$	$52 / 54$	6	$72 / 78$	$80 / 2$	50	100^{2}	$\frac{100}{80}$						
120				16	23	$27 / 30$	$30 / 35$	$29 / 4$	$43 / 45$	$15 / 55$	$57 / 61$	64	75	530	$9 \times$						
130				12	18	21	20	$31 / 33$	$13 / 18$	35/45	$41 / 50$	575	$55 / 60$	5	$84 \text { 30 }$	70	60	$\frac{8}{60}$			
140	-			8	14	17	16	24	$29 / 31$	$30 / 35$	$39 / 42$	4/49	$45 / 5$	$57 / 62$	$1 / 70$	$70 / 70$	50	89			
150							12	18	22	24	$32 / 35$	$36 / 40$	$35 / 45$	$47 / 51$	$54 / 58$	60	76	65			
160							8	15	17	16	25	$30 / 33$	$30 / 35$	$37 / 41$	45/48	53/55	78	806	$80 / 75$	$\frac{100}{500}$	$\frac{1090}{50}$
170							4	10	13	12	19	24	20	$31 / 34$	$38 / 40$	$15 / 50$	57	9	$19 / 10$	$\frac{80}{80}$	80
180										8	15	18	16	24	29/32	$35 / 45$	483	56	56	6	$\pi / 87$
190													12	18	22	$30 / 33$	$39 / 43$	$49 / 51$	45	59	66
200																20	$32 / 38$	$36 / 43$	$35 / 40$	485	15
210																16	25	$31 / 35$	24	$30 / 43$	48/51

[^3]Section III. Mosonry Arch ond Reinforced Cancrete Bridges

86. MASONRY ARCH BRIDGE

To obtain the bridge classification number for a masonry arch bridge, a pravisional closs number based an the crawn thickness and span length is determined; this provisianal clasis number is then adjusted by applying factors based an the moteriols ond the condition of the bridge.

Step 1. Provisianal class number.
(a) Mark span length (S in fig. 105) on col. A of figure 106.
(b) Mark totol crown thickness ($1+D$ in fig. 105) on col. B of figure 106.
(c) Drow o stroight line through the points marked in steps (a) ond (b), and where this line intersects col. C, read the provisionol closs number.

Step 2. Profile factor.
(0) Divide spon length (S in fig. 105) by the rise (R in fig. 105) ond mark the result at the bottam of figure 107 . If the result is 4 ar less, profile factor is 1 . Otherwise-
(b) Draw a vertical line fram the mark made in (o) obave ond mork the paint where it intersects the curved line.
(c) Draw a harizontol line from the mork mode in (b) obove to the left edge of figure 107 and read the profile factor at this point.

Figure 105. Mosonry orch bridge.

Figure 106. Chart for determining pravisianal laad class af arch bridges.

Step 3. Other foctors (see toble 60). Select the material, joint, deformotion, crack, abutment size, and abutment fault factors from the toble. Use only those foctors which apply.

Step 4. Actuol closs number. Multiply the provisionol closs number by each of the vorious foctors found obove. The result is the bridge clossification number.
Exomple 4.
Given: Mosonry orch bridge; spon (S), 40 ft ; rise (R), B ff; arch ring thickness (t), 1 B in.; depth of fill ot crown (D), 12 in.; roodwoy width, 15 ft ; moterial, limestone in good condition; joints, mortor, some deterioration, smoll voids, close joints; crocks - lorge longitudinal crock in orch under one paropet wall; obutments - one approach up o norrow embonkment.
Find Bridge Closs - Solution: Roodway width limits bridge to one lone. Totol crown thickness ($\dagger=D$, see fig. 105) $=18 \mathrm{in} .+12 \mathrm{in} .=$ 2.5 ft . Using figure 106 , line up stroight edge at spon of 40 ft . (Col. A) ond total crown thickness of 2.5 ft . (col. B). At the intersection of stroight edge ond Col. C, read provisionol class number, 34. Determine the profile foctor. Span/rise rotio $=40 / B=5$. Enter the boltom of figure 107 with the span-rise rotio ond drow a vertical line. At the intersection of this verticol line ond the curved line on the graph, pivot (going horizontolly) to the left edge of the chart. Reod the profile foctor os 0.86 .
Materiol foctor for limestone in good condition is $\mathbf{1 . 0}$. Joint foctor is between $0 . B 0$ and 0.70 , say 0.75 . Crack foctor for one crack at the edge of the ring is 0.90 . Abutment factor for one unsotisfoctory obutment is 0.95 (toble 60).
Determine octuol closs number by multiplying provisionol class number by foctors found obove.
Actual closs number $=34 \times 0.86 \times 1.0 \times 0.75 \times 0.90 \times 0.95=$ Closs 19.

B7. REINFORCED CONCRETE BRIDGE

o. Introduction. Due to wide variotions in design criteria, it is not possible to colculote the exact copocity of o reinforced concrete bridge bosed only on the measuroble externol dimensions. Therefore, when information is availoble pertaining to the design looding or civil lood roting for the bridge (from o local agency or from intelligence reports), the class will be obtained by correlotion if chorts ore available. ${ }^{-}$Civilian design lood is equated to the military closs for vorious span lengths. When the necessary informotion is not avoiloble for clossificotion by correlotion, the expedient methods shown moy be used.

Figure 107. Profile factors for arch bridges.

Table 60. Arch Factars.

b. Slob Bridges. Meosure the spon length from center-to-center of supports in feet, the roodwoy width (W) in feet, ond the depth (D) of the concrete slob, exclusive of ony weoring surfoce or fill, in inches (fig. 108). Enter figure 109 with the spon length, drowing o vertical line until it intersects the curve representing the depth (D) of the slob ond estimoting when necessory where this point should be. From this intersection drow o horizontal line to reod the volue of "m." Determine ' M '" by the formulo

$$
M=W_{L} m,
$$

in which W_{L} equols the width of one lone in feet. Enter the groph in figure 93 with this volue of " M " ond the spon length to obtoin the closs of the bridge.

Figure 108. Concrete slob bridge.

Figure 109. Mament far reinfarced cancrete slab bridges.

Example 5.

Given: Twa-lane cancrete slab bridge; 20-ft span length; $D=16^{\prime \prime}$; 22-ft roadway width. Ta find bridge class: raadway width limits twaway class to classes 4 ta 30 . Fram chart in figure 109, $\mathrm{m}=37$. The width af ane lane is 11 feet, therefare, $M=W_{L m}=11$ (37) $=407$. With this value of " M "' and the span length, abtain class 52 wheeled and class 36 tracked fram the graph in figure 93.
Twa-way Class: Bridge is class 30 as limited by raadway width.
One-way Class: Effective width of roadway is 15^{\prime}. Therefare, $M=15$ $(37)=555$. Bridge is class 75 wheeled and class 54 tracked.
c. T-Beam Bridges. Make the necessary measurements as shawn in figure 110 and find L, the span length fram center-ta-center af supparts. All dimensians are in inches except L which is in feet. Calculate " M ' by farmula:

$$
M=N 158+D(1.07 T+0.34 L+0.77 b-24.1)+0.08 L^{2}
$$

Enter the graph in figure 93 with this value af " M ' and the span length to abtain the class of the bridge.

Example 6.
Given: Twa-lane cancrete T-beam bridge; 32-ft span length; 7 Tbeams, $\mathrm{S}=48^{\prime \prime}, \mathrm{D}=30^{\prime \prime}, \mathrm{b}=12^{\prime \prime}, \mathrm{T}=\mathbf{6}^{\prime \prime} ; 24$ - ft roadway (see fig. 110). Ta find bridge class: Raadway width limits twa-way classes 4 ta 60. Number af stringers per lane $=3.5$.

$$
\begin{gathered}
M=3.5[158+30\{107\{6\}+0.34\{32\}+ \\
0.027\{48\}+0.77\{12\}-24.1)]+0.08(32)^{2} \\
M=3.5[158+30(6.42+10.88+1.30+9.24 \\
-24.1)]+82
\end{gathered}
$$

$M=3.5[158+30(3.74)]+82=3.5(158+112.2)+82=1028$ With this value of " M " and the span length, abtain the class fram the groph in figure 93.
Two-way class: bridge is class 00 wheeled as limited by raadway width and class 50 tracked.
One-way class:

$$
\text { Effective Na. of Str. }=\frac{15}{\text { roodway width in feet }} \times
$$

Na. of Str. $=\frac{15}{24} \times 7=4.375$
$M=4.375(158+112.2)+82=1264$
Bridge is class 95 wheeled and class 63 tracked.

Figure 110. Crass sectian of RC T-beam bridge.

Section IV. Miscelloneous Bridging

88. LIGHT SUSPENSION BRIDGE DESIGN

The suspension bridge (fig. III) is used for long spons high obove obstacles. The floor system is suspended fram cables, which ore supported on towers ond onchored ta obutments.
a. Doto. See information in table 61 and figure 111.
b. Exomple of Moin Cable Design. Determine tensian in main cobles for a 200 -faat-spon suspension bridge with a suspended weight of 10 tons. Assume a $\mathbf{1 0}$-percent sag rotio ond o 4 -ton line laad.

Maximum totol tensian in moin cobles for o 10 -percent sag rotio $=$ $36,000 \times 1.35=48,600$ pounds. If two moin cobles are used, each must have o tensile strength of 24,300 pounds.

89. THREE-ROPE BRIDGE

The three-rape bridge is used to carry personnel with full field pock; maximum of 7 men of 5 -poce intervol. Maximum length is 150 feet. Canstruction procedures fallow:
a. Canstruct stringers or support for treod rope ond hond ropes on neor and for shore.

Figure 171. Light suspension bridge.

Table 61. Light-Suspensian Bridge Design Data

Item	Doto		
Ponel length	10 to 15 ft .		
Comber	Approximotely 2 ft .		
Stringer design	See porogroph 82a		
Floor beoms	$4^{\prime \prime} \times 4^{\prime \prime}$ for foot troops or pock onimols. $6^{\prime \prime} \times 6^{\prime \prime}$ for $1 / 4$-ton truck. $8^{\prime \prime} \times 8^{\prime \prime}$ for $3 / 4$-ton truck.		
Stress in suspenders	Design for deod lood of one ponel, live lood ond 100% of livelood fer impoct. 5ee toble 81 for coble strength.		
Length of suspenders	$h=t+\left(\frac{n}{N}\right)^{2}(c+d) 5$ ee figure 111 for meoning of symbols.		
Sag rotio	5\% for foot bridges to 10\% for onimol ond light vehicle bridges.		
	$\begin{gathered} \text { Sog rotio } \\ \% \end{gathered}$	Mox totol tension in moin cobles, in ports of totol suspended weight of bridge and lood	Length of cobfe between towers, in ports of spon length
Moin-cobfe design	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 121 / 2 \\ 162 / 3 \end{gathered}$	1.94 1.57 1.46 1.35 1.23 1.12 0.90	1.012 1.018 1.022 1.026 1.033 1.041 1.070
Towers	$12^{\prime \prime} \times 12^{\prime \prime}$ posts ond cops wifl toke loods, including o $21 / 2$-ton truck. $6^{\prime \prime}$ to $8^{\prime \prime}$ timber side, bock, ond forebroces. $1 / 2^{\prime \prime}$ wire rope side ond bock guys. 1 to 1 slope for side guys; $21 / 2$ horizontol to 1 verticol slope for bock guys.		
Anchoroge	Deodmon or other onchorage must hold moximum tension of moin cobfe.		
Foctor of sofety	$\begin{array}{\|l} \hline \text { Wire rope }=2 \\ \text { Cordoge }=3.5 \\ \hline \end{array}$		

b. Loy out treod rope and hand ropes porallel and one pace aport on neor share. Minimum diometers $=1$ " for tread ropes and $3 / 2^{\prime \prime}$ far hand ropes.
c. Cut suspender rape 12 feet long, center on tread rape (two poces opart) ond tie with a clave hitch on battam.
d. Lift hand rape elbow high ond tie suspenders with girth hitch on inside.
e. Haul bridge over gop with smoll diameter ($1 / 2$ inch) rope ond secure on for shore with a round furn ond a bawline.
f. Pull near share rope tight (5 percent sog) and secure.
g. Send ane man onto bridge to make final odjustments of suspender rapes.
h. Complete details are given in TM 5-270.

90. FOUR-ROPE BRIDGE

The four-rape bridge is used to carry pack animals and persannel. Maximunn length is 100 feet. Moximum copocity is 5 men with full field packs spaced 5 poces oport or one pock onimol with handler. The bridge is constructed the same as the three rape bridge (poro 89) except:
o. Cross members (minimum $3^{\prime \prime}$ diometer) ore tied to treod ropes, one pace oport, with suspender ropes using clove hitches.
b. After erection, decking is loshed to the cross members ond covered with twigs, leaves, and light brush to pravide o walking surface.

91. TRUSS BRIDGE CLASSIFICATION

For expedient clossificotian of truss bridges, assume thot the stringers are the critical members. Consider the c-ta-c distance between ponel points (fig. 112) is the span length af the stringers ond colculote stringer copocity as far the trestle bridge. If, an inspection, domoge to a truss section ar obviaus domoge to the substructure is indicoted, the expedient clossificotion should be drastically reduced pending camplete onalysis.

92. ARMORED VEHICLE LAUNCHED BRIDGE

This bridge is a class 60 bridge which is designed to be transparted, lounched, ond retrieved by o modified turretless medium tonk. The bridge falds at midspan and is transparted an tap of the louncher by means of a lounching mechanism and corrying rock. It is a conventional, girder type bridge af oluminum olloy and may be launched or retrieved from either end. Its length, while being tronsported, is 31 feet 6 inches; when unfolded, it is 63 feet. The bridge hos a cleor span of 60 feet. Eoch clear treodwoy width is 4 feet 11 inches, and

Figure 112. Truss bridges.
a single treodwoy will cross o $1 / 4$-ton vehicle. With both treodwoys, larger vehicles (including medium tonks) con crass this bridge. The usoble tread width is $\mathbf{1 2}$ feet δ inches; the overall width is 13 feet $5 \frac{1}{2}$ inches with tie rods. In launching this bridge, bonk conditions must support the lounching vehicle ond pravide sufficient beoring to ollow the bridge ta suppart its rated lood ofter lounching. The bridge can be lounched and recavered on o moximum uphill grade of 28 percent, moximum downhill grade af 19 percent ond maximum transverse grodes of 11 percent. The methad used to ossemble the bridge depends on the state of disassembly of the bridge for tronsparting; i.e., it would be completely disassembled for tronsparting an bridge trucks, or it moy be separated lengthwise for rail or low-bed troiler shipment (TM 5-216). For a normal span up to 60 feet, the bridge has 0 normol roting of closs 60 , a cautian roting of class 65 , and a risk roting of closs 75. With the bridge in travel position, the launcher has the mobility oppraximately that of a medium tonk and can maintain the rate of morch af both administrative and toctical movements. Hawever, in plonning a raute, the added weight (closs 60), width (13 feet 6 inches), ond overheod clearance (13 feet 3 inches) required must be considered. An escort reconnaissance vehicle should precede the launcher and bridge through built-up areos.

93. EXPEDIENT LOG BRIDGES

Figure 113 illustrotes six suggested configuratians far expedient wooden bridges. Capacities cannot be occurotely determined, as with stondord bridges. They depend on the size ond condition af the timber ond the strength of the loshings.

Figure 113. Expedient wooden bridges.

Figure 113-Continued.

CHAPTER 8 CONCRETE CONSTRUCTION

94. EXCAVATION

Finol excavotion should be done by hond. If too much moterial is removed, it is recommended that the material removed never be put back. Fill the vaid with concrete or rack. See toble 62 far time estimates by hond.

95. FORMING

a. The overoge corpenter con erect obout 10 square feet af waoden forms per hour.
b. Steel raad forms can be set by 4 -man teoms at the rate of opproximately 50 lineor feet per hour.
c. Waaden farms (see fig. 114).
(1) Sheothing. Sheathing forms the surfoce of the cancrete. It shauld be wotertight and as smaoth as possible, especially if the finished surface is to be exposed. Since the concrete is in o plastic stote when placed inta the form, the sheathing.must be free from cracks or holes. Tangue ond groove sheathing gives o smooth watertight surfoce. Plywood or mosonite can be used far speciol work.

Table 62. Eorth excavotion by hand

Type of moteriol	Cubic yords per man-hour					
	Excavation with pick ond shoval to depth indicoted				Loosening eorthman with pick	\qquad
	0 to 3 foet	0 to 5 feet	0108 feet	$\left\lvert\, \begin{array}{ccc} 0 & \text { to } & 10 \\ \text { feet } \end{array}\right.$		
Sand	2.0	1.8	1.4	1.3		1.8
Silty sond	1.9	1.6	1.3	1.2	6.0	2.4
Gravel, loose	1.5	1.3	1.1	1.0		1.7
Sondy silt-cloy	1.2	1.2	1.0	. 9	4.0	2.0
Light cloy....	. 9	. 7	. 6	. 7	1.9	1.7
Dry clay. .	. 6	. 6	. 5	. 5	1.4	1.7
Wet cloy	. 5	. 4	. 4	. 4	1.2	1.2
Hordpan.	. 4	. 4	. 4	. 3	1.4	1.7

Figure 114. Farm for a cancrete wall.
(2) Studs. The weight of the plastic cancrete wauld cause sheathing to bulge. Studs run vertically ond odd rigidity to the wo!l farm. They ore made from 2 -inch $\times 4$-inch or 3 -inch $\times 6$-inch moterial as a rule.
(3) Wales. Studs also require reinfarcing when they extend over faur or five feet. This reinfarcing is supplied by wales. Wales olso serve to tie prefabricated panels together and keep them in a stroight line. They run harizantolly and are lapped ot the carners af the forms ta odd rigidity. They ore usually the some materiol as the studs.
(4) Braces. There are mony types of braces which con be used ta hold forms in ploce. The mast common types ore diagonol members nailed fram a stake to o stud ar wale. They should make a 30° angle with the horizontal. Additionol brocing may be added ta the form itself by placing vertical members behind the wales (strongbocks) or by plocing vertical members in the carner tarmed by intersecting woles.
(5) Shae plates. The shae plate is nailed into the faundation or footing ond is ploced carefully sa os to give the correct woll dimensian. The studs ore tied into the shoe and spoced according ta the correct design.
(6) Spreoders. In order to mointoin proper distonce between farms, smoll pieces of wood ore cut to the some length as the thickness of the wall ond are ploced between the forms. These ore called spreaders. When the concrete is placed into the form, enough pressure is opplied on the form by the plastic concrete to allow the spreoders to be remaved. The spreoders must be removed before the concrete hardens.
(7) Tie wires. Tie wires hold the ponels agoinst the spreaders. Use No. 9 anneoled wire or similor.
(8) Calumn yokes ond sheathing. In calumn farms, sheathing runs vertically to sove an the number af sow cuts required. Use only harizontal bracing.
d. All forms shauld be oiled befare concrete is ploced. This is to aid in removing farms after the concrete has hordened.

Figure 115. Moximum concrete pressure graph.

96. FORM DESIGN

a. Detemine Rate of Placing Cancrete. Rate af placing cancrete in farm equals mixer capacity ($\mathrm{cu} \mathrm{ft} / \mathrm{hr}$) divided by the area that the farm cavers:
Rate af placing ($\mathrm{ft} / \mathrm{hr}$) $=\frac{\text { mixer capacity (} \mathrm{cu} \mathrm{ft} / \mathrm{hr} \text {) }}{\text { farm area (} \mathrm{sq} \mathrm{ft} \text {) }}$
b. Determine Maximum Cancrete Pressure. Enter figure 115 with the rate of placing cancrete and the temperature at which the cancrete will be placed. Determine the maximum cancrete pressure.
c. Determine Maximum Stud Spacing. Ta determine the maximum stud spacing, enter figure 116 with the maximum cancrete pressure. Draw a line vertically up until it intersects the carrect sheathing curve. Read harizantally ta the side af the chart and determine the maximum stud spacing.

Figure 116. Maximum stud spacing graph.

figure 117. Moximum wole spocing groph.
d. Determine Moximum Wole Spocing. Enter figure 117 with the known moximum concrete pressure ond reod up until the sfud-sheoth curve is intersected. Reod to the left for the moximum wale spocing.
e. Column forms (see fig. 118). Enter toble 63 with the height of the column desired. Read ocross to the lorgest cross-sectional dimension of the form. This is shown os L in the sketch. This will give the vertical distonce between eoch yoke, storting from the bottom of the form to the top.

Example: Whot is the yoke spocing for o 9-foot column whose lorgest cross-sectional dimension is 36 inches?

Answer: storting from bottom of form to the first yoke $8^{\prime \prime}-10^{\prime \prime}-11^{\prime \prime}-12^{\prime \prime}-15^{\prime \prime}-17^{\prime \prime}-17^{\prime \prime}-17^{\prime \prime}$.

97. IMPORTANT FACTORS

The importont considerotions in mixing good concrete are:
o. Plostic Mixtures. For plostic mixtures, use sound, clean sond, coarse oggregate, ond odequate plocement procedures. The strength

Figure 118. farm far a cancrete calumn.
of cancrete under given jab canditians depends upan the net quantity of mixing water used per sack af cement.
b. Sand and Aggregate. Assuming that praper cement is available the first item af impartance far a cancrete jab is the avalability af suitable sand and caarse aggregate. The sand shauld be free af clay and silt and the aggregate should be hard and strang.

Table 63. Column Yoke Spacing

c. Strength. Factars affecting the strength af a cancrete mix depend an the water-cement ratia. The type, gradatian, cleanliness, and shape of the aggregate particles definitely aid in strength, but nat ta the extent that the water-cement ratia daes.
d. Mix. The amount af sand and coarse aggregate required far each batch shauld be carefully measured by weight ar valume.
e. Water. Water far mixing cancrete shauld be free of fareign matter such as silt, decayed matter, alkali, sulphates, ar salt.

98. ESTIMATING VOLUMES OF MATERIALS STORAGE

a. Formulas.
(1) A gaad farmula by which ta estimate the weight and valume af aggregate in a cane shaped pile is:
valume $=0.2618 \times$ height \times diameter (squared).
(2) The graph in figure 119 gives the methad af estimating both valume and waight af aggregate in a pile ar starage.
b. Starage Capacity. An explanatian for using above three pairs af curves in figure 119 cansiders the fallawing:
(1) The capacity af the canical-shaped piles is determined fram the twa curves an the for right and the vertical calumn an the autside right. It cauld be determined far example, that a stackpile af crushed stane 30 feet high has a capacity of 2,010 tans.
(2) In determining the capacities per lineal faat af tent-shaped piles, nate that the twa ends af these are equivalent to ane canical pile, and their capacity can be determined in the manner described in a abave. The capacity of the intermediate section far variaus heights is determined by using either af the twa curves in the middle af the chart and the vertical calumn an the inside right. Far example, a stackpile af gravel 19 feet high has a capacity of 24 tans per lineal faot. The capacity af the twa end sectians is 630 tans, therefare the tatal capacity af a stockpile with a 50 -faat-lang intermediate sectian wauld be $24 \times 50+$ 630 , or 1,830 tans.
(3) The vertical calumn af figures an the left gives the diameter or width (B) of conical ar tent shaped stackpiles of variaus heights. Far example, a 17 -foat high tent-shaped pile af crushed stane has a base width af anly 41 feet.

99. CONCRETE MIXING BY HAND

a. Hand-Mixing Cancrete. Hand mixing must be carefully and tharaughly dane. It is efficient anly far a few, small batches of no larger than 1 cubic yard each.
785-094 O-66-14

Curven beeced mor
Unit mildht ol agoregate of 100 pouede per cuble fost. Angle af repese of eand and grovil of 57°. Angle ef rapente of aushed atone of 40 .

Figure 119. Storoge capocity curves.
b. Equipment. Equipment required includes o wotertight metol or wooden plotform (obout 10 feet $\times 12$ feet) two shovels, 1 -cubic-foot meosuring boxes, mortor hoes, ond poils for meosuring woter.
c. Mix Sand and Cement Dry First. If the botch consists of two sacks of cement, 5.5 cubic feet of sond, and 0.4 cubic feet of coorse oggregote, 3 cubic feet of sond is dumped on the plotform first. Loy the sond out flot, and spreod o sock of cement evenly over it. Then loy the rest of the sond ond the other sock of cement similorly on the pile. Turn this mix two or three times until the moterial is 0 uniform color. After
the cement ond fine oggregote ore mixed, the pile is leveled off ond the 3 cubic feet of coorse oggregote is meosured ond spreod over it. Then turn this botch two or three times ond "trough" the center. Pour water, corefully meosured, into the trough. Turn the dry moteriols, into the woter ond mix until consistency is uniform.

100. DESIGN OF CONCRETE MIXES

o. Woter-Cement Rotio.
(1) The omount of woter in mixing concrete is of mojor importonce. It con be expressed in terms of gollons per sock of cement, or in terms of weight of woter per sock of cement. Toble 64 gives the quontities of woter for concrete of given strengths.
(2) Where strength ond economy ore importont, tests for strength should be mode with moteriols under job conditions. These tests should include of leost three different woter contents. The 15 percent sofety foctor used with toble 64 should be used here.
(3) The gollons of woter per sock of cement to moke durable concrete for vorious conditions is shown in toble 64.
b. Slump (Consistency).
(1) Consistency is meosured by slump test.
(2) The procedure for determining the slump of concrete is os follows:
(0) Construct slump cone os shown in figure 120.
(b) Moisten cone ond ploce on o woterproof surface such os o piece of tin or plostic. Do not ploce on concrete or wood unless thoroughly moistened.
(c) Completely fill cone in three loyers, each loyer consisting of opproximotely $1 / 3$ of the volume of the cone.

Toble 64. Relotions Between Mixing Woter ond Compressive Strength of Concrete*

Woter-gol per sock of cement	Proboble overoge strength, psi	
	7-doy strength	28-doy strength
4	4,400	6,000
5	3,500	5,000
6	2,800	4,000
7	2,200	3,300
8	1,800	2,800

[^4](d) As eoch layer is ploced it must be rodded with 0 5/8-inch tomping rod 25 times. Eoch stroke of the rod should penetrote the loyer of concrete below the loyer being tomped, with the bottom loyer being rodded throughout its entire depth.
(e) When the cone is full, strike off excess concrete.
(f) Corefully remove the cone ond ploce next to the concrete. Meosure the slump of the concrete os shown in figure 120.

101. CONCRETE ESTIMATION (3/2 RULE)

a. Determine volume of concrete needed in cubic feet.
b. Multiply volume of concrete needed by 3/2. This gives the totol omount of dry loose moteriol needed.
c. Assume o volumetric proportion of cement, sond ond grovel. This con be done by octuol test or by ossuming o $1-2.3$ mix.
d. Compute totol volume of eoch moteriol needed. Toke the desired proportionol mix decided on in porogroph cobove ond odd up li.e

TAMPING ROD: DIA.-5/8" LENGTH-24"

Figure 120. Meosurement of slump.

1-2-3 = 6). Determine the amaunt of cement, sand and gravel needed by multiplying the volume of dry materiol needed, found in paragraph b by the praportianal omount of the tatal mix.

Example: Cement $=1 / 6 \times$ tatal valume Sond $=2 / 6 \times$ total volume Gravel $=3 / 6 \times$ tatal volume
e. Add lass foctar due to handling by using rule of thumb: 10% loss far jobs up to 200 cubic yords of dry loase material needed and 5% lass for jabs aver 200 cubic yords. (Note: Round aff ta neorest whole number.)
f. Example: Determine the amaunt of moteriol needed ta place o concrete wall. The size hos been determined to be 10 feet laing, 3 feet high ond 1 faat thick.

Valume (cubic feet) $=10$ feet $\times 3$ feet $\times 1$ foat $=30$ cu \boldsymbol{f}
Dry loose materiol required $=30 \mathrm{cu} \mathrm{ft} \times 3 / 2=45 \mathrm{cu} \mathrm{ft}$
Assumed propartianol mix $=1-2-3=6$
Amaunt af material required:
Cement $=45 \mathrm{cu} \mathrm{ft} \times 1 / 6=7.5 \mathrm{cu} \mathrm{ft}=7.5$ bogs
Sand $=45 \mathrm{cuft} \times 2 / 6=15 \mathrm{cu} \mathrm{ft}$
Gravel $=45 \mathrm{cu} \mathrm{ft} \times 3 / 6=22.5 \mathrm{cu} \mathrm{ft}$
Amount required is less thon 200 cubic yords.
Assume 10% hondling lass.
Therefare, totol omount required equals:
Cement $=7.5$ bogs $+10 \%=.75+7.5=9$ bags
Sand $=15 \mathrm{cu} \mathrm{ft}+10 \%=1.5+15=17 \mathrm{cu} \mathrm{f}$
Gravel $=22.5 \mathrm{cuft}+10 \%=2.25+22.5=25 \mathrm{cu} \mathrm{ft}$

102. CONCRETE MIX DESIGN (TRIAL BATCH METHOD)

a. It is recommended, that to praperly design o cancrete mix, the testing equipment and pracedures outlined in TM 5-742 be used. If this is nat avoilable, the procedure given in this manual will be satisfoctary. Far large prajects, it may be mare canvenient ta use o mixer far trial batch, but far smoll prajects mixing by hond may be better. The methad given here, is for trial mixing dane by hond.
b. Canstruct a meosuring bax which has the inside dimensians of 6 -inches $\times 6$-inches $\times 6$-inches. This will give a cantoiner which will hold 0.125 ($1 / \mathrm{e}$) cubic faot af moterial.
c. Determine the amount of water that is ta be odded ta the cement by using toble 64.
d. Determine the slump required by referring to toble 65 . Be sure to pick one particulor slump instead of o ronge.

Table 65. Recammended Slumps for Variaus Types of Canstructian"

Type of Canstructian	Slump	
	Moximum	Minimum
Reinfarced faundation wolls and footings	5	2
Plain faatings, caissans, and substructure wolls	4	1
Slabs, beams, reinfarced woll .	6	3
Building columns.	6	3
Povements	3	2
Heovy mass constructian.	3	1

"With high-frequency vibratars, reduce the toble values by one-third.
e. Using the meosuring box, measure out one bax af cement, twa baxes af sond ond three baxes af grovel. Ploce on a surface which will nat absarb maisture. Mix the cement, sand ond grovel until evenly mixed. Place the mixture in a maund and farm o depressian in the middle.
f. Measure aut $1 / 1$ of the required water for one sack af cement ond pour slawly inta the cement-sond-gravel mixture. Mix well until oll sand and gravel is coated with cement.
g. Test slump ta campare ogoinst what is required.
h. If slump is mare than required repeat the trial mix using mare sand-gravel. If slump is less than what is desired, it is permissible ta reduce the sand-gravel cantent. Cautian: Never increase only water cantent to get mare slump.
i. After the proper triol mix hos been determined, multiply the amounts used by 8 . This will give the omount of sand ond gravel to mix with one bag of cement.
i. Example: It is required to place concrete which will hove a 7 -day strength af 3,500 psi. The cancrete will be used for faotings.
(1) Woter ta be added equals 4 gollons.
(2) Slump required is 3 inches.
(3) After the trial batch it wos found thot to obtain a 3 inch slump 1 box ($1 / 8 \mathrm{cu} \mathrm{ft}$) af cement, 2 baxes ($1 / 8 \mathrm{cu} \mathrm{ft}$ each) af sand ond 4 baxes ($1 / \mathrm{fcu} \mathrm{ft}$ eoch) af gravel were needed.

Therefare for o one bag mix:
Cement $=1 \times 1 / \mathrm{cu}$ ft $\times 8=1 \mathrm{cu} \mathrm{ft}=1 \mathrm{bag}$
Sand $=2 \times 1 / 8 \mathrm{cu} f \times 8=2 \mathrm{cu} \mathrm{f}$
Gravel $=4 \times 1 / \mathrm{cu} \mathrm{ff} \times 8=4 \mathrm{cu} \mathrm{ft}$

103. BATCHING

a. Once a design mix has been determined and a ane sack mix is camputed the praject site must be laid aut and arganized ta facilitate quality cantral af the batch (charge) which will ga inta the mixer.
b. A recammended layaut is to place cement, sand, gravel and water as clase to skip (laad bucket) af the mixer as passible. When the charge is being placed in the skip, gravel shauld be placed in the skip first. This allaws the material ta flaw freely and keep the skip clean. Cement is placed next and cavered with sand. This prevents the cement fram being blawn away. The exact amaunt can be cantralled by canstructing measuring baxes which have an inside dimension af 1 foot x 1 faot $\times 1$ faat and all sand and gravel being measured as it is placed in the skip. Water can be placed inta the mixer either by the use af a metering device which may be a part af the mixer, ar by hand. If the water is placed by hand it shauld be measured inta cantainers which will nat leak and care shauld be taken that the water is nat spilled as it is placed inta the mixer. Water may be added thraugh the discharge end af the mixer (discharge chute up) after the dry materials are in the drum. Avaid spilling water inta the skip as it has a tendency ta make the materials stick.

104. MIXING

The actual mixing time will depend an the means available ta discharge the mixer. If discharge is direct inta the farm, the mixing time shauld be at least ane minute far any mix ar ane minute far each cubic yard af mix. The time is increased by 15 secands far each additianal $1 / 2$ cubic yard. If discharged inta small cantainers, the mixing time will be langer due to the additianal time required to empty the mixer drum.

105. CONCRETE PLACING

a. Cancrete should not be allawed ta fall into farms at heights greater than three ta five feet unless suitable drap chute, baffles, ar vertical pipes are pravided.
b. As cancrete is being placed, it shauld be campacted by vibratian, spades ar rads. Care shauld be taken nat ta aver vibrate. This will cause the cancrete ta segregate, making the cancrete weaker. (Segregation is when the large stanes sink ta the battam af the mix.)
c. Curing and pratectian methads are as fallaws:
(1) Maist curing. The lass af maisture must be prevented during hydratian. Keep the expased surface maist by spraying ar panding, ar cavering with earth, sand, ar burlap, maintained in a maist canditian.
(2) Curing compaunds. Sproy on the compound in one caot. Do not use the campounds if the air temperoture is above $100^{\circ} \mathrm{F}$ and the oir is dry.
(3) Protectian against law temperatures. Da not let fresh cancrete drop belaw $40^{\circ} \mathrm{F}$ in temperoture.

106. MIXER CLEANING

Cleaning of the mixer should be perfarmed after every use. Ta clean o mixer, all cement paste shauld be washed aff the outside af the mixer. The inside af the drum shauld be cleaned. This can be dane by plocing woter and small stanes in the drum and allawing the mixer ta ratate to dean and flush aut oll cancrete from the drum. After cleaning, a light caot af ail on the autside of the mixer will prevent cement and cancrute from sticking ta the mixer during the next aperation.

CHAPTER 9
 MILITARY ROAD CONSTRUCTION

107. MINIMUM DESIGN REQUIREMENTS

Table 66 gives o summary of military rood specificotions.
108. TYPES OF SURFACES
o. Eorth Raads. Eorth roods cansist of notive fine-groined soils, groded and droined ta farm o surface far carrying traffic. Their use is limited ta dry weother and light traffic. In cambot areas, these raads are used where necessity demands speed af canstruction with limited equipment and personnel.
b. Oiled Earth Raods. Oil is spread an earth raads ta prevent dust and help woterpraaf the surface. It is successful with silt ar clay. The omaunt af oil used vories fram obout $1 / 2$ to 1 gallon per squore yard applied in twa or three increments, depending upan the soil and the type of oil used,
c. Soil-Stabilized Surfaces. Bituminaus sail-stobilized mixtures and sail cement may be used os rood surfaces os an expedient for relatively shart periods and ta corry light troffic.
d. Sandy-Clay Raads. This type af raad has a natural ar artificial mixture of sand and cloy, graded ond drained ta farm a raod surface. Usually fine gravel added ta it will give stability. These raods serve well for light troffic, ond will corry heavy troffic except in adverse weather, althaugh they withstond such conditians better than eorth roads.

Toble 66. Military Rood Specificotions

Characteristic	Specifimation
Width	
Traveled way (single lane)	Min-11.5 ft (3.5 maters)
Traveled way (twa lanes)	Min-23 ft (7.0 meters)
5houlders (eoch side)	Min-4 ft (1.5 meters)
Clearing	Min-6 f (2 meters) an eoch side of roodway
Grodes: Absalute maximum	
	Lawest maximum gradability of vehicles for which road is built
Narmal maximum	10%
Desirable maximum	Tangents and gentie curves, less than 6\%; sharp curvas, less than 4\%

Table 66. - Cantinued

Choracteristic	Specificotion
Horizantol curve rodius Verticol curve length: Invert curves Overt curves Sight disfance: Manpossing Possing	Desired min- $150 \mathrm{ff}(45 \mathrm{~m}) \quad$ Absolute $\mathrm{min}-80 \mathrm{ft}(25 \mathrm{~m})$ $100-\mathrm{ft} \min (30 \mathrm{~m})$ for each 4% olgebraic difference in grodes $125-\mathrm{ft} \mathrm{min}(40 \mathrm{~m})$ for each 4% algabroic difference in grodes Absolute minimum-200 it (60 m) Absolute minimum-350 $\mathrm{ft}(110 \mathrm{~m})$
Load capocity Rood proper Bridges	Sustoin 18,000 lb wheel lood Accommadote using traffic
Slopes Shoulders Crown (grovel and dirt) Crown (paved) Superelevotion Cut fill	$3 / 2$ in per ft to $11 / 2$ in per ft $1 / 2$ ta $3 / 4$ in per ft $1 / 4$ to $1 / 2$ in per ft $1 / 4$ to $11 / 4$ in per $f t$ Voriable Voriable
Oroinage Goad	Adequate crown or superelevation with adequate ditches and culverts in gaad candition. Take full odvontoge of natural droinage. Try to locote road at leost S ft obove the ground-water table
Miscelloneous Overhead clearonce Troffic valume Turnouts (singla lona)	Min $-14 \mathrm{ft}(4.3 \mathrm{~m})$ 2,000 vehicles per doy Min-every $1 / 4$ mile

e. Gravel Raads. Gravel raads are a campacted layer af well graded gravelly sail which meets the plasticity requirements far mechanically stabilized sails. Grading requirements far this type of surface are given in table 67. Natural pit- ar bank-run gravel may meet these requirements with anly screening. Other pit- ar bank-run gravel may raquire bath screening and washing. River gravels narmally require the additian af binder sail. The capability af gravel raads ta carry heavy, sustained traffic depends an the strength and hardness af gravel,

Table 67. Suggested Groding Requirements for Grovel and Composite Type Surface Courses of Processed Moteriols

Sieve designotion	\% possing, by weight
1 in	100
$3 / 4$ in	$85 \cdot 100$
$3 / 8$ in	$65-100$
No. 4	$55-85$
No. 10	$40-70$
No. 40	$25-45$
No. 200	0.10

the cohesiveness of cloy binder, the thickness of the loyer, ond the stobility of the subgrode. These surfoces moke on excellent base for loter povements.
f. Roods of Processed Moteriols. Processed materiols ore prepared by crushing ond screening rock, grovel, or slog. The informotion on grovel roods is opplicoble to these roods. They should meet the groding requirements set forth in toble $\mathbf{6 8}$.
g. Use of Colcium Chloride ond Sodium Chloride.
(1) Colcium chloride is widely used in construction (ond mointenonce) of mechonicolly stabilized soil surfoces, grovel roods, ond roads mode with composite type processed moteriols. Colcium chloride ottrocts ond retoins moisture from the oir. Use 0.5 pound per squore yord per inch of compocted mixture when mixed-in-ploce construction is used. If the mixture is prepared ot a centrol plont, the mixture should be 10 pounds of colcium chloride per ton of mixture. It is recommended thot 1 pound per square yord be opplied when the surfoce is complete.
(2) Sodium chloride (generolly rock salt) moy be used in much the some woy os obove. Use obout 1 ton per mile per inch of compocted surfoce 20 feet (6 meters) wide.

Toble 68. Suggested Grading Requirements for Fine-Groded Type Surfoce Course of Processed Moteriols

Sleve designotion	\% possing, by weight
$1 /$ in	100
No. 4	$70-100$
No. 10	$35-80$
No. 40	$25 \cdot 50$
No. 200	$8 \cdot 25$

h. Other Aggregate Materials.
(1) Caral. Caral requires cansiderable maintenance because it will scar and rut when given hard usage, causing water ta pand and saften the base. Surfaces must be periadically shaped with a grader. Traffic will alsa praduce a fine dust, which requires periadic sprinkling, preferably with salt water.
(2) Caliche. The life af caliche (a hard pan, cemented by mineralizing salutians) is greatly increased as a surface when bituminaus treatment is applied.
(3) Tuff. Tuff (depasits af fine minerals ejected by valcanaes) is dusty when dry and slippery when wet. Regrade and rall the surface after a rain ta hald surface maisture and close cracks. An asphalt seal caat will prevent infiltratiar, af water.
i. Ice Surfaces. In narthern latitudes, vehicles and aircraft may use the surfaces af fresh-water ice an lakes and rivers, ar salt-water ice an seas ar alang caastlines.
(1) Fresh-water ice breaks up in the spring. During the winter the strength of this ice exceeds that af young sea ice. The strength af seo ice increases with time, and has a use equal ta fresh water ice when thick enaugh.
(2) Ice strength is affected by temperature and its candition. Inspect the canditian af ice carefully far haneycamb, ratting, ar melting befare impasing heavy laads.
(3) Snaw and ice raads are satisfactary far traffic use where the snawfall reaches a minimum of 2 feet and the temperature falls ta belaw $20^{\circ} \mathrm{F}$ far at least 3 manths. Faur types af snaw and ice raads are: pianeer, traugh, and wide and narraw rut. See TM 5-349 far their canstructian. A pianeer snaw road carries carga vehicles ar snow tractars with grass weights up ta abaut 5,000 paunds. A traugh raad supparts $21 / 2$ tan trucks and medium track type tractors with sled trains. A wide-rut raad supparts 6 -tan trucks and heavy track type tractars with sled trains. Hawever, aver ice, the beairng capacity depends an the ice thickness. Table 69 is a rule-af-thumb guide ta the laad capacity of ice. Ice recannaissance is mandatary ta determine thickness and canditian af the ice.
i. Partable Raad Surfaces. During aperatians in the field, it is aften necessary ta make temparary use af metal mesh, metal landing mats, waad mats, ar variaus types af treadways. These materials are rapidly transported and assembled aver mud, swamps, beaches, ar ather unstable sails. TM 5-337 gives the details af canstructing partable surfaces.

109. CROSS-SECTIONS

See figures 121 thraugh 125 far typical military raad crass-sectians.

Figure 121. Typical cross section illustroting rood specificotions.

Figure 122. One-way earth rood.

Figure 123. Two-way rood using single course construction.

Figure 124. One-way rood using dauble-caurse canstructian.

anse couare of uniform thickness r surface couase sloped $1 / 2$ IN PER FT

Figure 125. Two-woy rood using double-course, trench-type constructian.

110. CENTERLINE STAKES

a. Generol. Centerline ar alinement stokes are ploced on the centerline of o raod ar airfield ta indicate its alinement, locotion, and direction. These stokes are the first stokes to be placed ond ore usuolly placed at 100-foot intervals. On raugh ground ar an sharp harizontal and vertical curves, the stokes ore placed closer together. See figure 126.
b. Placement and Morking.
(1) Plocement. Stokes ore placed with the brood portian af the stake perpendicular to the centerline. The side af the stoke which foces the starting point (stotion $0+00$) is colled the frant of the stake.
(2) Marking. The frant of the stoke is morked with o \& which meons centerline, ond the statian number ar the distance from the starting paint. As an exaemple $78+00$ means 7800 feet from the storting point. On the reverse side, or bock side of the stoke, is placed the omaunt of cut or fill, in feet, required at this stotian.

FRONT
$\left[\begin{array}{c}2 \\ -1 \\ 4 \\ \hline \\ 0\end{array}\right]$
(1) centerline stake

FRONT

(2) SHOULDER OR GRADE STAKE

(3) SLOPE STAKE

(4) offset stake

Figure 126. Construction stake markings.

Table 69. Load Capacity of Ice

Lood	Minimum thickness of ice in	Minimum interval ft
Single riflemon on skis or snowshoes.	$11 / 2(40 \mathrm{~mm})$	16 (5 m)
Troops in single file, 2-poce distonce	$3(80 \mathrm{~mm})$	23 (7m)
Troop column, single horses, motorcycles, unlooded sleds, or motor-toboggans	$4(100 \mathrm{~mm})$	$433(10 \mathrm{~m})$
Single light ortillery piece, $1 / 4$-ton truck, 4×4.	$6(150 \mathrm{~mm})$	$49(15 \mathrm{~m})$
Light ortillery, possenger cors, medium $1 / 2$-ton trucks with gross weight of $31 / 2$ tons.	$8(200 \mathrm{~mm})$	$65(20 \mathrm{~m})$
21/2-ton trucks, light loods	$10(250 \mathrm{~mm})$.	$82(25 \mathrm{~m})$
Closed columns of oll orms except ormored force ond heovy ortillery	12 (305 mm)	$98(30 \mathrm{~m})$
Armored scout cors, light tonks.	$14(355 \mathrm{~mm})$	$115(35 \mathrm{~m})$
20-fon vehicles. .	$16(405 \mathrm{~mm})$	$131(40 \mathrm{~m})$
45-ton vehicles	$24(60 \mathrm{~cm})$	$164(50 \mathrm{~m})$)

* Minimum interval between files or columns.

111. SHOULDER STAKES

a. General. Shoulder stakes are set an the inside edge of the shoulder and are used as guides far the operator ta determine the width af the road. See figure 126.
b. Placement and Marking.
(1) Placement. These stakes are set at right angles ta the centerline opposite each centerline stake.
(2) Marking. Markings can be the same as those far raugh grade stakes (par 114) ar the stake can be simply a plain, unmarked piece of wood that marks the inside edge af the shoulder.

112. SLOPE STAKES

a. General. Slope stakes define the limits of grading wark. Usually the area ta be cleared extends 6 feet beyond the slope stakes. See figure 126.
b. Placing and Marking.
(1) Placing. Slope stakes are set an lines perpendicular to the centerline (one an each side), ot the points where the cut and fill slopes intersect the natural ground surface. If there is cut or fill to be performed, the stake is placed in the ground at an angle, leaning away from the centerline. Slope stakes are placed at 100 -foat intervals on tangents and at $\mathbf{5 0}$-foot intervals on horizantal or vertical curves.
(2) Morking. The front of the slope stoke is the side focing the centerline. This side is morked with the omount of cut or fill te be done, in feet, from the stoke to the outside edge of the ditch line ot o point even with the final grode of the rood of the shoulder. - The second figure on the stoke represents the distonce from the stoke to the centerline of the rood. The bock of the stoke contoins the stotion number and the slope required for the cut or fill.

113. OFFSET STAKES

o. Generol. As soon os work is storted on o cut or fill, the centerline ond slope stokes moy be destroyed. In order to eliminote resurveying to reploce these stokes, offset stokes ore ploced beyond the limits of construction for the purpose of relocoting the originol stokes. See figure 126.
b. Morking. The offset stoke will contoin oll the informotion found on the original slope stoke plus the horizontal distonce from the original slope stoke to the offset stoke. This distonce is morked on the front of the stoke ond is circled to indicote thot it is on offset distonce.

114. GRADE STAKES
 o. Rough Grode Stokes.

(1) Generol. Rough grode stokes ore ploced on centerlines, shoulder lines, or slope lines ofter groding hos begun. These stokes ore ploced to show the operotor the omount of cut or fill remoining and ore not considered o permonent reference.
(2) Plocement ond Marking.
(o) Plocement. The rough grode stoke is ploced ot either o point of cut or o point of fill to show how much eorth is left before final grode is obtoined.
(b) Morking. The front of the stake (the side of the stake facing the centerline) is morked with the letter F or C, indicoting fll or cut, o reference line with o "crow's foot" ond the distonce from the stake to the centerline. To eliminote confusion, the surveyor who put in the grode stokes should exploin how he used the reference line found on the stake. Some surveyors use this line os final grode ond others ure this line os o reference line (to meosure the omount of fill or cut from the bock of the stoke contoining the stotion number).
b. Finol Grode Stokes.
(1) Generol. Normolly these ore 2×2-inch wooden stakes driven into the ground until the top of the stoke is at a level to represent final elevotion.

$$
785-094 \text { O-66-15 }
$$

(2) Placement and Marking.
(a) Placement. These stakes are plaçed wherever it is felt a reference ta final grade shauld be made such as an centerline statians.
(b) Marking. There are no markings an these stakes ather than the blue ar red taps. The setting af the tap af the stake cauld represent the exact finish grade ar a certain standard distance abave exact grade.

115. SOILS

a. Field Expedients far Soil Analysis. The fallawing field tests may be of value in sail analysis. (Far camplete infarmation see TM 5-530.)
(1) Feel. Sand has gritty feel when rubbed between the fingers. Dry silts have a smaath, silky, flaury feel. Same wet clays feel slick or saapy.
(2) Shine. When rubbed with fingernail ar knife blade, inarganic clays remain dull, high plastic clays became shiny.
(3) Taste. Fine-grained sail will tend ta stick to tangue.
b. Drainage Characteristics. Sails may be divided inta three general graups an the basis of their drainage characteristics:
(1) Well-draining sails. Clean sands and grapels fall inta this classificatian. They may be readily drained by gravity systems. For raads ar airfields, open ditches may be used in these sails to intercept and carry water.
(2) Paarly draining sails. These are the inarganic and arganic fine sands and silts, arganic clays af law campressibility, and caarse grained sails having an excess af namplastic fines. Drainage by gravity alane is difficult in these sails.
(3) Imperviaus sails. Fine-grained, hamageneaus, plastic sails, and coarse-grained sails containing plastic fines are in this category. Subsurface drainage is sa slaw in these sails that it is af little value in impraving their canditian. Any drainage pracess may be difficult and expensive.

116. DRAINAGE

a. Checkdams. Checkdams are used an sidehill cuts and steep grades, where they are placed in side ditches ta slaw the water and prevent it fram washing aut the raad. Checkdams are used when the ditchline grade exceeds 5 percent ar where erasion is a prablem. They are made of timber, sandbags, concrete, rock, ar similar materials. Figure 127 shaws the method af camputing checkdam spacing.
b. Culverts. Culverts are required wherever drainage channels are needed to crass raads, ta pravide ditch relief, and ta cantinue side ditches of the intersectians af raads and access rautes. In tactical situ-

Figure 127. Methads of computing checkdom spocing.
otions where roads will be used only o few weeks, the cross sectional areas of drainoge focilities ore estimoted by hasty methads.
(1) Talbat's formula may be used as an opproximate methad for camputing the crass-sectional oreo of a proposed culvert. This formulo is:

$$
A=C \sqrt[4]{D^{3}} \text { or } A=C D^{3 / 4}
$$

where $A=$ oreo of waterwoy opening in square feet
$\mathrm{D}=$ drainage area in acres
$C=$ coefficient of retardation based upon slope ond soil chorocteristics, (see table 70).

Surface Runoff Factors	
Types of surface	Foctor
Bituminous povaments.	0.80 to 0.95
Concrete povements.	0.70 to 0.90
Grovel or mocodom povements	0.35 to 0.70
Impervious soils	0.40 to 0.65
Impervious soils, with furf*	0.30 to 0.55
Slightly pervious soils*.	0.15 to 0.40
Pervious soils* .	0.01 to 0.10
Wooded oreos (depending on surfoce slope and soil cover)	0.01 to 0.20

(2) Toble 71 shows required culvert openings os computed from Talbot's formulo.
(3) An olinement chort for solutions is given in figure 128.
(4) The deliberate method of estimoting runoff combines engineer judgment with colculations based on analysis, measurement, or estimation. It is expressed by:

$$
\Theta=\mathrm{ClA}
$$

where $Q=$ runoff from o given oreo in cubic feet per second
$C=0$ coefficient thot represents the rotio of runoff to rainfall
I =intensity of rainfoll in inches per hour for the estimated time of concentrotion
$A=$ droinoge areos in ocres.
The value of \bar{C} is derived from a study of the soil, the slope, ond conditions of the surface. The more commonly used volues are shown in toble 71. Other formulos may be found in TM 5-330.

c. Culvert Flocement.

(1) A way to prevent erosion is pointed out in figure 129. Suggestions of culvert olinement are shown in figure 130.
(2) Culverts ore normolly at the grode of the natural and artificial droinoge chonnels which dischorge into them. Grodes of 2 to 4 percent ore desiroble. Velocities should not be over 8 feet per second nor less thon 2.5 feet per second.
(3) Culverts should be ploced wherever natural droinoge channels require cross droinoge. Figure 131 shows the spocing of ditch-relief culverts. The bedding ond spocing of multiple-pipe culverts is equal to of leost half the diometer of the pipe (fig. 132).

Table 71. Required Culvert Opening, in Square Feet, Camputed fram Talbat's farmula

Droinage ared in ocres	Mauntain. $(C=1.0)$	$\begin{gathered} \mathrm{Hilll}_{\mathrm{y}} \\ (\mathrm{C}=0.7) \end{gathered}$	Rolling $(C=0.5)$	$\begin{gathered} \text { Flot } \\ (\mathrm{C}=0.2) \\ \hline \end{gathered}$
2.	1.7	1.2	0.9	0.3
5.	3.3	23	1.7	0.7
10	5.6	3.9	28	1.1
20	9.5	6.7	4.8	1.9
30	12.8	9.0	6.4	26
40	15.9	11.1	8.0	3.2
50	17.8	125	8.9	36
75	25.4	17.8	12.7	5.1
100.	31.6	22.1	15.8	6.3
150.	42.9	30.0	21.5	8.6
200.	53.1	37.2	26.6	10.7
300.	72.2	50.5	36.1	14.4
400.	88.1	61.7	441	17.6
500.	106.0	74.2	53.0	21.2
600.	121.0	85.0	61.0	24.0
800.	151.0	106.0	76.0	30.0
1,000.	178.0	125.0	86.0	36.0
1,200.	204.0	143.0	102.0	41.0
1,500.	241.0	169.0	121.0	48.0
2,000	299.0	209.0	150.0	60.0
2500	353.0	247.0	177.0	71.0
3,000	(*)	284.0	203.0	81.0
4,000	(*)	352.0	2520	101.0
5,000.	${ }^{*}{ }^{\text {(}}$	(*)	298.0	119.0
7,500.	(*)	(*)	(*)	161.0
10,000	(*)	(*)	(${ }^{\text {(}}$)	200.0
15,000	(*)	(*)	(*)	271.0
20,000	(*)	(*)	(*)	336.0

* Farmula not to ba usad for these canditians. NOTE: Valua of C moy ba reduced whera ponding ar temporary starage is available, such as in irrigatad arasas ar rica paddias.

Figure 128. Nomograph for solution of Talbot's formula.

Figure 129. Culvert extended beyand fill ta prevent erasian.
d. Box Culverts. There are severol types of box culverts: lag bax, timber box, and cancrete box. Examples af each are shown in figures 133 through 135.
e. Nestoble Corrugated Pipe Culverts. These culverts are of two types: notched, having a natched edge and ploin edges, and flanged, hoving flanges with slotted holes. The twa types ore not interchangeoble. Figure 136 shaws the strutting diagrom far elangoting the verticol dimension of the larger sizes of corrugated pipe culvert prior ta backfilling.
f. Expedient Culverts.
(1) One type of this culvert uses ail, gasaline, or ospholt drums. Remave their ends with detanating cord, shorp handtaals, ar the taolpneumotic metol drum apener.

CAUTION: Do not use a torch or other tools on gosoline or oil drums unless they ore completely empty. Jain these drums end to end by tackwelding, balting, ar wiring.
(2) Another type of expedient culvert is illustrated in figure 137. It uses sandbogs ond pierced metal panels, the latter being placed bath above ond below the sandbogs os shawn in figure 137.

Figure 130. Alinement of culverts.
g. Cover. A minimum caver requirement of $1 / 2$ the diameter con be used for reinfarced concrete pipe ond corrugated metal pipe culverts. Culverts other than pipe should hove o minimum af 12 inches, preferably 18 inches, af cover. Where heovy equipment is used in constructian, odequate caver must be pravided to protect culvert structures fram damoge.
h. Hasty Culvert Areo Calculotion. See figure 138.

117. IDENTIFICATION OF BITUMINOUS MATERIALS

o. Aspholt and Tor. Aspholt ond tor products ore the principol bituminaus moteriols used for road and oirfield canstruction. figure 139 is o field guide to identificotion of unknown bituminous moteriols. Toble 72 shows the few grodes which may be manufoctured in the field.

Figure 131. Spocing of ditch-relief culverts.

Figure 132. Spacing of multiple-pipe culvert.
b. Aspholt Construction. For emergency use, mixed-in-place surfaces are made of 3.5- to 6 -percent bitumen, depending on the fineness of oggregate (see TM 5-337 for pracedures.)

118. ROAD CONSTRUCTION IN THE ARCTIC

o. Nanpermatrast Areas. Canstruction design and procedures are generally the same for nonpermafrast as far northern areas ar for any temperate climate. Allowances ore mode for the conditions of winter frost: in the orctic and subarctic regians, the depth af frost penetrotion is greater thon in temperate zones (TM 5-349).

Table 72. Aspholt Cutbock Campasition (in percent of totol valume)

Type	Components		Grodes				
		Solvent	30	70	250	800	3600
Ropid curing RC	Aspholt cement	Gosoline or nophtho		65 35	${ }_{25}^{75}$	$\begin{aligned} & 83 \\ & 17 \end{aligned}$	${ }_{13}$
Medium curing MC	Asphalt cument	Kerosene	54 46	$\begin{array}{r} 64 \\ 36 \end{array}$	$\begin{aligned} & 74 \\ & 26 \end{aligned}$	$\begin{array}{\|c} 82 \\ 18 \end{array}$	$\begin{gathered} 86 \\ 14 \end{gathered}$
5low curing 56	Asphalt cement	Fuel oil		${ }_{50}$	${ }^{60} 40$	$\begin{gathered} 70 \\ 30 \end{gathered}$	80

b. Permafrost Areas. In permofrost oreos, site selection is the most importont of oll construction operotions. Construction design depends on the surfoce ond subsurfoce conditions of the selected site. Prime consideration is given to subgrode soil, ground woter, surfoce ice fields, snow, ond surfoce drainoge. If of all possible, locote roods on soil composed of coorse-groined, nonfrost-octive moteriols, e.g., high-bench grovel terraces. Ground with pores filled by ice or woter should be ovoided. The presence or absence of vegetotior ond its type, if it is present, provide o hosty indicotion of soil condition (TM 5-349).

Figure 133. Log box culvert, 30 -inch.

Figure 134. Timber bax culvert, 18-by 12 -inch.
c. Bridging. The constructian af bridge faundations in permofrost areas is about the same os for other large structures. Far detailed information an raod ond bridge constructian in the arctic, see TM 5-349.

Figure 135. Timber box culvert, $191 / 2$. by 12 -inch.

Figure 136. Strulting diagram shawing end and langifudinal viewscorrugated culvert pipe.

Figure 137. Expedient culvert.

Figure 138. Hasty culvert computation.

6£乙 $91-99-\mathrm{O}+60-\mathrm{c} 8 L$
Figure 139. Field identificotion of unknown bituminous materials.

CHAPTER 10

ARMY AIRFIELDS AND HELIPORTS

119. STANDARDS OF CONSTRUCTION

Army airfields ond heliports ore divided inta three general closses in . relotion to constructian stondards: pioneer, hasty, and deliberate.
a. Pioneer. Lawest standord of constructian, yet maintoining fovorable operoting conditians. Sofety foctors at minimum. Runwoy surface of sail or sad.
b. Hosty. Substandard but operable margin af safety. Reasonably safe and efficient except in prolanged inclement weather. Runwoy depends on sail, weather, time of yeor, availobility of surfacing moterial ond length af time field is used.
c. Deliberote. Safety and efficiency stondards abserved. Con operote under adverse conditians. Must have gaad subgrode ond wellmade flexible or rigid povement to be all-weother operoble.

120. MARKING PIONEER AND HASTY AIRPLANE LANDING AREAS

Pioneer and hasty oirplane londing oreas are normolly morked to oid the oviatar in identifying the oreo ond to focilitote londing. Morking is normally uccomplished by using graund-ta-air signol ponels. Marking is standord for all oirplane landing areas ond con vory fram minimum marking (fig. 140) to optimum marking (fig. 141). These morkings are anly o guide and con be oltered, os required, for speciol situotions. The morkings should olwoys include the length of the usable areas and 0 wind indicotor (or directian af landing).
o. Morking Airplane Londing Area by Panels.
(1) First, ploce twa panels an the left side of the usoble landing
os fallows: areo os fallows:
(o) At the deporture end, place ane ponel perpendiculor to the direction of londing.
(b) At the tauchdawn end, ploce the other panel parollel to the direction of landing.
(2) At the tauchdown end of the londing oreo, use two odditionol panels to moke o wind " T "' io indicote direction of londing and wind infarmation. Point the toil of the wind " T " into the wind. If the tail is on the left side, this indicotes right-hond troffic; if on the right side, this indicotes left-hand traffic; if centered, right or left traffic is indicated.
(3) If o code letter or identity panel is used, center it on the left side of the landing area.
(4) Remove ponel morking after oll oviatars became familior with the area, and os saan os procticoble, as they ore easily seen by the enemy.

CAUTION: Anchor panels securely ogoinst bath prapeller and rator wosh. Exercise extroardinory care in securing panels to graund. Use firmly driven stakes ta secure panels tautly; socks piled an the corners ore nat adequate.

Figure 140. Minimum morkings for a londing area.

THE NUMBERS ON THE PANELS INDICATE PRIORITY OF EMPLACEMENT. . THE NUMBER 4 PANELS INDICATE TAXIWAY WHEN APPLICABLE.

Figure 141. Maximum markings for a landing area.

Figure 142. Flightstrip namenclature.
b. Marking Airplane Landing Area by Smake. If the tactical situatian permits, smake used at the praper time will readily identify the exact lacation of the landing oreo; it will also indicate wind direction and velacity. Smake is normally used in the same orea designoted far wind indicatar. It must be af a color authorized by the signol operatian instructions (SOI).

121. GENERAL NOMENCLATURE OF ARMY AIRFIELDS

The generol loyout and nomenclature are shown in figures 142 and 143.

Figure 143. Flightway nomenclature.

122. ARCTIC CONSTRUCTION OF AIRFIELDS

The informotion an the constructian af roods in the orctic is generolly pertinent ta oirfie'd constructian in arctic oreos. Runwoy design over frost-susceptible soils must token into occaunt frost and permafrost conditions. For detailed infarmation see TM 5-349.

123. ARMY AIRFIELD DESIGN

a. Specifications of Army Airplones. These specificotions ore listed in toble 73.
b. Runway Length. Determinatian of runwoy length consists af multiplying the minimum takeaff graund run by safety factors to allow for variatian in pilot skill; psychalagicol foctors; ond wind, snow, and other surface conditions.

Step 1. Tokeoff ground run far individual oircraft is shawn in toble 73. Increose figure shown by 7 percent for soft surfaces.

Step 2. Increose result of step 1 by 15 percent for eoch 1000-foat increase in runwoy elevotian obove sea level.

Step 3. Increase result of step 2 by 4 percent far eoch $10^{\circ} \mathrm{F}$ increase in temperoture obave $59^{\circ} \mathrm{F}$. (Use highest expected temperoture.)

Step 4. Increose result in step 3 by a slope correction af 20 percent for each 1 percent af effective grodient aver 2 percent.

Step 5. Multiply result in step 4 by the sofety fociar for the particular type oirfield being plonned; pianeer, 1.25; hosty, 1.50; deliberote, 1.75 . Raund result aff ta the next lorger 100 feet.
c. Runway Width. The minimum runwoy width for a pianeer airfield is 50 feet; far o hosty airfield, 50 feet; ond a deliberote oirfield, 75 feet. Care shauld be token to insure thot the shaulders ond cleared areas an both sides af the runwoy ore wide enough to provide sufficient cleoronce for the wings af the airplones using the runwoy.
d. Focilities. The obove methods give the plonner o minimum sel af length ond width far o runwoy. Shaulders, oppraoch zones, ond further saphistications af design require TM 5-330 as o guide.
e. Coordinatian. When possible, the oviotion unit commander should be consulted befare runwoy canstructian begins. Mast oircroft madels have variotions in characteristics which cauld greatly offect the size of the runway to be canstructed.

124. HELICOPTER TAKEOFF AND LANDING AREA

Helicopters ore intended to be vertical tokeaff oircroft, but under certain canditions of laod and otmosphere, require o tokeoff graund run far

Table 73. Specifications of Army Airplanes

Aircrafl typo	Army designation	Grass waight (lbs)	Overall aiplane dimensions				Take. off ground !		land. ing graund rall 1	Land. ing distance ta cloar 50^{\prime} abstacle ${ }^{1}$
			lengh	Wing. span	Height	Treod				
Observation	0-1A	2,100	25'91/2'	36^{\prime}	7'6'	7'7'	355'	580'	305'	605^{\prime}
	0-1E	2,165	25'91/2'	36^{\prime}	7'6'	7'7'	380'	634'	305'	605
	10-10, 0-1F	2,400	$25^{\prime} 91 / 2^{\prime \prime}$	36^{\prime}	$76^{\prime \prime}$	$77^{\prime \prime}$	375'	772'	300'	$680{ }^{\prime}$
	OV-1A, B, C	Characteristics plus requirements vary fram less than 1,000 feat to saveral thausand feet depending upan madel and serial number of ascroft. Consult aviatian unit cammandar far runway requirements.								
Utility	U-6A	5,100	30'5"	48'0'	10's'	$10^{\prime} 2^{\prime \prime}$	$815^{\prime 2}$	1,250' ${ }^{\prime}$	$590^{\prime 2}$	1,250'=
	U-IA	3,000	$41^{\prime} 10^{\prime \prime}$	$58^{\prime} 0^{\prime \prime}$	12'5"	$11^{\prime} 2^{\prime \prime}$	1,045 ${ }^{\prime 2}$	1,605 ${ }^{\prime 2}$	$565^{\prime 2}$	1,225 ${ }^{\prime 2}$
Carga	(v-2B	23,500	$72^{\prime} 7^{\prime \prime}$	95'71/2'	31'9'1	23'2'	735'	1,205'	665	1,245'
Command	U-80	1,300	31'6'	$45^{\prime} 4^{\prime \prime}$	$11^{\prime \prime}{ }^{\prime \prime}$	$12^{\prime} 9^{\prime \prime}$	1,430 ${ }^{3}$	2,385 ${ }^{3}$	1,310,3	2,135 ${ }^{3}$
	J-8F	7,700	$33^{\prime} 4^{\prime \prime}$	45'11'	$14^{\prime} 2^{\prime \prime}$	12'9'	1,370 ${ }^{\text {+ }}$	2,200'4	1,345's	2,125 ${ }^{\text {s }}$
	U-98	7,000	35's'	$44^{\prime \prime} 7^{\prime \prime}$	14'6'		1,250 ${ }^{\prime 2}$	1,540 ${ }^{\prime 2}$	1,058 ${ }^{\prime 2}$	1,630 ${ }^{\prime 2}$

${ }^{1} 39^{\circ}$ wing flaps for tokeoff, 60° wing flops for landing, sod sunway, no wind, $59^{\circ} \mathrm{F}$, and at see lave!.
"Hard surface runway-flaps set fat "TAKEOFF."
${ }^{3}$ Hord suiface runway-assumes landing weight of 7,000 lbs (300 lbs fuel consumption).
${ }^{4}$ Hard surface runway- 0° Rlaps
${ }^{5}$ Hord surfoce runway-assumes landing weight of $7,350 \mathrm{lbs}$ (350 lbs fuel consumption)

Table 74. Specifications of Army Helicopters

Aireraft type	Army dasignotion	Hoximum ollowoble gross weight (Ibs)	Overall hellcoptor dimensiens				Performonce trkeon - ${ }^{1}$	Altitude (feot)				
			Length	Rotor diometer	Height	Treod		Seo level	2,000	4,000	6,000	8,000
Observotion	OH-13E, G	- 2,350	41'5'	$35^{\prime} 2^{\prime \prime}$	9'5'	$76^{\prime \prime}$	- ground num	(${ }^{2}$)	(${ }^{2}$)	(2)	(2)	$(2)^{2}$
							te cleor 50 ft .	225	300	550	900	1,450
	OH-13H	2,450	41'5'	'35'2'	$9^{\prime} 4^{\prime \prime}$	$7^{\prime} 6^{\prime \prime}$		(2) 0	$1{ }^{2}{ }^{1}$ 0	0 0	(2) 0	$\left(\mathbf{1}^{2}\right)$ 550
	OH-135	2,850	$43^{\prime} 3^{\prime \prime}$	37'2'	$9^{\prime} 4^{\prime \prime}$	7'6'	ground run	0	0	0	0	0
							to clear 50 ft .	0	0	0	0	0
	OH23B, 6	2,500	$49^{\prime} 5^{\prime \prime}$	35'	$96^{\prime \prime}$	$7^{\prime} 6^{\prime \prime}$	ground run	230	299	377	466
							to cleor 50 ft .	481	672	1, 055	3, 297	
	OH-23D	2,700	$40^{\prime} 9^{\prime \prime}$	35'5'	$10^{\prime} 2^{\prime \prime}$	7'6'	ground run	0	235	325	- .
							to clear 50 ft .	0	475	670		
Utility	UH-19C	7,500	$62^{\prime} 6^{\prime \prime}$	53'	$14^{\prime} 7^{\prime \prime}$	$\begin{aligned} & 11^{\prime} \text { (moin) } \\ & 4^{\prime} 8^{\prime \prime}(\text { mose }) \end{aligned}$	ground run	255	330	565	210^{3}	645^{3}
							to clear 50 ft .	520	680	1,050	670^{3}	1,840 ${ }^{3}$
	UH-19D	$7,900$	62'3'	53'	15'3'	$\begin{aligned} & 11^{\prime} \text { (moin) } \\ & 4^{\prime} 8^{\prime \prime} \text { (mose) } \end{aligned}$	ground run	95	230	405	180^{3}	260^{3}
							to clear 50 ft .	370	505	705	5753	$935{ }^{3}$
	UH-IA	7,200	52'11"	$43^{\prime} 9^{\prime \prime}$	$13^{\prime} 11^{\prime \prime}$	$8^{\prime} 5^{\prime \prime}$	ground run	0	0	0	\cdots	\cdots
							to clear 50 ft .	110	120	970	\cdots

Toble 74. - Continued

Aircraft type	Army designation	Moximum ollowoble gross weight (lbs)	Overall helicapter dimensions				Performance takeaff -'	Altitude (faet)				
			Length	Rotor diameter	Height	Ireod		Seo level	2,000	4,000	6,000	8,000
							ground run	${ }^{2}{ }^{2}$	$\left({ }^{2}\right)$	(2)	(${ }^{2}$)	(${ }^{2}$
	UH-18	8,500	52 II	44°	15^{\prime}	85	10 clear 50 ft .	0^{4}	44^{4}	50^{4}	94*	
	UH-1D	9,000	57'2' ${ }^{\prime \prime}$	48'3' ${ }^{\prime \prime}$	$14^{\prime} 6^{\prime \prime}$	$9^{\prime} 7^{\prime \prime}$	ground run	$\begin{aligned} & \left.\mathbf{r}^{2}\right) \\ & 0^{2} \end{aligned}$	$\begin{array}{\|r\|} \hline \mathbf{2}^{\prime} \\ 306^{5} \\ \hline \end{array}$	$\begin{gathered} \left(^{2}\right) \\ 474^{3} \end{gathered}$	$\left({ }^{2}\right)$	$\mathbf{1}^{2}$
							to clear 50 H .					
Sorgo	CH-21	13,500	$86^{\prime \prime} 4^{\prime \prime}$	44^{\prime}	$15^{\prime} 9^{\prime \prime}$	$13^{\prime} 4^{\prime \prime}$	ground run	$\mathrm{O}^{\text {B }}$	$0^{6}$$0^{6}$	$\begin{array}{\|c\|} \hline \ldots . \\ 1,1506 \\ \hline \end{array}$	$\left\{2,2000^{6}\right.$
							ta cisar 50 Ht .	0^{6}				
	CH-34C	13,500	65'10"	$56^{\prime \prime} 0^{\prime \prime}$	15'19	12'	ground men	0	$\begin{array}{\|l} \hline 160 \\ 700 \\ \hline \end{array}$	$\begin{aligned} & 185^{3} \\ & 890^{3} \end{aligned}$	$\begin{array}{\|c\|} \hline 345^{3} \\ 1,395^{3} \\ \hline \end{array}$	
							ro clear 50 ft .					
	CH-378	31,000	888 ${ }^{\prime}$	72'	22'	$19^{\prime \prime} 9^{\prime \prime}$	ground run	161	184	414	345^{3}	$886{ }^{3}$
							to clear 50 ft .	316	391	171	$811{ }^{3}$	1,846 ${ }^{3}$
	CH-47A	33,000	98'4' ${ }^{\prime \prime}$	$59^{\prime} 2^{\prime \prime}$	19^{\prime}	11' $1^{\prime \prime}$	ground run	0^{7}00	0^{7} 0^{i}	 0 0 	$\begin{aligned} & 0^{7} \\ & 0^{7} \end{aligned}$	$\begin{aligned} & 0^{7} \\ & 0^{7} \end{aligned}$
							foc clear 50 ft .					

[^5]required lift. Therefare, runways should be included in a design far a heliport. Efforts shauld be made ta keep dust ta a minimum in the runway area.
o. Runwoy Length. The minimum runway length far a pioneer heliport is 100 feet langer than the overall length af the langest helicapter to use the runway. The minimum runway length for a hasty helipart is 300 feet langer than the longest helicopter to use the runway. The minimum runway length for a deliberate heliport is $\mathbf{4 5 0}$ feet longer than the longest helicapter ta use the runway. See table 74 far the takeaff run required by each helicapter. Then apply steps 1, 3, 4, and 5, in order given in paragraph $\mathbf{1 2 3 b}$, ta these minimum lengths ta obtain runway length requirements.
b. Runway Width. The minimum runway width far a pioneer or hasty heliport is 25 feet; for a deliberate heliport, use 40 feet. Care should be taken to insure that the shoulders and cleared areas an both sides of the runway ore wide enough to provide sufficient clearance far the rotar blades.
c. Emergency Sites. Emergency landing pads can be canstructed for helicapters by praviding a level, cleared area with a stable surface. This surface may be earth, timber mat, ar expedient paving materials. Actual required pad size can be estimated using data in table 74. The pad size is one-half the tatal length of the helicapter (including rotor blades) by one-half the diameter af the rotar blades.

CHAPTER 11

RECONNAISSANCE

125. TYPES OF RECONNAISSANCE

o. Raute Recannaissance.
(1) Raute recannaissance is gaverned by the some fundamentols that opply ta all recannaissonce. It is usually made on the graund, but it shauld be supplemented by oir reconnoissonce when procticoble. Raute recannaissance pravides infarmotion to oid in route selection far the mavement of troops, equipment, ond supplies.
(2) Informotion saught in this type af recannaissance includes:
(o) Nature of terroin.
(b) What roods exist ond their chorocteristics, including laadbearing capabilities. See TM 5-330 far mare detailed infarmatian.
(c) Obstructions.
(d) Bridges and ather stream crassing meons.
(e) Tunnels.
(3) Raute recannoissonce must cansider the missian af the porent unit. Recannaissance factars include the weight, width, and height of the vehicles that will be used; the clossificotion af these vehicles; the appraximate number af each class ta be maved per hour; and the appraximote length of time the route will be used.
(4) A route reconnoissance report shauld be accurote, cancise, and clear. The preferred methad af preporation is in simplified mop form (fig. 144) ar overlay, using symbols (fig. 145) to shaw the limiting feotures. A route recannaissonce report is accamponied by a raad reconnoissance report and bridge, tunnel, ferry, ond ford recannoissance reparts os needed. Militory sketches of limiting feotures, lacal maps, and photagraphs of significont factors (terroin, raods, tunnels, bridges, ferries, fards, ond so farth) support the raute repart.
(5) Impartont features to be shawn on an overloy ore listed belaw.
(o) Length (in kilometers) between well morked paints.
(b) Curves hoving rodii af less thon 30 meters with these radii morked in meters.
(c) Steep grodes, with their moximum grodients in percent, ond length of any grode of 7 percent or greater.
(d) Road width of canstrictians (bridges, tunnels and sa farth), with the widths of the troveled ways in meters; their lengths in kilameters.
(e) Underposs limitations, with their limiting heights ond widths in meters.
(f) Bridge byposses, classified os easy, difficult, or impossible (c below).

Figure 144. Example of raute recannaissance averlay.

Figure 145. Overlay symbols.
(g) Civil or militory rood numbers, or other designotions.
(h) Feosibility of driving off roods, including shoulders.
(i) Locotions of fords, ferries, ond tunnels including limiting informotion.
(6) Route clossificotion formulo. Symbols for route reconnoissonce mops or overloys ore shown in figures 144 ond 145 . Further symbols ore os follows:
(o) Types of roods.

1. (X) All-weother. Any rood which, with reosonoble mointenonce, is possoble throughout the yeor to o volume of troffic never oppreciobly less thon its moximum good weother copucity. This type of rood hos o woterproof surfoce ond is only slightly offected by roin, frost, thow, or heot. At no time is it closed to troffic due to weother effects other thon snow blockoge. The following ore exomples of this cotegory: concrete: bituminous; brick or stone.
2.(Y) Limited oll-weather. Any rood which, with reosonoble mointenonce, con be kept open in bod weother to o volume of troffic which is considerably less thon its normol good weother copocity. This type of rood does not hove o woterproof surfoce ond is considerobly offected by roin, frost or thow. The following ore exomples of this category: crushed rock or woterbound mocodom; grovel or lightly metolled surfoce.
2. (Z) Foir weother. A rood which becomes quickly impossoble in bod weother ond which connot be kept open by normol mointenonce. This type of rood is seriously offected by roin, frost, or thow. The following are exomples of this type: notural or stobilized soil; sond or cloy; shell; cinders; disintegroted gronite.
(b) Formulos.
3. 6 meter Y 50 describes o route 6 meters wide (minimum), limited oll-weother type, ond lood clossificotion of closs 50 .
4. 6 meter $Y 50(\mathrm{Ob})$. "(Ob)' indicotes on obstruction olong the route.
5. 6 meter $\mathrm{Y} 50(\mathrm{~T})$. ' (T) ' represents snow blockoge.
6. 6 meter $Y 50(W)$. " (W) " represents flooding.
(c) Cousewoys, snowsheds, ond golleries. Although these structures ore not otten encountered in o route reconnoissonce, when they constitute on obstruction to troffic they should be included in the route reconnoissonce report. Limit the doto to cleoronces ond lood-corrying copocity. If possible, support the informotion with photogrophs or o sketch of eoch structure. Also, include enough descriptive informotion to permit on evoluotion concerning the strengthening or removol of these structures.
7. A causewoy is o raised way acrass wet or unstoble graund.
8. A snawshed is o shelter protecting samething fram snaw, such os a long structure aver on expased part of a raad ar railroad.
9. A gallery is a sunken ar cut possageway covered overhead as well as the sides. . In o combat area, a gallery may be impartant not anly because it may be an abstruction, but because it may affard additional pratectian.
b. Road Recannaissance.
(1) Raod reconnaissance is perfarmed ta get infarmotion on rood clossificatian, primarily in suppart af selecting a raute, and to report changes to existing maps for dissemination in the theater of operations. Its main concern is with existing raad canditians and not for maintenance aperatians. Its purpase is ta find aut the quontity and kind of traffic ond laads that a raad can accammadate in its present canditian. It moy include estimates af the practicability af impravement and the omount of engineer effort necessary to prepare o raute for specified traffic and laads. Obtaining dato far camplete raad classification should be done by an engineer afficer. An example of a rood reconnoissance (DA Farm 1248) is shawn in figures 146 and 147.
(2) Information required-
(a) Lacal name of raad.
(b) Lacal road designotion ond number.
(c) Lacation of raod by map grid reference.
(d) Obstructions, which include, omong other items, underpasses, fards, large tree limbs, craters, prajecting buildings, areas subject to inundatian, and sa farth.
(e) Bridge locations. (8ridge reconnaissance is autlined in c below.
(f) Tunnel lacatians, together with their lengths, widths, ond heights. (Tunnel recannassance is described in d belaw.)
(g) Snowshed lacatians ond estimated caverage.
(h) Gallery lacatians, together with their lengths, widths, and heights.
(i) Other requirements are listed in a(5) (o) through (e) and (i) above.
(3) Raad classificatian formula. Raad characteristics are expressed by definition ond symbals in the fallowing arder: limiting factars, width, construction material, ond, if desired, length.
(a) Limiting foctors. The symbal " A " is used if there are na llimiting foctors. The symbol ' 8 '" meons one or mare limiting foctars. A question mark in parentheses (?) means an unknown limiting factar. A \vee-like symbol on a map ar averloy represents the terminal points af

ROAD RECONOHASSANCE REPORT				25 Jun 65					
21 STENGR BN, ATTN: S2			PromAMiCNEY COA, 21 ETENGR BN						
M Mrı	Virginite, AlLanoale	1							
iectioni. cemeral mas informatio									
		Fairfax co 644							
		Coox, Dey, 61\%							
		Last Rain mbout 10 Jun 65							
 Limegrer (Cowok one orf? 									
			-0.ast						
				LT OuFLActo					
			10\%						
(4) ET OMI (PaFe)									
 (a) Fe anem									
	ranteglans		anio nnptramee						
1	STEEPGRADE-8\% UP ERSTWO		108158						
2									
	SERIES OF SHARP CURVE		109160 70						
			110161						
3	StEEP Grade - 78 Down								
	EASTWARO		112165						

Figure 146. Road reconnaissance repart.

Figure 147. Road reconnaissance report (reverse side).
the rood sector (fig. 144). Table 75 shows limiting foctors, their criterio, ond symbols representing them.
(b) Width. The troveled woy of o rood is expressed in feet or meters followed by o slosh with the width of troveled woy ond shoulders combined os 14/16.

Toble 75. Criterio for Determinotions of Limiting Factors

Limiting Factor	Criteria	Symbol
Sharp curves	Shorp curves with rodius loss thon $100 \mathrm{ff}(30 \mathrm{~m})$ couse some slowing of convoy troffic ond will in oddition be reported os obstructions.	c
Stoep gradients	Steop gradients, 7% or steeper, cause some slowing of of convoy troffic. Grodionts steoper than 7% and excessive changes in gradionts will, also be reported as obstructions.	9
Poor drainoge	Inodequote ditches, crown/camber, or culverts; culverts ond ditches blocked or otherwise in poor condition.	d
Weok foundotiun	Unstable, loose or easily disploced material.	f
Rough surfoce	Bumpy, rutted, or potholed to on extent likely to reduce convoy speeds.	s
Excessivo camber or supereloyotion.	Folling oway so shorply as to couso heovy vehicles to skid or dreg toward the road side.	1

(c) Construction moteriols. See table 76 for these symbols.
(d) Length. This moy be shown, if desired, in porentheses of the end of o rood clossification formulo.
(e) Exomples:

1. A 5.0/6.2 mk-concrete road, 5.0 meters wide; 6.2 meters, including shoulders; no limiting foctors.
2. Bgs. $14 / 16 \mathrm{ft} 1(\mathrm{Ob})$-grovel or lightly metolled, 14 feet wide, 16 feet, including shoulders, steep grodients, rough surfoce; and obstructions.
3. Bg. (f?) $3.2 / 4.8$ m.p. (4.3 km ! 1-Poving brick or stone; 3.2 wide, 4.8 meters, including shoulders; shorp curves; foundotion unknown; 4.3 kilometers long; ond subject to snow blockoge.
'Table 76. Symbols for Types of Surface Materials

Symbol	Material	Narmal road typa
k	Concreta	Typa (X) ; generally haovy duty
kb	Bituminous ar asphaltic cancrato (bituminaus plant mix).	Typa (X) ; genarally haovy duty
\mathbf{P}	Paving brick or stana	Typa (X); ganarally haovy duty
rb	Bituman-penatr atad macadam; watarbound macadam with suparficial asphalt ar tar cover.	Typa (X) ar (Y) ; generally madium dury
r	Waterbound macadam, crushed roek, ar coral.	Typa (Y); gonerally light duty
I	Graval ar lightly maralled surfaca.	Type (Y) ; generally light duty
nb	Bituminaves surfoca treatmant an natural earth, stabilized sail, sand-cloy, of athar salect material.	Type (Y) or (Z); genarally light duty
n	Natural earth, stabilizad soil, sond-cloy, shali, cinders, disintegratad granito, or athar selact material.	Typa (Z); generally light duty
v	Voriaus athar typas nat mentianad abova.	(indicato length when this symbol is used.)

NOTE: In additian to tha symbols shawn above, the symbol ' b ' (bituminaus surfaca) may ba usad alane when tha type of bituminaus construction cannot ba determined.
(4) Measuring radii of curves.
(a) A method of determining the radius of a curve is based on the formula-

$$
R=C^{2} / 8 m+2 \text { (fig. } 148 \text {) }
$$

where C-length of cord (if C is 19 meters ar more, it need not be reported.)
$m=$ perpendicular distance from center of cord to centerline (${ }^{(}$L) of road $R=$ radius of circle
By fixing m at any convenient distance, such as 5 feet, the formula becomes -

$$
R=C^{2} / 40=2.5
$$

In applying the formula, m is measured from the centerline of the curve toward the estimated center of the circle and then C is measured per-

Figure 148. Meosuring o curve using formula $R=C^{2} / 8 m+m / 2$.
pendiculorly to m, moking sure thot C is centered on m. If C is measured of 18 meters, $R=26.8$ meters.
(b) Figure 149 shows an olternate method effective when the chord is impossible to meosure due to brush, minefields, or similar obstocles. A compass azimuth is taken ot two points olong the curve and the centerline distance (between the two points) of the curve paced or measured directly.

1. If A_{B} is larger than A_{A} :

$$
\gamma=\frac{57 c}{A_{B}-A_{A}}(\gamma \text { is in the units of } c)
$$

2. If A_{A} is larger thon A_{B} :

$$
\gamma=\frac{57 c}{360+A_{B}-A_{A}}(\gamma \text { is in the units of } c)
$$

(c) Method (o) above is more accurote than method (b). Both hove their advontages.
(5) Determining road grodient-

$$
\begin{aligned}
& \text { Vertical distance } \\
& \hline \text { Horizontal distance } \\
& \text { (or a clinometer may be used). }
\end{aligned}
$$

(6) The road reconnaissance report has the information required for classificotion of o rood. There should be several copies, each covering o selected section of the road. Short forms or worksheets may be designed for ropid field work. (See FM 5-36.)

$A_{A}=A Z I M U T H A$ $A_{B}=$ AZIMUTH B $C=$ DISTANCE ALONG \& OF ROAD $r=$ RADIUS OF CURVE

Figure 149. Alternate method for measuring o curve.

c. Bridge Reconnaissance.

(1) The limiting features of bridges are of basic impartance to the selectian of a route for normal traop movements. See tables 77 and 78.
(2) Bridge reconnaissance has two methods.
(o) Hasty reconnaissance determines immediate trafficability.
(b) Deliberate reconnaissance is done when there is enough time and qualified personnel to make a thorough analysis and classification of the bridge, including necessary repairs or demolition procedures.
(3) Full bridge symbol includes the location of the bridge, the arbitrarily assigned bridge number, the military local classification number, the overall length of the bridge, the roadway width, the vertical

Toble 77. Generol Dimension Dota Required for Each of the Seven Bosic Types of Bridges

Dimension doto	Simple stringer	Slob	T. beom	Truss	Girder	Arch	Su spension
Dverall length.	x	\times	x	\times	x	x	2
No. of spans . .	x	x	\times	\times	x	x	x
Lerrgth of spans. . . -	x	x	\times	x	\times	x	x
Ponal length		----.	\cdots	\times		\times
Height above streambed	\times	\times	\times	\times	x	x	\times
Height above estimated normal water level.	x	x	x	x	x	x	x
Width of roadway . . .	\times	\times	\times	\times	x	x	x
Vertical clearance (over).	------		\times	. \times.-.-		\times
Horizontal clearance. . .	x	\times	\times	\times	x	x	x

NOTE: The lefter " x " indicates that the dimension is required.
cleorance, the bridge byposses, horizontal clearance, under-bridge clearance, number of spans, type of spon construction, type of span construction moterial, and length and condition of spans (fig. 150). Infarmotion should be obtoined to complete the Bridge Report Form (DA Form 1249), figures 151 and 152.
(4) Bridge bypasses are local detours, which ore classified as easy, difficult, or impassable. Figure $\mathbf{1} 45$ shows the symbols used for each clossification.
(a) Byposs easy is a locol detour by road or cross-country movement which oll types of traffic can make in 15 minutes or less, or 4 miles $(6.5 \mathrm{~km})$ odded to the direct route distance. It should require less than 4 hours for 35 men, with proper equipment, to improve or construct.
(b) Bypass difficult differs trom bypass eosy in that more than 4 hours ore required for 35 men , with proper equipment, to improve or construet.
(c) Bypass impassible exists when-

1. No alternotive bridge is avoilable within occeptable distorice.
2. Terrain prevents off-road movement or temporary rood construction.
3. Characteristics of the streom prohibit fording or construction of temporary crossing means.
4. Depth or slope of obstacle prohibits construction of approoches to crossing site.

Table 78. Capacity Dimensian Dato Required for Eoch of the
Seven Bosic Types of Bridges

Capecity (3) dimmsion deto	Butic iypes of bridat										
	Simple stringars					5 ab	T-baso	Trusa	Girder	Arch	Suspension
Thickness of weoring surface. Thickness of llasring, deck, or depth of fill et crown .	$\boldsymbol{\pi}$					n$\boldsymbol{\pi}$	Xx	\%	\%π	$\mathbf{K}$$\mathbf{x}$	$x$$x$
	π										
	Timber		Sted								
	Recteng.	Log	Inbeam	Cher. nol	Rinl						
Distance, e.to-e, between T-beams, stringerk, or llaor beamx	I	-	\%	π	-	-••	x	-	\%	π	π
No of T.beomx or etringers . . .	\cdots	!	!	$\boldsymbol{\pi}$	\%	. .	x		π	. .	π
Depth al each T-beam ar etringer.	\cdots	(2)		x	x	- .	π	\% ${ }^{*}$	$\underline{ }$	\cdots	\boldsymbol{x}
Width al mach T-beam or stnnger	n		(3)	(3)	(3)	.	x	\square	\%	. .	H
Thickness ol web al l-beems, WF. beoms, channels, or reils.	-•*	. .	\pm	\%	\%	- . -		\pm	\%	- . -	\%
Sog of coble	\%
Ne. of eoch size of coble	-	. .	$\cdots \cdot$. . \cdot \cdot	$\cdots \cdot$	π
Thickness of oreh ring		- .	-	. . .
Rise of orch	- .	. \cdot			-	\cdots	-
Diemetar el ach mize al ceble. .	- . -	-		-	\%
Depth of plate girder	-		. -	. -	-	- \cdot	π	. .	-••
Widih of flange plates	. .	- \cdot	\square	. . .	- .
Thickness af flange plates	-	\ldots	. . \cdot	- .
Ne of llange platas.	- \cdot	- •	\cdots	. . .	-
Depth af flonge ongle	- .	- .	-	-	,	. . .	-	\square	. .	- .
Widith al flange engle	- .	- .	-	. . .	- .	-	. .	.	-	- .	-
Thickness of flonge ongle	\cdots	*.		. .		\%	. .	- .
Depth of webb plate.	. -	- .	. .	+ .	-	- . \cdot	π	. . \cdot	-••
Thickness al web plote	\square	. .	.
- Average thickness al llange . .			\%								

Nate. " x " indicates required dimensien.
1 Capocify ix computad by the use of formulas and dato in bridge manualx.
2 Diamster.
3 Width of flange.

STEEL STRINGER
Bridge Number Symbols

Type of	Number
Spon	Symbol

Truss 1
Girder 2
Beom 3
Slob 4
Arch (clesed spondrel). 5
Arch (open sparidrel) . 6
Suspension. 7
Flooting 8
Others. 9

CANTILEVER
Construction Moterial Symbols

Material of	L_etter
Spon Construction	Symbol

Steel, or other metal . . o
Concrete k
Reinforced concrete . . . ok
Prestressed concrete . . kk
Stone or brick. P
Wood n

Figure 150. Common types of span construction.

Figure 151. Bridge report form.

Figure 152. Bridge report form (reverse side).
d. Engineer Reconnoissonce Repart. DA Form 1711-R, Engineer Reconnoissonce Report (figs. 153 ond 154) is used olong with o mop overloy to provide a uniform method of reporting reconnaissonce of engineer interest. Exomples of information reported would include existing ond potentiol water points, obandoned equipment and supplies, ond obstacles or limiting foctars an o rood being reparted on. The reverse side of DA Form $1711-\mathrm{R}$ (fig. 154) is used to indicote the manpower, equipment, ond moteriols to reploce, repoir, or demolish items reported on the front side of the form. Each work estimote is keyed by number to the opprapriate object an the front side of the form (fig. 153). Only those columns which ore opplicable need be completed. Additionol sketches moy be drown if needed to better exploin the type work required.
e. Tunnel Recannaissonce. Becouse tunnels are sometimes used for storoge, mointenance ossembly, or other purpose, their limiting must be known. The required informotion (DA Form $\mathbf{1 2 5 0}$) is pointed out in FM 5-36.
f. Ford Reconnoissonce.
(1) Clossificotion af fords. Fords are clossified occording to their crossing potentiol for foot, wheeled, or trocked movement.
(o) Their trafficability is indicoted for vehicles and foot troops in table 79.
(b) Approaches moy be poved with concrete or bituminous moteriol, although they ore usuolly just sand or gravel. The composition ond slope of the opprooch ore importont; its trofficobility in inclement weother depends upon them.
(c) The compositian of the streom bottom determines its possobility. It is importont, therefore, to indicate it.
(d) The stream bottom of o ford moy be paved, in some coses, to improve its lood-beoring copocity and to reduce the streom's depth. The paved oreo may be of concrete, gravel, loyers of sondbags, steel mots, or wooden planks.
(e) Seosonol floods, excessively dry periods, freezing, ond other extreme conditians of weother offect the fardobility of a streom.
(f) Swiftness of the current ond presence of debris offect possability of o ford. Current is recorded os swift (over 5 feet per second), moderote (1 to 1.5 meters per second), ar slow (less than 1 meter per second).
(g) Dimensional data af a fard ore pointed out in figure 155. (2) Streom width.
(o) With o composs, determine the ozimuth from o point on the neor shore close to the water's edge to o point neor the woter's edge on the for shore of the streom directly opposite. Then onother

Figure 153. Engineer reconnaissance report.

Figure 154. Engineer work estimate (reverse side engineer reconnaissance report).

Table 79. Prafficability of Fords

Type of traffic	Fordable depth, m ${ }^{1}$	Min width, m	Type of bottom	$\begin{gathered} \text { Max desiroble } \\ \text { slope on } \\ \text { opprooches } 2 \end{gathered}$
Foot.	1	$\left\{\begin{array}{c} 1= \\ \text { (single file) } \\ 2= \\ \text { (column } \\ \text { of } 3^{\prime} s \text {). } \end{array}\right.$	Firm enough to prevent sinking.	1:1
Trucks ond truck-drown ortillery	. 6	3.6		3:1
Light tonk.	. 2 to 1	4.2	Firm:	2:1
Medium tonks. 6 to 1.2	4.2	ond	2:1
Heovy tonks	1.2 to 1.8	4.2	smooth.	2:1

${ }^{1}$ Moderote current.
${ }^{2}$ Bused on hord, dry surfoce. If wet ond slippery, slope must be less.
point, either upstream or downstream from the previausly marked paints, is established an the near shore, from which the azimuth to the paint on the far share is 45° at varionce with the previously marked aximuth. The distance between the two points on the near shore is equal to the distance across the stream (fig. 156).
(b) Stretch a string across the stream, then measure the distance an the string. A measuring tape may be used if ane long enaugh is available.
(3) Stream velocity. Stream velocity is calculated by measuring a distance alang the riverbank, then determining the time it takes a light object to float this measured distance (fig. 156). Velocity is computed as follaws:
$\frac{\text { Measured distance }(\mathrm{m})}{\text { Time (sec) }}=$ velacity in meters per second.
(4) Ford reconnaissance report. This report is made on DA Form 1251 , Ford Reconnaissance Report. Stiart forms or worksheets may also be used.
g. Ferry Reconnaissance. Ferries differ widely in appearance, copacity, propulsion, construction, and so on. For infarmation on ferry reconnaissance, see FM 5-36.
h. Water Reconnaissance.
(1) Location of water source. This always involves field reconnaissonce, with a brief study of a map.

Figure 155. Standard dimensional data far fords.
(2) Saurces. When traaps are in cambat and maving rapidly, usually there isn't time to search far the best water, and units must take whatever is available and purify it with material at hand. The principal sources are:
(a) Surface water (streams, lakes and pands).
(b) Springs.
(c) Wells.
(d) Sea water.
(e) Rain.
(f) Snaw and ice.

1. MEASURING STREAM WIDTH, USING A COMPASS.

ADD 45° TO
AB AZIMUTH
TO GET AZIMUTH
OF CB

SUBTRACT 45°
FROM AB AZIMUTH
TO GET AZIMUTH OF BD

WHEN TURNING 90° TO THE LEFT, ADD 45° TO THE A TO B AZIMUTH TO GET THE CTO B AZIMUTH.

WHEN TURNING 90° TO THE RIGHT, SUETRACT 45° FROM THE A TO B AZIMUTH TO GET THE C TO B AZIMUTH.

2. DETERMINING STREAM VELOCITY

DISTANCE AB IS MEASURED -
FLOATING OBJECT IS THROWN INTO STREAM AT C TIME REQUIRED FOR FLOATING OBJECT TO FLOAT DISTANCE $\overline{A^{\prime}} B^{\prime}$ IS DETERMINED

$$
V(F P S)=\frac{A B(F E E T)}{\text { TIME TO FLOAT }}
$$

$$
A^{\prime} B^{\prime}(S E C)
$$

Figure 156. Methods of measuring stream width and velocity.
(3) Copocity of source (quantity). It is necessary to campute the mirimum, averoge, and maximum flow of streoms, wells, or springs, and the dimensions and depths af lakes ar ponds, with their rote of outflaw. The amaunt of water thot passes a paint in one minute is determined os follows:

$$
Q=A \times V \times 7.5 \times 0.85
$$

Where $A=$ Cross-Sectian area of stream
$V=$ Flow in $\mathrm{f} / \mathrm{min}$.
$7.5=\mathrm{Na}$. af gols. of woter per cu. f.
$0.85=$ Friction loss constont
(4) Quolity af woter. Check the calar, turbidity, odor, toste, and passible pollution. In o pallution check, exomine the droinoge area, os much os time permits, far humon wostes, industrial wostes, carrian (dead fish), or poisoring by enemy oction.
(5) Tests. Tests ore performed by personnel operating water supply and by medical service persannel.
(6) Accessibility. There shauld be a raod system cannectingo water supply with the users.
(7) Propased develapment. Campute the time, labor, and material necessary to imprave the site.
(8) Data fram local inhobitants, local recards, and sail surveys. If o water saurce is ta be used far some time, information must be obtained on seosanal voriotions, seosonol floods, seasonal drought, ond additionol saurces.
(9) The above data should be reported an pertinent maps with the canventianol military symbols and signs described in FM 21-30.
i. Woter Supply. Quontities of woter required per man per doy ore shown in chapter 17.

126. SYMBOLS FOR OVERLAYS

o. Bridge Symbals. See figure 157.
b. Tunnel Symbais. Tunnel data is lorgely the stondord dimerisional doto written on the report form (DA Form 1250).
c. Ford Symbols. Ford data is moinly the dimensional data given an the repart form (DA Farm 1251).
d. Ferry Symbals. This dota is the type of measurements required by DA Farm 1252.
e. Water Supply Symbals. Water-source and water-supply data may be recarded an a map ar averlay, using the appropriate symbal as given in FM 21-30.
f. Airfield Symbals. Abbreviatians, symbols, and natatians as used far raute recannaissance are useful in airfield recannaissance, see FM 21-30.
g. Minefield Symbals. The symbals used in the sketches and reparts af minefields are as given in chapter 3.

Figure 157. Examples af the full bridge symbal.

127. UNIT DESIGNATIONS

For o camplete caverage af military symbols see FM 21-30.
o. Branch and Duty Symbals.

Airbarne
Air Force
Amphibious
Antioircroft Artillery
Antitank
Armor
Army Aviotian
Artillery
Cavolry
Chemicol (CBR)
Civil Affoirs
Engineer
Engineer Bridge Unit
Finonce

NOTE. At times, twa af the above symbols may be cambined. Far example, the armared infantry wauld combine the symbol for armar and infantry.
b. Size and Type of Activity Symbols.

Squod

Section
0
Army Group
$\mathbf{X} \times \mathbf{X} \times$

Plotoon-Detochment

Compony-
Troop-Battery

Battolion-Squodron
Regiment-Group

Brigode

Division

Unit Hq

Observotion or Listening Post

Logisticol Unit

Corps
X××
Unit
Regiment-Group
Brigode

Exomples using specific engineer units:

Bridge Co., 50th Engr. Bn.

16th Armored Engr. Bn. 4th Armored Div.

AVLB Plotoon, Bridge Co., 31 st Armored Engr. Bn.

1 st Sq'd., 2d Plotoon, Co. B., 162d Engr. Bn., 5th Infantry Div (mechonized)

Atomic Demo. Munitions Plotoon, 69th Engr. Bn.

585th Dump Truck Co., Altoched to 91 st Engr. Bn.

497th Engr. Port Const. Co.

581 st Engr. Moint Co. (Direct Support)
d. Unknown Symbols. When the correct symbol is not known, o symbol moy be mode up and exploined in o legend to the mop or overloy being drown.

CHAPTER 12

RIGGING

128. KNOTS

See figure 158 and TM 5-725, Rigging.
129. FIBER ROPES, WIRE ROPES, CHAINS, AND HOOKS
a. Data. See tables 80 and $\mathbf{8 2}$ far data an rapes and chains.
b. Praperties of Haaks.
(1) Slip Haak. Figure 159 shaws the slip haak.
(2) Laads. Safe laads are given in table 83.

Table 80. Praperties af Manila and Sisal Rape

Nominal diometer, in.	Circumference, in.	lbs. per ft.	No. 1 monilo		Sisal	
			Breoking strength, tons	Sofe load, tons $(\text { F.S. }=4)$	Breaking strength, tons	Sofe lood, tons (F.S. =4)
$1 / 4$	3/4	. 020	30.0	0.07	0.24	0.06
1/8	11/8	. 040	0.67	0.16	0.54	0.13
1/2	$11 / 2$. 075	1.32	0.33	1.06	0.26
5/8	2	. 133	2.20	0.60	1.76	0.44
$3 / 4$	$21 / 4$. 167	2.70	0.67	2.16	0.54
7/8	$23 / 4$.186	3.85	0.96	3.08	0.77
1	3	. 270	4.50	1.12	3.60	0.90
$11 / 8$	$31 / 2$. 360	6.00	1.50	4.80	1.20
$11 / 4$	33/4	.418	6.75	1.69	5.40	1.35
$11 / 2$	$41 / 2$. 600	9.25	2.31	7.40	1.85
$13 / 4$	$51 / 2$. 895	13.25	3.31	10.60	2.65
2	6	1.08	15.50	3.87	12.40	3.10
$21 / 2$	$71 / 2$	1.35	23.25	5.81	18.60	4.65
3	9	2.42	32.00	8.00	25.60	6.40

NOTES.

1. Breoking strength ond safe loods given ore for new rope used under fovoroble conditions. As rope ages or deteriorates, progressively reduce safe loods to oneholf of volues given.
2. Safe working copocity may be computed, with safety foctor af 4. When condition of material is doubtful, divida computation by 2.

$$
\mathrm{T}=\mathbf{D}^{2}
$$

where, $\mathrm{T}=$ safe working copacity in tons
$\mathrm{D}=$ diomater in inches
3. Cordage rope is issuad by circumference sizes.

Table 81. Breaking Strength af 6×19 Standard Wire Rape ${ }^{1}$

Diometer in. ${ }^{\text {2 }}$	Approximole weight lb/ft	Iran	Breaking strength, tons of 2000 lbs			
			Troction steel	Plow steal	Improved plow steel	Extro improved plaw steel
1/4	0.10	1.4	2.6	2.39	2.74	
3/8	0.23	2.1	4.0	5.31	6.10	7.55
1/2	0.40	3.6	6.8	9.35	10.7	13.3
5/8	0.63	5.5	10.4	14.5	16.7	20.6
3/4	0.90	7.9	14.8	20.7	23.8	29.4
7/8	1.23	10.6	20.2	28.0	32.2	39.8
1	1.60	13.7	26.0	36.4	41.8	51.7
$11 / 8$	2.03	17.2	32.7	45.7	52.6	65.0
$11 / 4$	2.50	21.0	40.6	56.2	64.6	79.9
$11 / 2$	3.60	29.7	56.6	80.0	92.0	114.0
$13 / 4$				108.0	124.0	153.0
2				139.0	160.0	198.0

${ }^{1} 6 \times 19$ means rope composed of 6 stronds of 19 wires each.
${ }^{2}$ Breoking Strength of 6×7 or 6×37 wire rope is 94% of the breaking strength of 06×19 rape of an equal diometer and identical material.
Example:
Find breoking strength of $11 / 4$ inch, 6×7, Improved Plow Steal wire rope Breoking strength of $6 \times 19,1 / 4$ inch, Improved Plow Steel wire rope $=64.6$ tons Breaking strength $(6 \times 7)=.94 \times 64.6=60.7$ tons

Note. Sofe warking copacity with a safety foctor af $4, T=8 D^{2}$ where
T = Safe working copacity in tans
$\mathrm{D}=$ Diometer in inches
When condition of moterial is doubtful, divide \mathbf{T} by 2.

130. MECHANICAL ADVANTAGES OF VARIOUS BLOCK ARRANGEMENTS

a. Blacks and Tackle. Figure 160 shows examples of typical tackle systems. In a simple tackle with 2 lines (1, fig. 160) leaving the laad the mechanical advantage is 2 . In a simple tackle with three lines \{2, fig. 160) leaving the load, the mechanical advantage is 3 . In a simple tackle, using 2 dauble blacks (3, fig. 160), with 5 lines leaving the laad, the mechanical advantage is 5 . In a campaund system with 5 lines (4, fig. 160) leaving the laad, and the fall line of this tackle attached to a troveling black with 2 lines supparting it, the mechanical advantage is 2 times 5, ar 10 . A mare complicated campaund system (5, fig. 160)

Toble 82. Wire Rope Sofety Foctors*

Type af service		Minimum safoty toctor
Track cables	3.2	
Guys	3.5	
Miscellaneous haisting equipment . . .	5.0	
Houlage ropes	6.0	
Dericks	6.0	
Small electric and air haist	7.0	
Slings	8.0	

*Where age and candition of rape are daubtful, ar where human life or expensive equipment may be endangered by rape failures, apply a safety factar af at least 8.
is mode up of two simple systems, eoch of which hos 4 lines supporting the lood. The troveling block of the first simple system is fastened to the fall line of the second simple system, ond the mechonical odvontage of this campound system is 4 times 4 , or 16.
b. Choin Hoists. With o chain hoist, a load can remain stotionary without requiring attention, ond the hoist con be operoted by one mon to roise loods of severol tons.

131. PICKET HOLDFAST

o. Picket Holdfast, 1-1-1 Combinotion (fig. 161).
b. Picket Holdfast, 3-2-1 Combinotian (fig. 162).
c. Holding Power. Sound wooden pickets 5 ft long driven 3 ft into undisturbed eorth, spoced 3 to 6 feet oport ond inclined owoy from the lood of 15° shauld stond the following pulls.

Pounds
Single picket . 700
1-1 picket holdfost combinotion . 1,400
1-1-1 picket holdfost combinotian. 1,800
2-1 picket holdfost cambinotion . 2,000
3-2-1 picket holdfost cambination . 4,000
For wet eorth, holding power should be multiplied by the following foctors:
Clay ond gravel . 0.9
River cloy ond sond. 0.5

Nome	Illustrotion	Uso
Squore		Join two rapes of same size. (Will nat slip, but will draw tight under stroin.) To ond block loshing.
Double sheot bend		Join wet ropes, af unequal size, or rope to on eye. (Will not slip or draw tight under strain.)
Bowline		Form a loop. (Will not slip under strain and is easily untied.)
Timber hitch		L:fting or dragging heavy timbers. (la more easily controlled if supplementod by half hitchos.)
Clove hitch		Fasten rope to pipo, timber, or post. (It is used to stort and finish oll lashings andmoy be tied at any point in repa.)
Sheep shank		Shorten rope or take laod off weak spat in rope.
Fisherman' Bend		Ta fosten cable or rope to anchor.

Figure 158. Knots

132. DEADMEN

a. Log Deadman (fig. 163).
b. Steel Beam Deadman (fig. 164).
c. Halding Pawer af Deadmen in Ordinary Earth.
(1) Lag Deadman.

Legend: far figure 163 and the farmulas belaw-
T = tensian (Breaking strength af rape)
MD =mean depth (yau select)
SR $1=$ slape ratia ($1 / 2,1 / 3,1 / 4$, etc.)
HD =harizontal distance (see farmula in (2) belaw)
VD = vertical depth (Must be at least 1 ft . above water table)
HP ${ }^{\text {' }}=$ halding pawer (see table 84)
BAr =beoring area required (see farmula in (2) belaw)
EL = effective length (see farmula in (2) belaw)
WST =width, slaping trench (1 ta 2 feet)
Tim D =timber diameter (yau select)
$\operatorname{Tim} L=t i m b e r ~ l e n g t h$ (see farmula in (2) below)

Figure 159. Slip hoak.

Figure 160. Mechanical advantage af variaus tackle riggings.
(2) farmulas.
(a) $B A r=\frac{T}{H P}$ (in lbs)
(b) $\mathrm{EL}=\frac{\mathrm{BAr}}{\mathrm{Tim} D}$
(c) $\operatorname{Tim} L=E L+W S T$
(d) $V D=M D+\left(\frac{\operatorname{Tim} D}{2}\right)$
(e) HD $=\frac{V D}{S R}$

Figure 161. Picket holdfast 1-1-1 combinotion.

Figure 162. Picket holdfast, 3-2-1 combination.
(3) Problems.

Given: $\mathbf{T}=1$ in. wire rope I.P.S.
Find:
(improved plow steel)

$$
\begin{aligned}
& M D=7 \mathrm{ft} . \\
& S R=1 / 4 . \\
& H P=8,400 \mathrm{lb} . \text { (toble } 84 \text {) } \\
& W S T=11 / 2 \mathrm{ft} . \\
& T i m D 2 \mathrm{ft} .
\end{aligned}
$$

Solution: $\mathrm{BAR}=\frac{84,000}{8,400}=10$ sq. ft.

$$
\mathrm{EL}=\frac{10}{2}=5 \mathrm{ft} .
$$

$\operatorname{Tim} \mathrm{L}=5 \mathrm{ff} .+11 / 2 \mathrm{ft} .=\delta 1 / 2 \mathrm{ft}$.

$$
\begin{aligned}
& \mathrm{VD}=7 \mathrm{ft} .+\frac{2 \mathrm{ft}}{2}=8 \mathrm{ft} . \\
& \mathrm{HD}=\frac{8}{1 / 4}=32 \mathrm{f} .
\end{aligned}
$$

Figure 163. Log deadmon.

Figure 164. Steel beam deadmon.

133. ATTACHMENTS

o. Clips. Clips ore used in moking eyes in wire rope. The correct method of ottoching clips is shown in figure 165. The base of each elip should bear ogoinst the line, or long rope, end, ond the U-bolt should bear agoinst the deod, or short, end. Spoce the clips of leost six rope diometers oport, the number of clips equals three times the rope diometer (in inches) plus one. If this colculotion results in a froction, use the next lorger whole number. For example, on o $3 / 4$-inch rope:

No. of clips $=3 D+1$ (minimum of 3 clips)

$$
\begin{aligned}
& =(3 \times 3 / 4)+1 \\
& =31 / 4, \text { or } 4
\end{aligned}
$$

Spacing of clips $=6 D=6 \times 3 / 4=41 / 2$ in.

Toble 83. Sofe Loods on Hooks

Diomeler of metal A,* in.	Inside diometer of eye B, in.	Width of opening C, in.	Length of hook D, in.	Sofe Working Copocity of hooks, lb.
11/16.	7/8	$11 / 16$	415/16	1,200
$3 / 4$.	1	$11 / 6$	$5^{13 / 32}$	1,400
7/8	11/6	$11 / 4$	$61 / 2$	2,400
1.	$11 / 4$	$13 / 1 /$	6\%	3,400
1\%8	136	$11 / 2$	- 7\%	4,200
$11 /$	142	11/16.	$8^{19 / 32}$	5,000
13/8.	15/8	17\%	91/2	6,000
11/2.	$11 / 4$	21/16	$10^{11 / 32}$	8,000
15/8	2	21/4	$11^{27 / 32}$	9,400
178.	23/6	$21 / 2$	139/32	11,000
2114.	23/4	3	$14^{13 / 16}$	13,600
$25 / 8$	3118	33/8	161/2	17,000
3....... .	31/2	4	193/4	24,000

- For reference to A, B, C, or D, see figure 159.

NOTE. Formula for safe work lood for hooks: I (tons) $=\mathrm{D}^{2}\left(\mathrm{in}^{2}\right)$

Toble 84. Holding Power of Deodmen in Ordinory Eorth

Meon depth of onchorage, f	Sofe resistonce for inclinotion af pull (vertical or horizontol) of projected areo of deodmon, liss per sq 4 .				
	Verticol	1/1	1/2	1/3	1/4
3	600	950	1,300	1,450	1,500
4	1,050	1,750	2,200	2,600	2,700
5	1,700	2,800	3,600	4,000	4,100
6	2,400	3,800	5,100	5,800	6,000
7	3,200	5,100	7,000	8,000	8,400

b. Clomps. Figure 166 shows how to opply o wire rope clomp. Slip the two end collors of the clomp on the rope, focing eoch other. Bend the rope, bringing the free end bock olong the long end. Slip one end collor of the clomp over both parts of the rope. Ploce the two side pieces of the clomp over both parts of the rope so that the free end of the rope is even with the ends of the two side pieces. Screw the collors on the side pieces, using o wrench to force o snug fit.
c. Wedge Socket. This fitting is shown in figure 167. It is used when the fitting must be chonged ot frequent intervols. This socket hos two parts, the socket proper with o topered opening for the wire rope ond o smoll wedge to go into this socket. Remove the wedge ond insert o loop of the wire rope through the topered opening from the bottom of the socket up. Ploce the wedge through the loop ond pull the ends of the wire rope bock through the topered opening until the wedge forces the wire rope ogoinst the sides of the wedge socket. The loop of wire rope must be inserted in the wedge socket so that the running part of the wire rope will form o neorly direct line to the clevis of the fitting. If properly mounted, o wedge socket will tighten when o strain is put on the wire rope.

Figure 165. Wire rope clips.

Figure 166. Wire rope clomp.

Figure 167. Wedge socket and fitting.

134. SAFE CAPACITY OF SPRUCE TIMBER AS A GIN POLE

 See toble 85 for these copacities. Weight of timber is 40 pounds per cubic fact.
135. SLINGS

a. Single Slings. See figure 168 far companents of a single sling. (1) A basket hitch has a single sling possed under the load and both ends hooked over the hoisting hook (A, fig. 169).
(2) Single slings with two haaks ore sametimes used for lifting stone (B, fig. 169).

Table 85. Safe Capacity of Spruce Timbers as Gin Poles in Narmol Operatians

Size of timber, in.	Safe copacity for given length of timber, Ibs.					
	$\begin{array}{r} 20 \mathrm{f} \\ (6 \mathrm{~m}) \\ \hline \end{array}$	$\begin{gathered} 25 \mathrm{ft} \\ (7.5 \mathrm{~m}) \end{gathered}$	$\begin{array}{r} 30 \mathrm{H} \\ (9 \mathrm{~m}) \\ \hline \end{array}$	$\begin{gathered} 40 \mathrm{f} \\ (12 \mathrm{~m}) \end{gathered}$	$\begin{array}{r} 50 \mathrm{f} \\ (15 \mathrm{~m}) \\ \hline \end{array}$	$\begin{array}{r} 60 \mathrm{ft} \\ (18 \mathrm{~m}) \end{array}$
6 dio	5,000	3,000	2,000--	-------*	-....---*
8 dio.	-........	11,000	8,000	5,000	3,000-.
10 dio	31,000	24,000	16,000	9,000	6,000	-----.....
12 dio			31,000	19,000	12,000	9,000
6×6.	.6,000	4,000	3,000---	-.........
8×8	-........	14,000	10,000	6,000	4,000	-.......-
10×10	40,000	30,000	20,000	12,000	8,000	-----.....
12×12.		-.........	40,000	24,000	16,000	12,000

NOTE: Safe copacity of eoch log of shears or tripod is seven-aights af the volue given for a gin pole.

Figure 168. Single sling components.
(3) The double anchor hitch is used sometimes for hoisting cylindrical objects (C., fig. 169).
b. Endless Slings.
(1) The anchor, or choker, hitch is a common method of using an endless sling by costing the sling under the lood ond inserting one loop through the other and over the hoisting hook (D, fig. 169).
(2) For o bosket hitch, the endless sling is possed oround the object ond both remaining loops are slipped on the hook (E, fig. 169).
(3) The toggle hitch is a modification of the basket hitch ond is used only for special opplication (F, fig. 169).
136. SLING LOAD FORMULA
o. Stress. The stress or tension in each leg of o sling depends on the number of legs, the angle of the sling leg, and the totol load.
b. Formula (fig. 170).

$$
T=\frac{W}{N} \times \frac{\mathbf{L}}{\mathbf{V}}
$$

where $T=$ tension, in pounds
$N=$ number of legs
W =weight, in pounds
$\mathbf{V}=$ vertical distonce, in feet
$t=$ length of leg, in feet

Figure 169. Hitches.
c. Problem. Is it safe to $/$ se $03 / 4$-inch diameter cordage rope sling to lift a 2,000 -pound laad with a 4 -leg sling which has vertical distances of 6 feet ond length of leg of 12 feet?

Figure 170. Sling stresses.

$$
\begin{aligned}
& T=\frac{W}{N} \times \frac{L}{V} \\
& T=\frac{2,000}{4} \times \frac{12}{6}=1,000 \text { pounds }
\end{aligned}
$$

The tension on each leg will be 1,000 paunds. The sofe working copacity of $3 / 4$-inch diometer cordoge rope is $T=D^{2}=(3 / 4)^{2}=9 / 16$.5625 ton.

137. SLING LOAD CHART

See figure 171.

138. SHEARS

a. Moteriols. This device is used ta erect heavy machinery and bulky objects. Figure 172 shows its canstruction. It must be guyed ta hald its position. It is adapted to wark ot an inclinotion from the vertical. Maximum shear leg length is 60 times the least diameter of the leg. This rotio must be reduced far heovy loods.
b. Erection. Holes should be dug at the points where the legs are to stond. On hard surface, the legs should be level and lashed to prevent spreading.

The chart illustrotes the voriation af tension on one sling leg when applied to o constant 1000 -paund load ot various angles.

Example

Prablem: 100,000 paunds weight is to be lifted by ofour-leg sling assembly with each leg lifting ot on angle of 45 degrees. What will be the tension on one leg:
Pracedure: From the chort the total sling tension on one leg at 45 degrees for 1000 pounds is 1414 pounds.
Total tension for 100,000 pounds $=141,400$ pounds.
Tension on eoch leg $=\frac{141400}{4}=35,350$ paunds.
If all legs lifted vertically, the tension on eoch $\operatorname{leg}=\frac{100000}{4}=$ 25,000 pounds.

Figure 171. Sling Load Chart.

Figure 172. Lashing for shears.

139. GIN POLE

See figures 173 and 174.
o. Descriptian. A gin pole is on unpright spor, guyed at the top to hold it in a vertical or near-vertical pasitian, and equipped with suitoble haisting tackle. It is eosily rigged, maved, and operated.
b. Erecting. A gin pale 30 or 40 feet lang may be roised eosily by hond, but longer pales must be raised by supplementory rigging ar power equipment. Figure 173 shows the gin pole in position for operation, while the necessory rigging is illustrated in figure 174. The moximum allowoble length is 60 times the minimum diameter. Guys ore 3 to 4 times the pole length.

Figure 173. Gin pole ready for operation.

140. BOOM DERRICK

a. Rigging. Booms are used on gin poles to lift laods of a distonce from the bose of the pale. The baam is two-thirds the length af the gin pale. For heovy loods, lower butt of boom to ground; raise it for lighter loads. It must nat bear against the upper two-thirds of the pole.
b. Operotion. Raise the boom into position when the rigging is finished. In aperation, it is a convenient means far laading and unlooding trucks ond flotcars, ond for use on dacks or piers. Figure 175 shows the boom derrick in position for operotion.

Figure 174. Lashing for a gin pole.

Figure 175. Boom derrick.

141. GUY LINE TENSION FOR SHEARS AND GIN POLES

The mast stress on a guy line occurs when a stroight line through the load and pole posses through the guy line. To compure the tension, use the formula shown in figure 176.

Problem:

Laad	$=2,500$
Weight of pole	$=800$ pounds
Drift	$=10$ feet
y-distance	$=20$ feet

Therefore, by figure $176, t=\frac{2,900 \times 10}{20}=1,450$

Figure 176. Computing stresses in single guylines.

142. HIGHLINE

The highline is a trolley line passing through a snatch block of each support (fig. 177). It is the type most commonly erected of the plotoon level.
a. Sag. The sag in the track cable when loaded should be not less thon 5 percent of the span.
b. Farmula for Safeload of Highline.

$$
S L=\frac{B S \text { (lbs) }}{5 \times S F}-\frac{D L \text { (lbs) }}{2}
$$

Figure 177. Highline.

Where: SL = safelood
BS = breaking strength of line
DL = dead laad
SF = sofety factor
Prablem: Span is 400 feet
Trock line is $3 / 4$-inch diometer manilo rape
Houl line is $1 / 2$-inch diometer manilo rape
Sofety factor is 4.0
Trock cable sag is 5 percent
Solution: BS (breoking strength) for $3 / 4$-inch diameter-manilo rape $=$ 5,400 paunds.
W ($3 / 4$-inch rope) $=66.8$ pounds $/ 400$ feet (table 80)
$W(1 / 2$-inch rape $)=60$ pounds $/ 800$ feet
. (table 80)
Therefare: $\quad \mathrm{SL}=\frac{5.400}{5 \times 4.0}-\frac{66.8}{2}$
$\mathrm{SL}=270-33.4$
$\mathrm{SL}=236.6$ paunds
Far the payload, use the formulo:
$\mathrm{PL}=\mathrm{SL}-(1 / 2 W$ af haul rape $+W$ of traveler $+W$ af corrier)
Far this prablem, this would mean:
PL $=236.6$ - (30 plus the weight af the traveler ond corrier)
NOTE. For information an suspension bridge wee chopter 7.

CHAPTER 13 EQUIPMENT PRODUCTION

143. CRAWLER AND RUBBER TIRED TRACTORS

a. The economical hauling distonce for a dozer ranges from 25 to 300 feet.
b. Dozer output chart. See toble 86 .
c. The recommended uses of troctors to increose production are:
(1) Slot dozing. This is a method of digging and pushing material in the some path to reduce blade spilloge. As the dozer cuts into the earth, windrows are built up octing os retoining walls to keep the material in front of the olade. Production moy increase up to 30%.
(2) Blade. to blode dozing. Using this method requires close coordinotion by the aperators. The mochines have to travel at the same speed and keep the blades together. Blade to blode dazing con produce 1 to 1.5 cubic yords more per pass in a ronge of 50-300 feet.
(3) Downhill dozing. Dozer should be operated downhill when possible. Tha dozer will receive the benefit of gravity and be oble to push o lorger load.
(4) Ripper otrochments. Srandord militory blades ore equipped with ripper teeth mounted to the back of the blade. On the back up portion of the cycle, these teeth may be lowered into the ground to loosen hord moterial, making it easier to obtain a full lood on the forword portion of the cycle.

144. SCRAPERS

o. Crawler troctor-scraper combinotions can be efficiently operated from 300 to 1500 feet.
b. Rubber-tired troctor-scroper combinotions con be efficiently operated from 1200 to 5000 feet.
c. Methods of increosing scraper production are:
(1) Downhill looding.
(2) Straddle looding.
(a) Make two cuts, one on each side of a lane which is slightly smaller than the width of the scroper.
(b) On third cut, strip lone left by cuts one and two.
(3) Bock track looding. With this method, o troctor is used to push the loading tractor-scraper. It is good where the pushing troctor hos to bock only a short distance to get into position to push the next troctor-scroper.

Table 86. Dazer Output

Model	Copacity in yords (loose)	Production rote cu yds/hr		Speeds in miles per hour		Gollons of fual per hour
		50 ft houl	$\begin{gathered} 100 \\ \text { haul } \end{gathered}$	Lowest geor	Highest gear	
D-8	5.0	450	250	1.5	5.2	11 (DSL)
TD-24		Same data as for D-8		1.7	8.2	11 (DSL)
HD-16M		Same data as for D-8		3.47	7.41	11 (DSL)
TD-20	3.5	390	215	1.6	7.3	10(DSL)
HD-6M	2.6	284	154	1.5	5.5	$9(\mathrm{DSL}$)
830M	5.0	364*	272	5.7	30.5	12 (DSL)
MRS 100	2.6	228*	130	2.2	30.	9(DSL)
D-6S	2.8	250	170	2.0	7.0	
TD-18		Same data as farTD-20		1.7	5.7	.
MRS 150				2.46	26.4	. \cdot
MRS 190				2.96	26.4	. .
DW-20M			. . .	2.8	25.1	
Super ' C ' ${ }^{\text {] }}$. .		$\cdots \cdot$	2.6	14.3	

- Depends upon type material and speed.
(4) Shuttle laading. With this method, a pusher tractar is used ta push a tractar-scraper. Hawever, after the aperatian is complete, instead af the pusher backing up ta get inta pasitian ta push anather tractar-scraper, a tractar-scraper pasitians itself sa that the pusher has anly ta reverse its directian and push the new tractar-scraper.
(5) Chain laading. This methad is used where the cut area is fairly lang. A pusher initially laads ane unit, then maves in behind another unit which is maving parallel ta and adjacent to the first unit.
(6) Traveling. All laaded units shauld leave the cut area as fast as possible.
(7) Grading. All haul raads shauld be maintained with a grader ta increase the haul speed af earth-mavers.
(8) Raating. Far ease in scraper loading rip soil priar ta laading scraper.
d. Capacities of Scrapers. See table 87.

145. EARTH MOVING PRODUCTION FOR SCRAPERS

a. Determine Cycle Time. Cycle time is the tatal time required far a piece af equipment ta camplete its entire aperatian. Cycle time is divided inta twa types af time. These times are:
(1) Fixed time. This is the time spent in aperatians ather than hauling and refurning. It includes that time taken far laading, accelerating, decelerating and dumping. This time can be estimated in the field ar if na data is available table 88 may be used as a guide.
(2) Variable time. Variable time is determined by the farmula:

Variable time (min.) $=\frac{\text { haul distance (feet) }}{\text { speed }(m p h) \times 88}$
Speed is determined by haul raad canditians. This includes grade resistance, ralling resistance, and tractian. Far detailed calculations see TM 5-331. Far an estimation, use table 86. Assume high speed far haul raads with hard surface and slight grades, middle speed far average road surface and medium grades, and lawest speed far paar raad surface and steep grades.
b. Defermine Laad Capacity. See table 87.
c. Determine Efficiency Factar. See table 89.
d. Estimate Praductian. Productian is estimated by the farmula: Laase cubic yards per haur
$=$ Number af hauling units \times Capacity $\times \frac{60 \text { min per haur }}{\text { cycle time }} \times$ efficiency factar
e. Estimote Jab Durotion. This is determined by the formulo:

Job duratian (hours)=
Soil Conversion Foctor \times Soil to be moved (yds)
Loose cubic yards per hour
See toble 90 far soil canversion foctor.
f. Exomple: How long will it toke to move 500 cubic yords of cloy (in ploce), 5000 feet ane way with on 830 M rubber-tired troctor pulling - Curtiss-Wright scroper? The houl raod is paor, wark during daylight, 45-minute working hour.
(1) Cycle time. From toble 88 fixed time $=1.9 \mathrm{~min}$

Variable time $(\mathrm{min})=\frac{5000 \text { feet }}{5.7 \mathrm{mph} \times 88 \text { feet per second }}$

$$
=10 \mathrm{~min}
$$

Speed from toble 86.
Cycle time $=1.9 \mathrm{~min}=10 \mathrm{~min}=11.9 \mathrm{~min}$
(2) Load capocity. From table 86 assume heoped copacity $=$ 23.6 cu yds
(3) Efficiency factor. Fram toble 89 Efficiency factor $=0.75$
(4) Production in cubic yords per hour.
$23.6 \mathrm{cu} y \mathrm{yds}$ per scroper $\times \frac{60 \mathrm{~min} \text { per hour }}{11.9 \mathrm{~min}} \times 0.75$ efficiency foctor $=$ 89 cubic yards of moterial per haur.

Toble 87. Scraper Capocity

Moke ond model	Weight lbs	Ca- pacity struck cu yds	Co- pacity headed cu yds
LeTourneau LP clased bowl	19,700	12.0	15.0
Waoldrige OS-122A open bowl	24,140	12.2	15.5
Curtiss-Wright open bowl	38,900	18.2	23.6
Air drap hydroulic	16,000	7.5	9.5
Open bowl	12,650		

(5) Time required to finish job. From toble 90, 1 cubic yord of in ploce cloy equols 1.43 cubic yords of loose moteriol.

$$
\begin{aligned}
\text { Job durotion } & =\frac{1.43 \times 500 \mathrm{cu} \text { yds }}{89 \text { cubic yords per hour }} \\
& =8.05 \text { hours or obout } 8 \text { hours. }
\end{aligned}
$$

Toble 88. Bosic fixed Time Constonts (Use os Guide Only)

Wheel scroper (with pusher)	Fixed time
5rh geor houl	3.0 min
4th gear houl	2.3 min
3rd geor houl	1.9 min
Trock troctor with scroper	
Self-looded	
Push-looded	2.5 min

Toble 89. Efficiency Fostor Chort

	Type troctor	Working hours	Eff. foctor
Doy operotion	Trock-type Wheel-type	$50 \mathrm{~min} / \mathrm{hr}$ $45 \mathrm{~min} / \mathrm{hr}$	0.83 0.75
Night operotion	Trock-type Wheel-type	$45 \mathrm{~min} / \mathrm{hr}$ $40 \mathrm{~min} / \mathrm{hr}$	0.75 0.67

Table 90. Sail Canversion Foctors (Estimated)

Soil type	Sail candition initially	$\begin{aligned} & \text { In- } \\ & \text { place } \end{aligned}$	Loase	Cam. pacted
Sond	In place Loase Campacted		1.11	0.95
		. 90		. 86
		1.05	1.17	
Laom	In ploce Laase Compocted		1.25	0.90
		. 80		. 72
		1.11	1.39	
Clay	In place Laase Campocted		1.43	0.90
		. 70		. 63
		1.11	1.59	
Rack (blosted)	In ploce Loose Campacted		1.50	1.30
		. 67		. 87
		.77	1.15	
Hard caral (dead) camparable ta limestọne	In place Laase Campacted		1.50	1.30
		.67		. 87
		. 77	1.15	

146. EQUIPMENT APPLICATION CHART

See toble 91.

147. GRADERS

o. Methods of Obtoining Moximum Productian.
(1) In working distances up to 1000 feet, back up to beginning of project.
(2) In working distances greoter than 1000 feet, turn groder oround.
b. Correct Gear Ronges for Grader Operotian. See toble 92.
c. Steps in Hosty Rood Construction.
(1) Morking cut. Place right frant wheel in line with ditch stoker. Set mold boord ot outside of right front wheel. Moke 3 to 4 -in-deep cut olong ditch stokes.
(2) Ditching cut. Ploce right front wheel in morking cut. Adjust mold boord so leoding edge is in line with and behind right frant wheel. Moke cuts os deep os possible and moke os mony cuts os needed to give proper ditch depth.
(3) Moving windrow. Angle mold board and move windrow, obtained from ditch cut, to center of rood.
(4) Level windrow. Level windrow ta make road surfoce ond crown.
(5) Slope. Slope bonks to prevent erosion.
(6) Police. Cleon and cleor ditches.
d. Production Copobilities of Groders. See toble 93.
e. Efficiency Foctor for Groders. For generol grader productian estimotion, ossume o 60-percent efficiency foctor.

148. COMPACTION EQUIPMENT

0. Sheeps foot Roller.
(1) The depth of loose lift should not exceed 9 inches when a bond is desired between two lifts of moterial.
(2) Overlap should be by ot least 1 foot.
(3) If the feet of the sheepsfoot roller do not walk themselves out of material, this is on indicotion thot the roller is exceeding the shear stress of the soil ond the weight of the roller must be reduced.
b. 13-Wheel, Pneumatic-Tired Roller.
(1) When operating with o rolling load of 7 tons or less, tire pressure should be 25 psi. Increose the pressure 5 psi for eoch additional ton up to o moximum of 9 tons.
(2) Compaction is obtoined with loods of not more thon 7 tons.
(3) Compaction lifts should not exceed 6 inches.

Table 91. Equipment Utilization

Toble 92. Correct Geor Ranges Used in Groder Operation

Operotion	Geor
Mointenonce	2d \& 3d
Spreoding	3d \& 4th
Mixing. .	4th to 6th
Ditching	1st to 2d
Bank sloping.	1 st
Snow removol	5th to 6th
Finishing.	2d to 4th

Toble 93. Praduction Capocities of the Groder

Oparation	Rate per haur	Unit	Conditions
Ditching	$\begin{array}{r} 250 \\ 150 \\ 85 \end{array}$	cu yd Cu Yd cu yd	' \mathbf{v} ' ditching, easy digging ' \mathbf{V} '' ditching, medium digging ' \mathbf{V} ' ditching, hard digging
Grading	. 2	mile	Digging side ditches and shoping crown, 4 round trips required
Subgrade preparation	400	sq yd	Scarity and shape
Base course production	$\begin{aligned} & 200 \\ & 450 \end{aligned}$	$\begin{aligned} & \text { cu yd } \\ & \text { au yd } \end{aligned}$	Spread material Shaping surface
Surface treatment	150	sq yd	Mixing in place 2-in bituminous material

(4) The 13 -wheel roller is best in gronulor type soils.
(5) The 13 -wheel roller is good for finishing ospholt.
c. 50-Ton, Pneumotic-Tired Roller.
(1) The 50 -ton roller will compoct down to 18 inches with two passes.
(2) Compaction of moterial depends on tire pressure and weight of roller.

Table 94. Shavel Dipper Capacity in Cu Yods

Class of material	$3 /$	1/2	1/4	1	11/4	11/3	13/4	2	21/4
Moist loom or light sondy cloy	$\begin{array}{\|c} 3.8^{\prime} \\ 85 \\ \hline \end{array}$	$\begin{aligned} & 4.6^{\prime} \\ & 115 \end{aligned}$	$\begin{aligned} & 5.3^{\prime} \\ & 165 \end{aligned}$	$\begin{aligned} & 6.0^{\prime} \\ & 205 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5^{\prime} \\ & 250 \end{aligned}$	$\begin{aligned} & 7.0^{\prime} \\ & 285 \end{aligned}$	$\begin{aligned} & \hline 7.4^{\prime} \\ & 320 \end{aligned}$	$\begin{aligned} & 7.8^{\prime} \\ & 355 \end{aligned}$	$\begin{aligned} & 8.4^{\prime} \\ & 405 \end{aligned}$
Sond ond gravel	$\begin{array}{\|l} \hline 3.8^{\prime} \\ 80 \end{array}$	$\begin{aligned} & 4.6^{\prime} \\ & 110 \end{aligned}$	$\begin{aligned} & 5.3^{\prime} \\ & 155 \end{aligned}$	$\begin{aligned} & 6.0^{\prime} \\ & 200 \end{aligned}$	$\begin{aligned} & 6.5^{\prime} \\ & 230 \end{aligned}$	$\begin{aligned} & 7.0^{\prime} \\ & 270 \end{aligned}$	$\begin{aligned} & 7.4^{\prime} \\ & 300 \end{aligned}$	$\begin{gathered} 7.8^{\prime} \\ 330 \end{gathered}$	$\begin{aligned} & 8.4^{\prime} \\ & 390 \end{aligned}$
Good common eorth	$\begin{aligned} & 4.5^{\prime} \\ & 70 \end{aligned}$	$\begin{aligned} & 5.7^{\prime} \\ & 95 \end{aligned}$	$\begin{aligned} & 6.8^{\prime} \\ & 135 \end{aligned}$	$\begin{aligned} & 7.8^{\prime} \\ & 175 \end{aligned}$	$\begin{aligned} & 8.5^{\prime} \\ & 210 \end{aligned}$	$\begin{aligned} & 9.2^{\prime} \\ & 240 \end{aligned}$	$\begin{aligned} & \hline 9.7^{\prime} \\ & 270 \end{aligned}$	$\begin{gathered} 10.2^{\prime} \\ 300 \end{gathered}$	$\begin{array}{\|c\|} \hline 11.2^{\prime} \\ 350 \end{array}$
Clay herd tough	$\begin{aligned} & 6.0^{\prime} \\ & 50 \end{aligned}$	$\begin{gathered} 7.0^{\prime} \\ 75 \end{gathered}$	$\begin{aligned} & 8.0^{\prime} \\ & 110 \end{aligned}$	$\begin{aligned} & 9.0^{\prime} \\ & 145 \end{aligned}$	$\begin{aligned} & 9.8^{\circ} \\ & 180 \end{aligned}$	$\begin{array}{\|c} \hline 10.7^{\prime} \\ 210 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11.5^{\prime} \\ 235 \\ \hline \end{array}$	$\begin{gathered} 12.2^{\prime} \\ 265 \end{gathered}$	$\begin{array}{\|c} \hline 13.3^{\prime} \\ 310 \end{array}$
Rodk wall blastod	$\overline{40}$	$\overrightarrow{60}$	$\overline{95}$	$\overline{125}$	155	$\overline{180}$	205	239	$\overline{275}$
Common, with rocks and roots	30	$\overline{50}$	$\overline{80}$	$\overline{105}$	130	$\overline{155}$	$\overline{180}$	200	245
Cloy, wet and sticky	$\begin{aligned} & 6.0^{\prime} \\ & 25 \end{aligned}$	$\begin{gathered} 7.0^{\prime} \\ 40 \end{gathered}$	$\begin{aligned} & 8.0^{\prime} \\ & 70 \end{aligned}$	$\begin{aligned} & 9.0^{\prime} \\ & 95 \end{aligned}$	$\begin{aligned} & 9.8^{\prime} \\ & 120 \end{aligned}$	$\begin{array}{\|c\|} \hline 10.7^{\prime} \\ 145 \end{array}$	$\begin{array}{\|c\|} \hline 11.5^{\prime} \\ 165 \end{array}$	$\begin{array}{\|c\|} \hline 12.2^{\prime} \\ 185 \end{array}$	$\begin{array}{\|c} \hline 13.3^{\prime} \\ 230 \end{array}$
Rack, poorly blosted	$\overline{15}$	$\overline{25}$	$\overline{50}$	$\overline{75}$	95	$\overline{115}$	- 140	160	$\overline{195}$

Power shovel yardoges-conditions:

1. Cu yds bank measurament per 60 min. hour with no delays
2. Suitoble depth of cut for moximum effect
3. Ait materiols loaded into houling units 90° swing

NOIE. Top figúres denote optimum depth of cut-bottom figures denote cubic yards per hour.
d. Steel Wheel Raller, 3-Wheel, 10-Ton.
(1) The 3 -wheel, 10 -tan raller will campact a 10 - to 12 -inch lift of material.
(2) Posses of raller must averiap at least 50 percent.
(3) The 3-wheel, 10 -tan raller can be used ta compact rosk.
e. 9-14 Ton Raller. The 9-14 tan raller is used anly as a finish raller on materials such as asphalt.
149. EARTH LIFTING EQUIPMENT
a. Shavel-Dipper Capacity in Cubic Yards. See table 94.
b. Shart Baam Dragline Perfarmance. See iable 95.
c. Scaop Laader Praduction. See table 96.

Table 95. Short Boom Drogline Performance in Cu Yds

Class of material	年	1/2	$3 / 4$	1	11/4	1/2	13/4	2	21/2
Light, moist clay or loam	$\begin{aligned} & 5.0^{\prime} \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 5.5^{\prime} \\ & 95 \end{aligned}$	$\begin{aligned} & \hline 6.0^{\prime} \\ & 130 \end{aligned}$	$\begin{aligned} & \hline 6.6^{\prime} \\ & 160 \end{aligned}$	$\begin{aligned} & 7.0^{\prime} \\ & 195 \end{aligned}$	$\begin{aligned} & 7.4^{\prime} \\ & 220 \end{aligned}$	$\begin{array}{\|l\|} \hline 7.7^{\prime} \\ 245 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.0^{\prime} \\ & 265 \end{aligned}$	$\begin{aligned} & \hline 8.5^{\prime} \\ & 305 \end{aligned}$
Sond or grovel	$\begin{aligned} & 5.0^{\prime} \\ & 65 \end{aligned}$	$\begin{aligned} & 5.5^{\prime} \\ & 90 \end{aligned}$	$\begin{aligned} & 6.0^{\prime} \\ & 125 \end{aligned}$	$\begin{aligned} & 6.6^{\prime} \\ & 155 \end{aligned}$	$\begin{aligned} & 7.0^{\prime} \\ & 185 \end{aligned}$	$\begin{aligned} & 7.4^{\prime} \\ & 210 \end{aligned}$	$\begin{aligned} & 7.7^{\prime} \\ & 235 \end{aligned}$	$\begin{aligned} & 8.0^{\prime} \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5^{\prime} \\ & 795 \end{aligned}$
Good common ourth	$\begin{gathered} 6.0^{\prime} \\ 55 \end{gathered}$	$\begin{gathered} 6.7^{\prime} \\ 75 \end{gathered}$	$\begin{aligned} & 7.4^{\prime} \\ & 105 \end{aligned}$	$\begin{aligned} & \hline 8.0^{\prime} \\ & 135 \end{aligned}$	$\begin{aligned} & 8.5^{\prime} \\ & 165 \end{aligned}$	$\begin{aligned} & 9.0^{\prime} \\ & 190 \end{aligned}$	$\begin{aligned} & \hline 9.5^{\prime} \\ & 210 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 9.9^{\prime} \\ 230 \\ \hline \end{array}$	$\begin{array}{\|c} 10.5^{\prime} \\ 265 \\ \hline \end{array}$
Clay; hard, tough	$\begin{gathered} 7.3^{\prime} \\ 35 \end{gathered}$	$\begin{gathered} \hline 8.0^{\prime} \\ 55 \end{gathered}$	$\begin{aligned} & 8.7^{\prime} \\ & 90 \end{aligned}$	$\begin{aligned} & 9.3^{\prime} \\ & 110 \end{aligned}$	$\begin{array}{\|c\|} \hline 10.0^{\prime} \\ 135 \end{array}$	$\begin{array}{\|c\|} \hline 10.7^{\prime} \\ 160 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11.3^{\prime} \\ 180 \end{array}$	$\begin{array}{\|c\|} \hline 11.8^{\prime} \\ \hline 195 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 12.3^{\prime} \\ 330 \end{array}$
Clay; wet, sticky	$\begin{aligned} & \hline 7.3^{\prime} \\ & 20 \end{aligned}$	$\begin{aligned} & 8.0^{\prime} \\ & 30 \end{aligned}$	$\begin{gathered} 8.7^{\prime} \\ 55 \end{gathered}$	$\begin{gathered} 9.3^{\prime} \\ 75 \end{gathered}$	$\begin{array}{\|c\|} \hline 10.0^{\prime} \\ 95 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.7^{\prime} \\ 110 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.3^{\prime} \\ 130 \end{array}$	$\begin{array}{c\|} \hline 11.8^{\prime} \\ 145^{\prime} \end{array}$	$\begin{gathered} 12.3^{\prime} \\ 175 \end{gathered}$

WOTE. Top figure denates optimum depth af cut-bottam figure denotes cubic yords par hour (bank measure).

Table 96. Scoop Looder Production in Cubic Yords Per Hour Bosed on O 50 Minute Hour

SAE roted bucket capacitios	Cycle time in seconds											
	20	30	40	50	60	80	100	120	140	160	180	200
1 cu yd	150	100	75	60	50	38	30	25	21
1 L co yd	220	150	110	90	75	55	45	37	32	28	25	22
21/4 cu yd	338	220	168	132	110	85	68	56	48	42	38	34
$2 \% \mathrm{cos}$	370	250	185	150	125	94	75	63	54	47	42	37
$31 / 2 \mathrm{co} \mathrm{yd}$.	342	260	210	175	160	110	86	75	65	58	52
4 cu yd	.	395	300	240	200	150	120	100	85	75	66	60

150. PRODUCTIVE CAPACITY OF ENGINEER EQUIPMENT

When time does not permit colculotion of production of engineer equipment table 97 moy be used.

Toble 97. Productive Capacity of Equipment

Equipmant	Rate units par hr	Unit	Conditians
ORAIMAGE OItches			
Grader, motarized	$\begin{array}{r} 250 \\ 150 \\ 95 \end{array}$	cu yd a yd cu yd	V.ditches, easy digging V-ditches, med. hard digging V-ditchos, hard digging
Shaval or dragline, $1 / 4$ cu yd Hend taals	60^{*}	cu yd	Hard digging
	125*	cu yd	Eosy digging
	5 man-hrs	100 ft	Y-ditches, 3 ft wide, 1 foot deep, eosy digging
	9 manthrs	100 t	r-ditches, 3 ft wide, 1 fool deep, medium hard digging
Oitching machine, ladder type	0-8	ft. per min.	Operating speed dapends an width (19 ar 24 in .), depth (0 ta 99 in.), and type al sail
Ditching machine, mabile	9-28	fr. per min.	Same as abave, except 24 in . wide
Clearing ano grugging			
Hand raals	$11 / 2$ manhrs	treo	3 man blasting team, gaod canditions
	125 man-hrs	acre	Light cloaring
	350 man-hrs	${ }^{\text {actre }}$	Hedium clearing
	25 man-hrs	100 lin yd	light clearing, 30 H wide
Mawer, with tractar, 30 dbhp Tractor, 66- ta 90-dbhp. with dazer	$\begin{aligned} & 70 \text { man-hrs } \\ & 2.0 \end{aligned}$	${\underset{\text { ocre }}{ } 100 \operatorname{lin}^{\mathrm{yd}}}^{\text {and }}$	Medium clearing, 30 ft wide Cutting woeds and grasses
	1.0	acre	Light stripping ar clearing
	0.25	acre	Medium cleoring
	$\begin{array}{cc} 20 \text { ig } 50 \\ 3 \text { to } 12 \end{array}$	trees treas	4 in . ta 10 in. diameter 12 in . ta 30 in . diameter

Table 97. - Cantinued

Equipment	Rate units per hr	Unit	Conditians
GRADING			
Troctor, 66- to 90-dbhp, with dozer	400	lin ft	Sidehill cut; medium-hord digging, 10° slope
	190	lin ft	Sidehill cut, medium-hord digging, 20° slape
	110	lin \dagger	Sidehill cut, medium hord digging, 30° slope
	120	cu yd	Sidehill cut, medium hard digging
	90	cu yd	Sidehill cut, hord digging
	130	cu yd	so ft level houl, medium hord digging
	80	cu yd	100 ft level haul, medium hord digging
Scraper, tawed 12 cu yd with tractor	145	cu yd	$S 00 \mathrm{ft}$ level houl, medium hard soil
	121	cu yd	800 ft level houl, medium hard digging
Shovel, pawer, 3/4 cu yd	$\begin{aligned} & 45 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { cu yd } \\ & \text { cu yd } \end{aligned}$	Hard digging Eosy digging
Groder, motorized	0.2	mile	Oigging side ditches ond shaping crown, 4 round trips
Hond tools	$1.2 \text { to } 2.4$	cu yd	Looding loose materiol into truck, 1 mon with shovel
	1.5	cu yd	Excovotion with pick ond shovel, to S ft , eosy digging
EMBANKMENT			
Troctor, 70- to 90-dbhp, with ongle-dozer Roller, sheepsfaat, two drum-in-line, towed by troctor, 70- to 90 -dbhp	300	co yd	Spreoding materiol
	250	cu yd	9 in loose loyers, 8 posses
	200	co yd	9 in laose layers, 10 posses
	150	cu yd	9 in loose loyers, 12 posses

Table 97. - Continued

Equipment	Rate units per hr	Unit	Conditions
SUBGRAOE PREPARATION			
Grade, matarized	400	$s q \mathrm{yd}$	Scarify and shape
Roller, sheepsfaot, iwo	650	sq yd	6 in layers, 8 passes
drum-in-line, tawed by	540	sq yd	6 in layers, 10 passes
tractar, 70. ta $90-\mathrm{dbhp}$	450	sq yd	6 in layers, 12 passes
Roller, rubber-tired with	3000	sq yd	S mph, s passes
Raller, raod, tandem,	1000	sq yd	$3 \mathrm{mph}, 5$ passes
BASE COURSE CONSTRUCTION			
Tractar, 70- to 90-dbhp, with ongle-dazer	300	cu yd	Spread material
Grader, matarized	200	cu yd	5 sread moterial
	450	sq yd	Shaping surface
Raller, raod, tandem, 5. to 8 -ton	300	sq yd	Compatting gravel
Raller, road, tandem, S. ta 8 -tan	75	cu yd	Compocting gravel
Raller, rubber.tired, tractar, 30-dbhp	1500	sq yd	Compacting gravel, 10 passes

surface treatments ano pavement construction

Sweeper, tractar, 30-dbhp	2500	sq yd	Sweeping compact base
Oistributar, trailer	2500	sq yd	0.1 gal per sq yd, 24-ft sproy
maunted	1250	sq yd	0.2 gol per sq yd, $24 . \mathrm{ft}$ spray
Oistributar, truck maunted			
Spreader, aggregate, traction powered	5000	sq yd	Spread caver aggregates
Raller, raad tandem, 5. to 8 -ton	3000	sq yd	Ralling aggregate, 3 mph , 3 posses
Raller, rubber-tired, uractor, $30-\mathrm{dbhp}$	3000	sq yd	Ralling aggregate, $\mathbf{S} \mathbf{m p h}$, 5 passes
Grader, matarized	150	sq yd	Mixed in place, 2-in bitumi nous material

Table 97. - Continued

Equipment	Rote units per hr	Unit	Conditions
aggregate production			
Crusher, twa-unit, 25 cu yd per hr Crusher, (Dj-50) tph	$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 18 \\ & 30 \\ & 43 \end{aligned}$		1-in oggregote, screened 11/2-in oggregote, screened $21 / 2$-in aggregote, screened 1-in aggregote, screened 11/2-in oggragote, screened 2-in aggregote, screened
Crusher, 225 tph	110 220	ton	```1/4-in oggregate, screened, washed \(11 / 4\)-in aggregote, screened, washed```
Crusher 15 tph, Airborne	$\begin{aligned} & \text { i5 } \\ & 25 \\ & 38 \end{aligned}$	ton ton ton	1-in aggregote, crushed $11 / 2$-in oggregote, crushed 2-in oggregote, crushed
Compressor, 210 cfm (Reciprocoting)	$\begin{aligned} & 210 \\ & 194 \end{aligned}$	$\begin{aligned} & \text { cfm } \\ & \text { cfm } \end{aligned}$	At seo level 5000 ft . obove seo level
Compressor, 315 cfm (Reciprocoting)	$\begin{aligned} & 315 \\ & 310 \end{aligned}$	$\begin{aligned} & \mathrm{fm} \\ & \mathrm{ff} \end{aligned}$	At seo level 5000 ft . obove sea level
Compressor, 600 fm (Rotory)	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	fim fim	At seo level 5000 ft . above seo level
Compressor, 210 cfm (Rotory)	$\begin{aligned} & 210 \\ & 210 \end{aligned}$	$\underset{\text { ffm }}{\substack{\text { fin }}}$	At seo level 5000 ft . obove seo level
Orill, rock, 35-Ib closs	20	lin ft	$13 / 4$-in hole, mox depth 8 ft . Requires 40 to 60 ffm of oir
Drill, rock, 45-1b closs	30	lin ${ }_{\text {f }}$	$13 / 4$-in hole, mox depth 12 ft . Requires 70 to 90 dm of oir
Scoop looder, wheel 2 cu Yd	200	cu yd	Truck looding

*dbhp-drowbor horsepower

CHAPTER 14 FIELD SANITATION

15 i SANITATION FACILITIES

Far details an field sanitatian see FM 21-10, Military Sanitatian.

152. WASHING FACILITIES

a. Hand washing devices shauld be set up near latrines and kitchens See figure 178.
b. Showers shauld be set up whenever passible far persanal hygiene and marale. See figure 179.

Figure 178. Handwashing device, using number 10 can.

Figure $179 . \quad$ Shower unit, using metal drum.

153. WASTE DISPOSAL

a. Latrines.

(1) Size should be adequate to take care of at least 8-percent of the unit at once. Sixteen feet af straddle trench in faur-foal'sections, or two deep pit latrines with four-hole latrine boxes, is adequate for a 100 -man unif. Five "pipe urinals" are adequate for a 100 -man unith,
(2) Locate at least 100 yards from kitchen, outside camp, and convenient ta tents.
(3) See figures 180,181 , and 182.
(4) When filled to within 1 foot of ground level, or when abandoned, latrines should be sprayed with insecticide, filled in, and mounded with a 2 -foot overburden of compacted earth.
b. Garbage Pits.
(1) Size should be at least 4 feet square and 4 feel deep.
(2) Locate as far from kitchen as possible, outside camp area if practical.
(3) When filled to within 1 foot of ground level, or when abandoned, fill pit in and mound aver with a $\mathbf{2}$-foot overburden af compacted earth.
(4) Liquid kitchen wastes shauld never be dumped inta garbage pits as this precludes effective burning aut and shartens utilizatian for the pit.
c. Soakage pits. Liquid kitchen wastes shauld be dispased of in soakage pits. These shauld be lacated in the kitchen area. The saakage pit may be canstructed the same as the urinal (fig. 182) except that a grease trap must be provided (see fig. 183). In canstructing the pit, amit pipes and have drainage fram grease pipe drain inta pit.

Figure 180. Bax latrine for 50 men.

Figure 181. Straddle trench latrine for 100 men, with handwashing device.

Figure 182. Pipe urinal arrangement.

Figure 183. 8affe grease trap (barrel type).

CHAPTER 15
 CHEMICAL, BIOLOGICAL, AND RADIOLOGICAL DATA

154. PROTECTION

Individual protectian against a taxic agent is abtained thraugh use af the pratective mosk, pratective clathing, and ather pratective items. A chemical ar bialagical agent attack may be detected through use of chemical agent detector kits, bialagical sampling kits, or by symptoms which moy appear fallawing chemical ar bialagical agent emplayment. Far individual CBR pratective measures, see FM 21-41; far unit pratectian, see FM 21-40.

155 REPORTING

Procedures far reparting chemical ar biolagical ottacks are narmally prescribed in the unit SOP. Detoiled infarmation is given in FM 21-40.

156. DECONTAMINATION

Detailed infarmatian pertaining ta chemical and bialagical decantamination is given in TM 3-220.

157. REPORTING NUCLEAR ATTACK

Procedures far reparting nuclear attacks are narmally prescribed in the unit SOP. Detailed infarmation is given in FM 3-1 2 and FM 21-40.

158. RADIOLOGICAL DECONTAMINATION

Detailed infarmatian pertaining ta radiolagical decontaminatian is given in TM 3-220.

159. PROTECTION

Far infarmatian an in dividual pratectian, see FM 21-41. For infarmation an pratective shelters, see FM 21-40 and TM 5-311.

CHAPTER 16 COMMUNICATIONS

160. MORSE CODE See figure 184.

Figure 184. Morse Code.
161. PHONETIC ALPHABET

See Figure 185.
162. PANEL CODE

See figure 186.

Figure 185. Phonetic alphabet.

Figure 186. Panel cade and messages.

Figure 186 -Cantinued

324
 163．GROUND AND AIR EMERGENCY CODE See figure 187.

Require doctor，serious injuries 1
Require medical supplies 11
Unable to proceed X
Require food ond water F
Require firearms and ammunition $シ$
Require mop and compass \square
Require signal lamp with battery and rodio ；
Indicote directian to proceed K
Am proceeding in this direction \uparrow
Will atrempt takeoff 1）
Aircraft seriously domaged เา
Probably sofe to land here Δ
Require fuel and all L
All well
No NLL
Yes
Not understooo＇ 」し
Require angineer（mechonic）WNOTE：Elements should be spaced 10 feet oport，whenever possible．Figure 187．Ground－air emergency code．
164. ANTENNAS
a. Anfenna Length Chart. (Lengths are in feet.)

Frequency megacycle	Full wove length	Frequency megacycle	Full wave length
1	936	31	30.2
2	468	32	29.2
3	312	33	28.4
4	234	34	27.6
5	187.2	35	26.8
6	156	36	26
7	133.6	37	25.2
8	117	38	24.6
9	104	39	24
10	93.6	40	23.4
11	85	41	22.8
12	78	42	22.2
13	72	43	21.8
14	66.8	44	21.2
15	62.4	45	20.8
16	58.4	46	20.4
17	55	47	19.8
18	52	48	19.4
19	49.2	49	19
20	46.8	50	18.8
21	44.6	51	18.4
22	42.6	52	18
23	40.6	53	17.6
24	39	54	17.4
25	37.4	55	17
26	36	56	16.8
27	34.6	57	16.4
28	33.4	58	16.2
29	32.2	59	15.8
30	31.2	60	15.6

FOR $1 / 2$ WAVE ANTENNA, DIVIDE BY 2.
FOR $1 / 4$ WAVE ANTENNA, DIVIDE BY 4.
FOR CENTER FED ANTENNA (S), $1 / 2$ OF DESIRED ANTENNA LENGTH TO EACH SIDE OF INSULATOR.

ANTENNA LENGTH FORMULAS:
$f=$ frequency in megacycles answer is anienna length in feet
$1 / 4$ wove $=\frac{234}{f} \quad 1 / 2$ wave $=\frac{468}{f} \quad$ full wave $=\frac{936}{f}$
b. Improvised Antennas. See figures 188 through 183.

Figure 188. Half rhambic antenna.

Figure 189. Jungla expedient antenna.

165. RADIO LOCATION

o. Locote radio os high os possible.
b. Location should be oway any metal obstructions.
c. Avoid plocing in o depressian or volley, whenever possible.
d. Avoid locating a rodio neor electrical power line.

Figure 190. Inverted 'L'' antenna.

VERIICAL POLARIzATION 201080 MC

Figure 191. Long wire antenna.

Figure 192. Impravised center fed half-wave antenna.

Figure 193. Expedient suspended vertical antennas.

CHAPTER 17 ENGINEERING DATA

166. MANPOWER

As a guide to the manpower available for wark use the following: Combat Eng. Bn. (Divisional); 10 men/squad, 30 men/platoon, 80 men/ compony, 650 men/battalion. Use 10 man-hours per man per day. Increase time 50\% per night wark.

167. WATER

o. Water Disinfection.
(1) Calcium hypochlorite. Add calcium hypochlarite ta produce residual chlorine of 1 part per millian (ppm) ofter 10 -minute contact time, and wait additional 20 minutes before drinking. For a 36-gallan lyster bag, 1 calcium hypochlorite capsule is usvally enough. For individual use, prepare a disinfecting solution by placing 1 calcium hypochlorite capsule in a canteen af water. Add 1 conteen-capful of disinfecting salutian to each canteen of water, shake, and allow to set far 30 minutes before using.
(2) lodine tablets. Use 1 tablet per canteen of water for clear water and 2 tablets per canteen of water far cloudy water. Allow the water to stand for 5 minutes, shaike vigarously, and allow to stand another 10 minutes before drinking. Allow cold water ta stand $\mathbf{2 0}$ minutes befare drinking.
(3) Boiling. Bring the water to a rolling boil for 15 minutes.
(4) Destruction of omoebic dysenfery cysis. Wheñ ijists are suspected, pretreat all water by coagulation and sedimentation followed by sand filtration at reduced rates or by diatomite filtration. Water treated in this way is safe to drink if it has a residual chlorine content of 1 ppm after a 10 -minute contact time. In emergencies, disinfect water in individual canteens by following the directians on the bottle of individual water purification tablets, unless an increase is directed by the medical officer. Small units may boil their own drinking water; this is a sure method. If the lyster bag is used, the fallowing steps must be taken:
(a) Break 1 ampule and pour into filled bag; stir with clean paddle.
(b) Disinfect faucets by fiushing $1 / 2$ cup of water through each faucet.
(c) After 10 minutes, residual should exceed 1 ppm. Then add another ampule. Keep bag covered.
(d) Water is potable $\mathbf{3 0}$ minutes after adding last ampule.
b. Flow of Woter Through Pipes. See tobles 98 and 99.
c. Doily Woter Requirements. See table 100.

168. ELECTRICAL WIRING

o. The procedures pointed out in this section ore to be used only for on estimation of required wire sizes or when no other method is known.
b. To determine the wire size required for o given lood:
(1) Convert load into omperes required by using

Amperes $=\frac{\text { Totol wotts to be serviced }}{\text { voltoge }}$
or
Amperes $=\frac{\text { Voltage }}{\text { resis tonce (ohms) }}$
or
Amperes $=\frac{.7457 \times \text { Horsepower }}{\text { voltage }}$
(2) Enter tables 101 or 102 with omperes to be serviced ond length of wire required; determine wire size needed.
(3) This procedure is to be used when power is to be furnished to o specific lood such os one motor or o group of lights. For the procedure on wiring o facility or wiring o generotor see TM 5-766 Electric Power Generation In the Field.

Toble 98. Flow of Water (Gollons Per Minute) Through Smooth-Bore Hose*

Hase (internal diameter inches)	Water pressure, pounds per square inch									
	20	30	40	50	60	70	80	90	100	125
1.00	23	28	33	37	40	43	46	49	52	58
1.25	40	50	57	64	70	76	81	86	90	101
1.50	64	78	90	101	111	120	128	135	143	159
2.00	130	159	184	206	227	242	262	275	292	326
2.50	226	278	322	358	394	425	455	482	509	566
3.00 .	356	437	504	570	620	665	715	755	800	890
4.00 .	745	910	1,055	1,180	1,292	1,395	1,492	1,582	1,670	1,850

* Data shown ore based on 100 -foot length of hose, loid in a stroight line with open dischorge end. For eoch set of cauplings, deduct 5 percent.

Table 99. Maximum Quantities of Water in Gollons Per Minute Which Can Be Pumped Through 100 feet of Wrought. Iron Pipe of Various Pressures

Pressure	Pipe diomater (inches)								
	1/2	1/4	1	11/4	11/2	2	21/2	3	4
17 psi	3.2	9.1	18.7	33.5	51.6	106	200	290	589
30 psi .	5.0	14.0	28.0	52.0	78.0	160	308	436	885
40 psi .	6.0	16.0	33.0	60.0	90.0	184	350	504	1,023
50 psi .	6.5	17.5	37.0	70.0	101.0	206	390	564	1,143
60 psi .	7.0	19.5	40.0	75.0	110.0	226	430	617	1,252
75 psi...	7.5	22.0	45.0	85.0	123.0	253	480	690	1,400
$100 \mathrm{psi} . .$.	9.0	25.0	52.0	99.0	142.0	292	558	797	1,607

Table 100. Per Copita Water Consumption in a Theater of Operations For Posts, Comps, Stations (Permonent ar Temporory)

Situation	gal/man/day	Remarks
Iraops in combat	$\begin{gathered} 1 / 2 \\ 1 \end{gathered}$	Absalute minimum, drinking only, not over 3 days A small additional allawance far caoking.
March or bivouac	2	Minimum for drinking, cooking, washing mess utensils, hands, and face.
	5	Allows in addition some bathing and laundry.
Temporary comp	5	Minimum; see preceding.
	15	Includes bathing and waterborne sewage on on econamy bosis.
Semipermanent comp	30-60	
Contanment (theoter)	60-100	
Hospital	10	Per bed. Minimum. Par bed. Allows for waterborne sewage.
Potable Water far Amy in the Field		
Use	Amount	Remarks
Personol use	5 gal/man/day	Includes; drinking, caoking, personol hygiene. May be reduced in emergencies for not mare than 3 days.
Haspital use		Same as for post above.

Non-Potable Water far Army in the Field
loundry
Showers
Vohicle radiotors
$18 \mathrm{gol} / \mathrm{man} /$ week
$10 \mathrm{gol} / \mathrm{man} /$ week
$1 \mathrm{gal} / \mathrm{veh}$ icle/doy Additional required far decontaminatien of vehicles and equipment during C8R warfore.

Table 101. Wire Sizes for 120-Volt Single-Phase Circuit

Lood (omperes)	Minimum wire size (AWG)	Sorvice wire size (AW6)	Wire sice (AWG)												
			Distance one way from supply to load (feel)												
			50	75	100	125	150	175	200	250	300	350	400	450	500
15	14	10	14	12	10	8	8	6	6	6	4	4	4	2	2
20	14	10	12	10	8	8	6	6	6	4	4	2	2	2	2
25	12	8	10	8	8	6	6	4	4	4	2	2	2	1	1
30	12	8	10	8	6	6	4	4	4	2	2	1	1	0	0
35	12	6	8	6	6	4	4	4	2	2	1	1	0	0	2/0
40	10	6	8	6	6	4	4	2	2	2	1	0	0	$2 / 0$	2/0
45	10	6	8	6	4	4	2	2	2	1	0	0	2/0	210	310
50	10	6	8	6	4	4	2	2	2	1	0	2/0	210	3/0	3/0
55	8	4	6	4	4	2	2	2	1	0	2/0	210	3/0	3/0	4/0
60	8	4	6	4	4	2	2	1	1	0	$2 / 0$	$3 / 0$	3/0	4/0	4/0
65	8	4	6	4	4	2	2	1	0	210	$2 / 0$	3/0	4/0	4/0	.
70	8	4	6	4	2	2	1	1	0	210	$2 / 0$	3/0	4/0	4/0	.
75	6	4	6	4	2	2	1	0	0	210	3/0	410	4/0		
80.	6	4	6	4	2	2	1	0	0	210	3/0	4/0	4/0		.
85	6	4	4	4	2	1	1	0	2/0	$3 / 0$	3/0	410			
90	6	2	4	2	2	1	0	0	2/0	$3 / 0$	4/0	4/0			.
95	6	2	4	2	2	1	0	2/0	$2 / 0$	3/0	4/0		.		
100	4	2	4	2	2	1	0	210	$2 / 0$	310	4/0	-			.

Table 102. Wire Sizes for 220 -Volt 3-Phase Circuits

Loud (ampares)	Minimum wire size (aW6)	Sorvice wire suze (AW6)	Wire size (AWG)												
			Distance one way from supply to load (feet)												
			100	150	200	250	300	350	400	500	600	700	800	900	1,000
15	14	12	14	12	10	8	8	8	6	6	6	4	4	4	2
20	14	10	12	10	8	8	6	6	6	4	4	2	2	2	2
25	12	8	10	8	8	6	6	6	4	4	2	2	2	2	1
30	12	8	10	8	6	6	6	4	4	2	2	2	1	1	0
35.	12	8	10	8	6	6	4	4	4	2	2	1	1	0	0
40.	10	6	8	6	6	4	4	4	2	2	1	1	0	0	2/0
45	10	6	8	6	6	4	4	2	2	2	1	0	0	$2 / 0$	2/0
50	10	6	8	6	4	4	2	2	2	1	0	0	2/0	2/0	3/0
55	8	6	8	6	4	4	2	2	2	1	0	2/0	210	3/0	3/0
80	8	6	6	6	4	2	2	2	1	0	0	210	3/0	3/0	4/0
65	8	4	6	4	4	2	2	2	1	0	2/0	210	3/0	3/0	4/0
70	8	4	6	4	4	2	2	1	1	0	210	310	3/0	4/0	4/0
75.	6	4	6	4	2	2	2	1	0	2/0	210	$3 / 0$	4/0	4/0	
80.	6	4	6	4	2	2	1	1	0	2/0	3/0	3/0	4/0	4/0	.
85	6	4	6	4	2	2	1	0	0	2/0	3/0	$4 / 0$	4/0	.	.
90	6	4	6	4	2	2	1	0	0	$2 / 0$	3/0	$4 / 0$	4/0	.	.
95	6	4	6	4	2	1	1	0	$2 / 0$	3/0	3/0	4/0		.	
100...	4	2	4	2	2	1	0	0	2/0	3/0	4/0	4/0	.		-
125.	4	2	4	2	1	0	2/0	210	3/0	4/0	\cdots		
150	2	2	2	2	0	210	$2 / 0$	310	4/0	. .					
175....	2	1	2	1	0	$2 / 0$	3/0	4%	410
200.. .	1	0	1	0	2/0	3/0	4/0	4/0		.	.		.	\cdots	
225...	0	0	0	0	2/0	310	4/0		.	.	.		-		
250.	2/0	$2 / 0$	210	2/0	$3 / 0$	4/0	.		.	.					
275	$3 / 0$	$3 / 0$	310	$3 / 0$	3/0	4/0		
300....	3/0	$3 / 0$	3/0	3/0	4/0		\cdots		.	.	.				
325	4/0	410	410	4/0.			

169. STRENGTH OF MATERIALS
o. Bending Moments.

$$
M=f S
$$

where $f=$ ollowable fiber stress in paunds per squore inch
$S=$ section modulus (b below)
$M=$ bending mament (in inch-paunds)
b. Section Modulus.
(1) Rectongulor sectians:

$$
S=\frac{b d^{2}}{6}
$$

where $b=$ width of sectian in inches

$$
d=\text { depth of sectian in inches }
$$

(2) Circulor sections:

$$
S=\frac{d^{3}}{10}
$$

where $d=$ diameter af circle in inches
(3) Steel beams:

$$
S=d_{1}\left(A f+\frac{A w}{6}\right)
$$

where $d_{1}=$ depth of beam

$$
A f=\text { arec of flange }=\left(t_{i}\right) /(\mathbf{b})
$$

$$
A w=\text { cross-sectional area of web }=\left(t_{2}\right)\left(d_{1}\right)
$$

See figure 95 for dimensianing.
c. Working Stresses for Average Timber (Douglas Fir or Sauthem Pine).
(1) Bending: 2,400.
(2) Shear Parallel to the Groin: 150
(3) Bearing Perpendicular to the Grain: 500
(4) Modulus of Elosticity: $1,600,000$.
(5) Compression Numbers.
(a) Short column, far L/d ratias nat greater thon 11: (L ond d are expressed in inches)

$$
f=1,300
$$

(b) intermediate columns, where L/d ratios are greater than 11 but less than $K=0.64 \sqrt{E / c}$, in which E is the modulus of elasticity and C is the allawable compression stress parallel ta the groin:

$$
f=c\left[1-\frac{L}{3 K d}\right]
$$

(c) Lang columns, for L / d ratios greater thon K :

$$
f=\frac{.3 E}{(L / d)^{2}}
$$

NOTE For warking stress of all types of timber, see FM 5-35.
d. Working Stresses for Steel (in pounds per sq in.)
(1) Axial Tension, Net Section: 27,000.
(2) Tension on Extreme Fiber: 27,000.
(3) Beams or Stringers in Bending: $27,000$.

$$
=\frac{L d}{b+f} \leq 400
$$

(4) Bolts at Root of Thread: 20,000.
(5) Axial Compression.
(a) Stiffeners of plate girders: 27,000.
(b) Members with riveted ends, for L/r ratios not greater than 140 :

$$
\begin{aligned}
& f=21,300-3 /(L / r)^{2} \\
& \text { where } r=\text { smollest cross-section dimension }
\end{aligned}
$$

(c) Members with pinned ends, for L/r ratios not greater than 140 :

$$
f=21,300-1 / 2(L / r)^{2}
$$

(d) Splice moterial, gross section: 27,000
(6) Shear: (in pounds per sq. in.)
(a) Girder webs, gross section: 16,500.
(b) Power-driven rivets and pins: 20,000 .
(c) Turned bolts: 16,500.
(d) High tensile strength steel bolts: 20,000.
(e) Unfinished bolts: 12,000 .
(7) Sexfing: (in poinds pai $5 \overline{4}$ in.)
(a) On rivets, single shear: 32,000 .
(b) On rivets, double shear: $\mathbf{4 0 , 0 0 0}$.
(c) On unfinished bolts: single shear: 20,000.
(d) On unfinished bolts: double shear: 25,000.
(e) On milled stiffeners and other steel parts in contact: 30,000.
(f) Expansion rollers and rockers, pounds per linear inch:

1. For diameters up to 25 inches:

$$
\frac{s-13,000}{20,000} 900 \mathrm{~d}
$$

2. For diameters from 25 to $\mathbf{1 2 5}$ inches:

$$
\frac{S-13,000}{20,000} 4500 d
$$

in which d is the diameter af the raller or racker in inches, ond S is the tensile yield stress af the raller or aase, whichever is smoller.
e. Beom Maments and Sheor far Various Laadings.
(1) Symbols.

A- orec of sectian
b-width af section
c- distonce fram neutral axis ta extreme fiber
d-depth af sectian
f- laod in pounds
f- ollowable stress in psi
I- moment af inertia af sectian to extreme fiber
L- span length
1- length in inches
M - bending mament
R - reoction farce
S-section madulus $=\frac{I}{C}=\frac{M}{f}$
V-total sheor
v-unit sheor
w-lood per unit of length
(2) Maximum bending maments ond shear.

Mament and sheor are shown in toble 103.
170. TIMBER
o. Dimensians ond Praperties. Toble 104 gives the dimensions and properties of timber.
b. Structural Timber Data. These dato are shown in toble 105.
c. Baord Feet Log Scale. See toble 106.
d. Board feet Lumber Scale. See table 107.

171. NAILS AND FASTENERS

o. Nails and Spikes. The safe lateral laod for ane noil ar spike driven inta the side groin af seasaned lumaer so that of leost twa-thirds af the length af the nail is in the wood member halding the paint (reduce lood 60 percent far noils in end grain ond $\mathbf{2 5}$ percent for unseasaned wood) is os fallaws:
$900 \times D^{3 / 2}$ far white pine and eostern hemlack
$1200 \times D^{3 / 2}$ for Dauglos fir ond sauthem yellaw pine
$1700 \times \mathrm{D}^{3 / 2}$ for aok, osh, and hord mople
Where $D=$ diometer af noils, in inches. See tobles 108 ond 109.
b. Waod scrows. The safe loterol laad in pounds, for one wood screw driven inta the side groin of seosoned lumber to a penetrotian of ot least

Table 103. Maximum Bending Maments and Shear

Candition	Diagram	$M_{\text {max }}$	$V_{\text {max }}$
Supparted both ends, lood concentrated at center Simply supported		$\frac{\mathrm{FL}}{4}$ (at center)	$\begin{gathered} \frac{F}{2} \\ \text { (ot ends) } \end{gathered}$
Cancentrated lood, distonce X from one Simply supported	$\underset{\sim}{F} \underset{L}{F}$	$\frac{F X Y}{L}$	$\frac{F Y}{L}$
Uniformly distributed laad Simply supparted		$\frac{w L^{2}}{8}$ (at center)	$\frac{w L}{2}$ (at ends)
Load evenly distributed over a distonce x Simply supported		R1 $\mathrm{Y} \frac{\mathrm{R} 2}{2 \mathrm{v}}$	$\frac{\nabla X}{2 L} 2 Z+X$
Cantilever, concentrated lood of free end	衡	(dt comnection) FL	(equal itroughout) F

seven times its diameter into the member receiving the point (reduce load 25 percent far end grain and 25 percent far unseasaned waad) is as fallaws:
$2100 \times D^{2}$ for white pine and eastern hemlack
$2700 \times \mathrm{D}^{2}$ for Dauglas fir and southem yellaw pine
$4000 \times D^{2}$ far aak, ash, and hard maple
See table 110.
c. Lag Screws. The safe lateral laad in paunds, far ane lag screw driven inta the side grain af seasaned number ta a penetration af nine times the diameter inta the member receiving the paint and halding a

Table 104. Dimensians and Praperties (Dressed Timber)

Naminal sixe	American standard	Area of section	I $\frac{\mathrm{Eh}^{3}}{12}$	$5 \frac{\mathrm{Hh}^{2}}{8}$
In.	In.	In. ${ }^{2}$	In. ${ }^{4}$	In. ${ }^{3}$
1×3	25/32 $\times 2$ 5/8	2.05	1.18	0.90
1×4	$2532 \times 35 / 8$	283	3.10	1.71
1×6	25/32 $\times 5 / 8$	4.39	11.59	412
1×8	$25.32 \times 71 / 2$	5.86	27.47	732
1×10	25/32 $\times 1 / 2$	7.42	55.82	11.75
1×12	$25 / 32 \times 111 / 2$	8.98	99.02	17.22
2×4	$15 / 8 \times 35 / 8$	5.89	6.45	356
2×6	$15 / 8 \times 55 / 8$	914	24.10	8.57
2×8	$15 / 8 \times 71 / 2$	12.19	57.13	15.23
2×10	$15 / 8 \times 91 / 2$	15.44	116.10	2444
2×12	$15 / 8 \times 111 / 2$	18.69	205.95	3582
3×8	$25 / 8 \times 71 / 2$	19.69	92.29	2461
3×10	$25 / 8 \times 91 / 2$	24.94	187.55	39.48
3×12	$25 / 8 \times 111 / 2$	30.19	332.69	5786
4×12	$35.8 \times 111 / 2$	41.69	459.43	7990
4×16	$35 / 8 \times 151 / 2$	56.19	1,124.92	14515
6×12	$51 / 2 \times 111 / 2$	63.25	697.07	121.23
6×16	$51 / 2 \times 151 / 2$	85.25	1,706.78	220.23
6×18	$51 / 2 \times 171 / 2$	96.25	2,456.38	28073
8×16	$71 / 2 \times 151 / 2$	116.25	2,327.42	30031
8×20	$71 / 2 \times 191 / 2$	146.25	4.634.30	475.31
8×24	$71 / 2 \times 231 / 2$	17625	8,111.17	690.31

NOTE:

Lumber quantities are expressed in feet, board measure (fbm or 8 M). A board foat is the lumber in a raugh-sawed baard 1 faat long, 1 foot wide, and 1 inch thick. As an example, a $2^{\prime \prime} \times 8^{\prime \prime} \times 12^{\prime}$ board has $12 \times 2 / 3 \times 2$ or 16 fbm .
cleat having a thickness af 3.5 times the scraw diameter (reduce laad 35 percent far end grain and 25 percent far unseasaned waod) is as fallaws:
$1500 \times D^{2}$ for white pine and eastern hemlock
$1700 \times \mathrm{D}^{2}$ ior Douglas fir and southem cypress
$1900 \times \mathrm{D}^{2}$ far southem yellow pine and soft maple
$2200 \times D^{2}$ far aak, ash, and hard maple Where $\mathrm{D}=$ diameter of shank, in inches.

Table 105. Structural Timber Data

	- Variety.and grade af woad		Averoge unit welight ${ }^{3}$, Ib par cu ft	Allawable working stras ses for military use ${ }^{1}$, 1 b per s in in.				
	Species and.grade description	$\begin{aligned} & \text { Stross } \\ & \text { grode } \end{aligned}$		Extreme Hiber stress in bending	Hari- zontal shear	Compression perpendiculor to grain	Compression porollel to groin ${ }^{5}$	Madulus af slasticity
	UNITED STATES SPECIES							
N	Douglas fir	-	35	-	-	-	-	1,600,000
	Dense select structurol	1,800f	-	2,700	180	500	1,950	-
	Select structural	1,600f	-	2,400	150	450	1,800	-
		1,400f	-	2.100	180	500	1,650	-
	Yellow pine (lang leof, ar dense shart leaf)	-	40	-	-	-		1,600,000
	Select structural	2,000f	-	3,000	150	500	2,200	1,600,
	Prime structural	1,800f	-	2,700	150	500	1,950	-
	Merchantoble structural; and structural square adge and sound	1,600¢	-	2.400	150	500	1,800	-
	Na . 1 structural	1,400f		2,100	150	500	1,500	
	Larch	1,	36	-	-	-		1,300,000
	Select struetural	1,800\%	-	2,700	200	500	1,950	-
	Structur ol	1,600f	-	2,400	150	470	1,800	-
	Camman structural	1,200f	-	1,800	135	430	1,650	-
	Redwood (structural)	-	30	-	-	-	-	1,200,000
	Dense sel ect all heart	1,400¢	-	2, 100	135	350	1,800	-
	Select all heart	1,200\%	_	1,800	120	350	1,650	-
	Bulkhead and heort	1,000f	-	1,650	120	350	1,500	-
	Southem cypress	-	32	-	-	-	-	1,200,000
	Solect struetural	1,400f	-	2.100	180	400	1,800	-

Table 105. - Continuad

Varioty and grode of wood		Average unit weight ${ }^{3}$, lb per cu H	Allawable warking strassas for military use ${ }^{\text {a }}$, Ib per sqin.				
Species and grade description	Stress grode ${ }^{2}$		Extreme fiber stress in bending ${ }^{4}$	inarizantol sheor	Compression perpendicular ta groin	Compressian parallel ta grain ${ }^{5}$	Modulus af elosticity
UNITED STATES SPECIES-Continued							
Structural	1,100f	-	1,650	150	400	1,500	-
Eastern hemlock	-	30	-	-	-	-	1,100,000
Selact structural	1,100f	-	1,650	105	400	1,050	-
FOREIGN SPECIES							
Group 1	-	45	-		-	-	1,600,000
Teok, sol, white siris, jorul, oak, osh, Philip-			1,800 2,700				
pine mahogany, lendio	-	$\overline{-}$	2700	200	360-500	1,680-2,000	1250,000
Graup II	-	35	-	-	-	-	1,250,000
Deodor, chir, poon gumhor, Norway (northern) pine	-	-	1,500 2,250	150	300-450	1,340-1,800	-
Group lif	-	30	-	-	-	-	1,000,000
White deol, kell	-	-	$\begin{array}{r} 1,340- \\ 2000 \end{array}$	100	260-390	1,110-1,500	-

$\mathbf{I}_{\text {Reduce all stresses to }} 70$ percent of tobular values for groen waod and for design of parts of bridge structure continuously wat. Reduce oll stress volues to 75 percent of tobulor volues for design of structures carrying longcontinued live load.
${ }_{3}^{2}$ Grade design ations adopted by United Stotes lumber industry for long-time use.
${ }^{3}$ At about 15 parcont moisture cantent.
${ }_{5}^{4}$ Working stress in tensions some os for bending.
$5_{\text {Working stres ses for compression parallel to groin opply to posts, calumns, ond struts, the unsupported length af }}$ which does not exceed 11 times the leost dimension of cross section.

d. Driftpins

(1) Description. Driftpins ore long, heavy, threodless bolts used to hold heovy pieces of timber together. The term 'driftpin'" is olmost universally used in practice, but for supply purposes the correct designotion is "driftbolt." Driftpins have heads and vary in diameter from 1/2 to 1 inch, and in length from 18 to 26 inches.
(2) Uses. To use the driftpins, a hole slightly smoller thon the diometer of the pin is made in the timber. The pin is wiped with oil, driven into the hole, ond held in ploce by the compression oction of the wood fibers.

Toble 106. Lag Scale (board meosure of volume)

Log diometer (inches)	Length of log in feet						
	8	10	12	14	16	18	20
6.	10	10	15	15	20	25	25
7.	10	15	25	30	30	35	40
8.	15	20	25	35	40	45	50
9	20	30	35	45	50	60	70
10	30	35	45	55	65	75	85
11	35	45	55	70	80	95	105
12	45	55	70	85	95	110	125
13	55	70	85	100	115	135	150
14	65	80	100	115	135	155	175
15	75	95	115	135	160	180	205
16	85	110	130	155	180	205	235
17	95	125	150	180	205	235	265
18	110	140	170	200	230	265	300
19	125	155	190	225	260	300	335
20	135	175	210	250	290	330	370
21	155	195	235	280	320	365	410
22	170	215	260	305	355	405	455
23	185	235	285	335	390	445	495
24	205	255	310	370	425	485	545
25	220	280	340	400	460	525	590
26	240	305	370	435	500	570	640
27	260	330	400	470	540	615	690
28	280	355	430	510	585	665	745

Table 106.-Continued

Log diameter (inches)	Length of log in feet						
	8	10	12	14	16	18	20
29	305	385	465	545	630	715	800
30	325	410	495	585	675	765	860
31	350	440	530	625	720	820	915
32	375	470	570	670	770	875	980
33	400	500	605	715	820	930	1045
34	425	535	645	760	875	990	1110
35	450	565	685	805	925	1050	1175
36	475	600	725	855	980	1115	1245
37	505	635	770	905	1040	1175	1315
38	535	670	810	955	1095	1245	1390
39	565	710	855	1005	1155	1310	1465
40	595	750	900	1080	1220	1380	1540
41	625	785	950	1115	1280	1450	1620
42	655	825	995	1170	1345	1525	1705
43	690	870	1045	1230	1410	1600	1785
44	725	910	1095	1290	1480	1675	1870
45.	755	955	1150	1350	1550	1755	1960
46	795	995	1200	1410	1620	1835	2050
47	830	1040	1255	1475	1695	1915	2140
48.	865	1090	1310	1540	1770	2000	2235

Table 107. Board Feet

Size of piece (inches)	Length of piece (feet)							
	10	12	14	16	18	20	22	24
2 by 4	623	8	$91 / 3$	103/3	12	131/2	143/3	16
2 by 6	10	12	14	16	18	20	22	24
2 by 8	131/2	16	182/3	$211 / 3$	24	262/3	291/2	32
2 by 10	162/3	20	231/3	262/3	30	$331 / 3$	362/3	40
2 by 12	20	24	28	32	36	40	44	48
2 by 14	231/3	28	323/3	$371 / 3$	42	462/3	$511 / 3$	56
2 by 16	262/3	32	371/3	423/3	48	531/3	583/3	64

Table 107. - Continued

Size of piece (inches)	Length of piece (feet).							
	10	1.2	14	16	18	20	22	24
3 by 6	15	18	21	24	27	30	33	36
3 by 8	20	24	28	32	36	40	44	48
3 by 10	25	30	35	40	45	50	55	60
3 by 12	30	36	42	48	54	60	66	72
3 by 14	35	42	49	56	63	70	77	84
3 by 16	40	48	56	64	72	80	88	96
4 by 4	$131 / 3$	16	183/	$211 / 3$	24	262/3	291/3	32
4 by 6	20	24	28	32	36	40	44	48
4 by 8	262/3	32	$371 / 3$	42\%	48	531/3	$581 / 3$	64
4 by 10	331/3	40	4633	$531 / 3$	60	66\%	$731 / 3$	80
4 by 12	40	48	56	64	72	80	88	96
4 by 14	46\%	56	$651 / 3$	742/3	84	$931 / 3$	1023/3	112
4 by 16	$531 / 3$	64	742/3	$851 / 3$	96	10633	$1171 / 3$	128
6 by 6	30	36	42	48	54	60	66	72
6 by 8	40	48	56	64	72	80	88	96
6 by 10	50	60	70	80	90	100	110	120
6 by 12	60	72	84	96	108	120	132	144
6 by 14	70	84	98	112	126	140	154	168
6 by 16	80	96	112	128	144	160	176	192
6 by 18	90	108	126	144	162	180	198	216
6 by 20	100	120	140	160	180	200	220	240
8 by 8.	$531 / 3$	64	743/3	$851 / 3$	96	10633	$1171 / 3$	128
8 by 10	662/3	80	$931 / 3$	1063/3	120	1331/3	1463/3	160
8 by 12	80	96	112	128	144	160	176	192
8 by 14	$131 / 3$	112	13034	1491/3	168	18623/	2051/3	224
10 by 10	$831 / 3$	100	1163/	$1331 / 3$	150	1662/3	$1831 / 3$	200
10 by 12	100	120	140	160	180	200	220	240
10 by 14	1162/3	140	1631/3	1863	210	2331/3	2563/3	280
10 by 16	$1331 / 3$	160	18633	$2131 / 3$	240	2663/3	2931/3	320
12 by 12	120	144	168	192	216	240	264	288
12 by 14	140	168	196	224	252	280	308	336
12 by 16	160	192	224	256	288	320	352	384
14 by 14	$1631 / 3$	196	2283	$2611 / 3$	294	3263/3	3591/3	392
14 by 16	186\%	224	$2611 / 3$	29843	336	3731/3	4103\%	448

Toble 108. Nail and Spike Sizes

	Size	Length (inches)	Goge	Diometer (D) (inches)	D ${ }^{1 / 2}$
Nails	$\begin{aligned} & 3 d \\ & 4 d \\ & 6 d \\ & 8 d \\ & 10 d \\ & 16 d \\ & 20 d \\ & 30 d \\ & 40 d \\ & 60 d \end{aligned}$	$\begin{aligned} & 1114^{\prime \prime} \\ & 112^{\prime \prime} \\ & 2^{\prime \prime} \\ & 21 / 2^{\prime \prime} \\ & 3^{\prime \prime} \\ & 31 / 2^{\prime \prime} \\ & 4^{\prime \prime} \\ & 41 / 2^{\prime \prime} \\ & 5^{\prime \prime} \\ & 6^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 121 / 2 \\ & 111 / 2 \\ & 101 / 4 \\ & 9 \\ & 8 \\ & 6 \\ & 5 \\ & 4 \\ & 2 \end{aligned}$	$\begin{array}{r} 0.0800 \\ .0985 \\ .1130 \\ .1314 \\ .1483 \\ .1620 \\ .1920 \\ .2070 \\ .2253 \\ .2625 \end{array}$	$\begin{array}{r} 0.0226 \\ .0309 \\ .0380 \\ .0476 \\ .0570 \\ .0652 \\ .0841 \\ .0942 \\ .1066 \\ .1347 \end{array}$
Spikes	$\begin{array}{r} 7^{\prime \prime} \\ 8^{\prime \prime} \\ 9^{\prime \prime} \\ 10^{\prime \prime} \\ 12^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 7^{\prime \prime} \\ 8^{\prime \prime} \\ 9^{\prime \prime} \\ 10^{\prime \prime} \\ 12^{\prime \prime} \end{gathered}$	$\begin{aligned} & 3 / 16^{\prime \prime \prime} \\ & 38^{\prime \prime} \\ & 3 / 88^{\prime \prime} \\ & 3 / 8^{\prime \prime} \\ & 3 / 8^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { 3/16" } \\ & \text { 3/8", } \\ & 3 / \text { " }^{\prime \prime} \\ & 3 / 8^{\prime \prime} \\ & \text { 3/8" } \end{aligned}$	$\begin{array}{r} 0.1750 \\ .2295 \\ .2295 \\ .2295 \\ .2295 \end{array}$

Farmuia to find oppraximate number af nails required.
No. lbs (12 d to 60 d, framing) $=\mathrm{d} / 6 \times \mathrm{bf} / 100$
Na. Ibs (2 d to 12 d , sheathing) $=\mathrm{d} / 4 \times \mathrm{b} / / 100$
where $d=$ size of desired noil in pennies
bf=total board feet to be nailed

172. PAINT

a. Paint Materials. For details an which type of paint shauld be used far a specific jab, see the paint manual published by Notianal Bureau af Stondards, ar TM 5-618.
b. Exteriar Waad Surfoces (New Wark).
(1) Far the priming caot, the paint cames in cream ar grey. Narmally, it requires na thinner, but in cold weather thinner may be necessory; in this case, use $1 / 2$ pint af turpentine added to 1 gallan of point.
(2) Apply unthinned paint ot o spreading ratio of obaut 450 square feet per gollon if it is ta be fallawed by one coat af finish point. For three-caat wark, thin the priming point as instructed in (1) abave, then opply of 600 squore feet per gollon.

Table 109.. Wire-Nail Sizes, Wire Gages, and Number Per Pound

Note 1. Te aveid splitting, neil diemeters should not exceed one-seventh of the thickness of lumber ta be neiled.

- 2. Geges ara U. S. Steel Wire Gage. Fractienal gages aro:

Gege	$101 / 4$	$101 / 2$	$111 / 2$	$12 / 2$	$141 / 2$	$15 / 2$
Diameter, in	0	0.1314	0.1278	0.1130	0.0985	0.0760
0.0673						

Table 110. Waod Screw Diameters

Size	Diameter-D Inches	$\begin{gathered} D^{2} \\ \text { Inches } \end{gathered}$
$\begin{aligned} & 1 / 2 \text { inch -Na. } 4 \\ & 3 / 4 \text { inch—Na. } 8 . \\ & 1 \text { inch -Na. } 10 . \\ & 11 / 2 \text { inch-No. } 12 . \\ & 2 \text { inch } \\ & 21 / 2 \text { inch-Na. } 14.16 . \\ & 3 \text { inch -Na. } 18 . \end{aligned}$	0.1105 .1631 .1894 2158 2421 2684 2947	$\begin{array}{r} 0.0122 \\ .0266 \\ .0359 \\ .0466 \\ .0586 \\ .0720 \\ .0868 \end{array}$

(3) Far the finish coat where a three-caat jab is required, apply the paint at the ratia af 600 ta 700 square feet per gallan. In gaad weather, a 48 -haur drying periad between caats is sufficient. For twacoat wark, a spreading ratia af abaut 550 square feet per gallan is required.
c. Exteriar Metal Surfaces.
(1) Far finishing caats, use ail paint ar enamel similar to that used far waod. Far new steel bridges, apply twa finish caats.
(2) Befare painting metal, clean aff all grease, rust, laase mill scale, dirt, and other fareign matter.
(3) The priming caat shauld cantain a carrasian-inhibitar paint. Allaw 2 days ta dry.
d. Interiar Waad Surfaces. Apply anly ane primer caat and ane finish caat. Twa finish caats may be applied if primer and first finish saats have been thinly applied. Allaw 48 haurs between caats.
e. Field-Expedient Paints. See table 111.

173. ROOFING

a. Intraductian. Raafing repairs shauld be made in clear, mild weather, with the outside temperature nat belaw $50^{\circ} \mathrm{F}$. Repair minar damages by applying asphalt plastic flashing cement. Layer breaks are repaired by apening the harizantal seam belaw the break and inserting a strip af raafing.

Table 111 . Expedient Paints

Paint	Moterials	Mixing	Color	Finish
No. 1	Local earth, Gl soap, water, soot, paraffin	Mix soot with paraffin; add to solution of 8 gal water and $1 / 2$ lbs soop. Stir in earth	Dark gray	Flat, lusterless
No. 2	Oil, ground clay, water, gasoline, earth	Mix 2 gal water with 1 gal oil and $1 / 2$ ta $1 / 4$ gal clay; add earth. Thin with gasoline or water	Depends an earth calars available	Glassy on metal; otherwise dull
No. 3	Oil, clay, GI soap, water, earth	Mix $11 / 2$ bars $\mathbf{G l}$ soop with 3 gal water; add 1 gal oil; stir in 1 gal clay. Add earth for color	Depends on earth colars	Glassy an metal; dull on ather

NOTE Conned milk or powdered eggs can be used to increase binding properties of either issue or field-expedient points.
b. Materials Required. Depending an the methad used to repair a roof, the quantities and kinds of materials vary.
(1) When 4 -inch strips of fabric and asphalt roaf coating are used, the quantity of coating far 100 square feet of raafing is $4 / 5$ gallan; 39 linear feet of strips are needed.
(2) When 6 -inch strips of roofing, asphalt plastic cement, and asphalt emulsian (clay type) are used, the fallowing quantities per 100 square feet af roofing are used:

Asphalt plastic cement-6 pounds
Raofing strips - 39 linear feet
Asphalt emulsion - 1 gallon
c. Other Roofing. For roofing and repair when asphalt shingles, metal roofing, wood shingles, slats, ar tile are used, see TM 5-617.

174. TRIGONOMETRIC FUNCTIONS

a. Solutions of Triangles. See table 112.
b. Natural Trigonometric Functians. See table 113.

Table 112. Trigonometric Solutions of Triongles

Toble 113. Nofural Trigonometric Functions

Angle	5 in	Cosec	Tan	Cotan	Sec	Cos	
$0{ }^{\circ}$. 000		000		1.000	1.000	90°
$1{ }^{\circ}$	017	57.30	017	57.29	1.000	1.000	89°
2^{0}	035	28.65	. 035	28.64	1.001	999	88°
30	052	19.11	052	19.08	1001	. 999	87°
4°	. 070	14.34	. 070	14.30	1002	998	86°
5°	. 087	1147	087	1143	1.004	996	85°
6°	. 105	9567	. 105	9.514	1.006	995	84°
70	122	8206	123	8.144	1.008	. 993	83°
$8{ }^{\circ}$. 139	7185	. 141	7.115	1.010	990	82°
90	. 156	6.392	. 158	6.314	1.012	988	81°
10°	. 174	5.759	. 176	5.671	1.015	. 985	80°
11°	. 191	5241	. 194	5.145	1.019	. 982	79°
12°	208	4.810	. 213	4.705	1.022	. 978	78°
13°	. 225	4.445	. 231	4331	1.026	. 974	$7{ }^{\circ}$
14°	. 242	4.134	. 249	4.011	1.031	970	76°
15°	. 259	3.864	. 268	3.732	1035	. 966	75°
16°	. 276	3.628	287	3.487	1.040	. 961	74°
17°	292	3.420	306	3.271	1.046	. 956	73°
18°	. 309	3236	. 325	3.078	1.051	. 951	72°
19°	326	3.072	. 344	2.904	1058	. 946	71°
20°	. 342	2.924	. 364	2.747	1.064	. 940	70°
21°	. 358	2.790	. 384	2.605	1.071	. 934	69°
22°	. 375	2669	. 404	2.475	1.079	. 927	68°
23°	. 391	2.559	. 424	2.356	1086.	921	67°
24°	. 407	2.459	445	2.246	1.095	. 914	66°
25°	. 423	2.366	466	2.145	1.103	. 906	65°
26°	. 438	2.281	. 488	2.050	1.113	899	64°
270	. 454	2.203	510	1.963	1.122	891	63°
28°	469	2.130	. 532	1. 631	1133	. 893	83°
29°	. 485	2.663	. 554	1.804	1.143	875	61°
30°	. 500	2000	. 577	$1.732 \cdot$	1.155	866	60°
31°	. 515	1.942	. 601	1864	1.167	857	59°
32°	. 530	1887	. 625	1.600	1179	848	58°
33°	. 545	1.836	. 649	1.540	1.192	839	57°
34°	. 559	1.788	. 775	1483	1. 206	829	56°
35°	. 574	1.743	700	1.428	1.221	819	55°
36°	. 588	1.701	. 727	1.376	1236	809	54°
370	. 602	1.662	754	1.327	1.252	799	55°
38°	616	1.624	. 781	1.280	1.269	788	52°
39°	. 629	1.589	. 810	1.235	1.287	777	51°
40°	. 643	1.556	. 839	1.192	1.305	766	50°
41°	656	1.524	. 869	1.150	1325	755	49°
42°	. 669	1.494	. 900	1.111	1.346	743	48°
43°	. 682	1.466	. 933	1.072	1.367	731	47°
44°	. 695	1.440	. 966	1036	1.390	719	46°
45°	. 707	1.414	1.000	1.000	1.414	707	45°
	Cos	5 coc	Cotan	Ton	Cosec	5 in	Angle

175. LENGTHS, AREAS, AND VOLUMES OF GEOMETRIC FIGURES
a. Legend.
$A=$ area
$a=$ altitude
b= length of base
c = hypatenuse
C= circumference
$\mathrm{V}=$ valume
b. Farmulas.
(1) Any triangle:

$$
\begin{aligned}
A & =1 / 2 b h \\
\text { or: } \operatorname{Sin} \gamma & =\frac{c \operatorname{Sin} \phi}{a}
\end{aligned}
$$

r = radius
$\mathrm{D}=$ diameter
$\pi=3.1416$
$\mathrm{L}=$ length of arc
$k=$ length of card

(2) Right triangle:

$$
\begin{aligned}
& a=\sqrt{c^{2}-b^{2}} \\
& b=\sqrt{c^{2}-a^{2}} \\
& c=\sqrt{a^{2}-b^{2}}
\end{aligned}
$$

(3) Circle:

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=0.7854 D^{2} \\
& C=\pi D
\end{aligned}
$$

(4) Segment of circle:

$$
\begin{aligned}
& A=1 / 2[r(1-k)+a k] \\
& L=\left(\frac{2 \pi r}{360}\right) \times a \\
& k=\sqrt{2 a r-a^{2}} \\
& a=\text { angle } \\
& \quad \text { In degrees }
\end{aligned}
$$

(5) Sector of circle:

$$
A=\frac{r 1}{2}=\frac{\pi r^{2}}{360} \text { (angle in degrees) }
$$

(6) Regular polygons. The area of ony regulor polygon (oll sides equal, oll ongles equol) is equal to the product of the square of the lengths af one side and the factors shown in toble 114 . Example: Area af a regulor actogon having 6 -inch sides is $6 \times 6 \times 4.828$, or 173.81 square inches. See foctors in toble.
(7) Rectangle and porollelogrom:

$$
A=\mathrm{ob}
$$

(8) Trapezaid:

b

$$
A=1 / 2 a\left(b_{1}+b_{2}\right)
$$

(9) Irregulor figures. Measure widths ot offsets regulorly spaced along any straight line, ond apply ane of the follawing:
(a) Trapezaidal rule. $A=$ ane holf the interval between offsets x (sum of twa end widths plus twice the sum af the intermediote widths).
(b) Simpsan's rule. (Assumes laterol baundories ore parobolic curves.) A = one third the interval between offsets x [sum of twa end widths plus twice the sum af the add widths, except first and last (3rd, 5 th, 7 th, etc.) plus 4 times the sum of the even widths (2d, 4th, 6 th, etc.)]

NOTE. The abave rule required an add number of widths. If there is an even number, compute seporately the area of a trapezaid of one end.
(10) Cube:
$V=b^{3}$
(11) Rectangulor parallelepiped: $V=0 b_{1} b_{2}$

(12) Prism or cylinder: $V=0 \times$ (oreo of base)

(13) Pyramid ar cone:
$V=(1 / 3)$ व X (area of base)
(14) Sphere:

$$
\begin{aligned}
& V=(4 / 3) \pi r^{3}=\frac{\pi D^{3}}{6} \\
& A=4 \pi r^{2}
\end{aligned}
$$

(15) Prismaidal sectian:
$V=$ ane-sixth the length X (sum of the end areas plus 4 times the midsectian area)

176. FUNCTIONS OF NUMBERS

See table 115.

177. CHARACTERISTICS OF INFANTRY WEAPONS

See table 116.

178. TROOP MOVEMENT FACTORS

a. Rates af March. See table 117.
b. March Farmulos. See table 118.

179. CAMOUFLAGE

a. Principles.
(1) Siting: Careful selectian of the position far an emplacement af equipment is the mast important principle af camaufloge. Emplacements and their artificial camauflage materials must be made to blend with their backgraund.
(2) Discipline: Avaid unnecessary mavement af persannel and vehicles and any ather activity that wauld change the ariginal appearance of the area and indicate yaur presence ta enemy abservers.
(3) Canstructian: Emplay natural and artificial canstructian and camauflage materials to canceal the pasitian.
b. Materials.
(1) Natural. Natural materials generally pravide the best cancealment and are atways available. Natural materials include live vegetatian, cut vegetatian, debris, sail, and sa forth.

Table 114. Palygon Factars

No. of sides	Factor		No. of sides	Foctor
3	0.433		8	4.828
4	1.000		9	6.182
5	1.720		10	7.694
6	2.598		11	9.366
7	3.634		12	11.196

(2) Artificial Material. Artificial materials include paints, supparting frames, garnishing materials, structural materials, screening materials, adhesives, and texturing materials.
c. Individual Camouflage. Make use af terrain and backgraund, adapt clathing to the terrain, and select a raute during movement that makes use af the concealment available.
(1) Helmets. Break up the shape af helmets by using leaves ar twigs secured with a rubber band, making a cover of burlap, distarting with burlap garlands, ar painting appropriate colors.
(2) Skin. Tone dawn all visible skin areas with face paint, burnt cork, lampblack, ar charcoal.
(3) Clathing. Clathing may be taned dawn ta blend with the backgraund by use of camauflage paints, or attaching vegetatian ta blend in with existing area.
(4) Equipment. Remove shine from metal abjects with mud ar face paint. Any equipment which may make a naise should be muffled by padding.
d. Camouflage of Equipment and Emplacements.
(1) Avoid regular geometric layauts af the positian af vehicles, weapons, and supplies. Use natural camauflage material and supplement with artificial materials.
(2) Conceal the tracks made by vehicles so that terrain remains the same.
(3) Eliminate shine an vehicles.
(4) Use shadows and insure that the silhouette af emplacements and equipment is braken, so that the general autline is not detectable.
(5) In urban areas, use shadows cast by buildings.
e. Garnishing af Camouflage Nets.
(1) Garnishing density. All nets should be garnished ta a predetermined degree af density. Drape nets shautd be garnished 100

Table 115. Functions of Numbers

No.	Squaro	Cube	Sq. reot	Legorithm	No.	Square	Cube	Sq. root	Logori thm
1	1	1	1.0000	0.00000	40	1600	64000	6.3246	1.60206
2	4	8	1.4142	. 30103	41	1681	68921	6.4031	1.6178
3	9	7	1.7321	. 47712	42	1764	74088	6.4807	1.62325
4	16	64	20000	. 60206	43	1849	79507	6.5574	1.63347
5	25	125	22361	. 69897	44	1936	85184	6.6332	1.64345
6	36	216	2.4495	. 77815	45	2025	91125	6.7082	1.65321
7	49	343	26458	. 84510	46	2116	97336	6.7823	1.66276
8	64	512	2.8284	. 90309	47	2209	103823	6.855	1.67210
9	81	729	3.0000	. 95424	48	2304	110592	6.9282	1.68124
10	100	1000	3. 1623	1.00000	49	2401	117649	7.0000	1.690 D
11	121	1331	3.3166	1.04139	50	2500	125000	7.0711	1.69897
12	144	1728	3.4641	1.07918	51	2601	132651	7.1414	1.70757
13	169	2197	3.6056	1.11394	52	2704	140608	7.2111	1.71600
14	196	2744	3.7417	1.14613	53	2809	148877	7.2801	1.72428
15	225	3375	3.8730	1. 17609	54	2916	157464	7.3485	1.73239
16	256	4096	4.0000	1. 20412	55	3025	166375	7.4162	1.74036
17	289	4913	4.1231	1. 23045	56	3136	175616	7.4833	1.74819
18	324	5832	4. 2426	1. 2557	57	3249	185193	7.5498	1.75587
19	361	6859	4.3589	1. 27875	58	3364	195112	7.6158	1.76343
20	400	8000	4.4721	1.30103	59	3481	205379	7.6811	1.77085
21	441	9261	4.5826	1.32222	60	3600	216000	7.7460	1.77815
22	484	10648	4.6904	1. 34242	61	3721	226981	7.8102	1.78533
23	529	12167	4.7958	1.36173	62	3844	238328	7.8740	1.79239
24	576	13824	4.8990	1. 38021	63	3969	250047	7.9373	1.79934
25	625	15625	5.0000	1.39794	64	4096	262144	8.0000	1.80618
26	676	17576	5.0990	1.41497	65	4225	274625	8.0623	1.81291
27	729	19683	5. 1962	1.43136	66	4356	287496	8.1240	1.81954
28	784	21952	5.2915	1.44716	67	4489	300763	8. 1854	1.82607
29	841	24389	5.3852	1. 46240	68	4624	314432	8.2462	1.83251
30	900	27000	5.4772	1.47712	69	4761	328509	8. 3066	1.83885
31	961	29791	5.5678	1.49136	70	4900	343000	8.3666	1.84510
32	1024	3768	5.6569	1.50515	71	5041	357911	8.4261	1.85126
33	1089	35937	5.7446	1.51851	72	5184	373248	8. 4853	1.85733
34	1156	39304	5.8310	1.53148	73	5329	389017	8.5440	1.86332
35	1225	42875	5.9161	1.54407	74	5476	405224	8.6023	1.86923
36	1296	46656	6.0000	1.55630	75	5625	421875	8.6603	1.87506
37	1369	50653	6.0828	1.56820	76	5776	438976	8.7178	1.88081
38	1444	54872	6. 1644	1.57978	77	5929	456533	8.7750	1.88649
39	1521	59319	6.2450	1.59106	78	6084	474552	8.8318	1.89209

Table 115-Continued

Na.	Squaro	Cubo	Sq. root	Lagarithm	Na.	Squoro	Cubo	Sq. roof	Lagarithm
79	6241	493039	8.8882	1.89763	90	8100	729000	9.4868	1.95424
80	6400	512000	8.9443	1.90309	91	8281	753571	9.5394	1.95904
81	6561	531441	9.0000	1.90849	92	8464	778688	9.5917	1.96379
82	6724	551368	9.0554	1.91381	93	8649	804357	9.6437	1.96848
83	6889	571787	9.1104	1.91908	94	8836	830584	9.6954	1.97313
84	7056	592704	9.1652	1.92428	95	9025	857375	9.7468	1.97772
85	7225	614125	9.2195	1.92942	96	9216	884736	9.7980	1.98227
86	7396	636056	9.2736	1.93450	97	9409	912673	9.8489	1.98677
87	7569	658503	9.3274	1.93952	98	9604	941192	9.8995	1.99123
88	7744	681472	9.3808	1.94448	99	9801	970299	9.9499	1.99564
89	7921	704969	9.4340	1.94939	100	10000	1000000	10.0000	200000

percent in the center portion of the net, thinning out to 65 percent toward the outer edges. This will result in a coverage of about 85 percent of the entire net area. Flat-top nets should be garnished 100 percent in the center portion of the net, thinning out to 25 percent toward the outer edges. This will result in a coverage of about 65 percent of the entire net area. Begin the thin-out at about one-half the radius of the net. This must not be on an abrupt change in percentages, but rather a gradual thinning-out so as to achieve a smooth transition to the desired density at the outer portion of the net.
(2) Garnishing patterns. To provide for blending into a variety of seasonal and geographic terrain characteristics, pregarnished twine nets are issued in two blends - the all seasonal and the desert. The color blend of a net is achieved by proportionately varying the garlands of the various colors required for a particular blend, and placing the garlands in the net as an overall mixture of colors. Long, straight runs, large areas, blocks of one color, or regularity of pattern in a net should be avoided. Generally, the garlands are inserted into the net in such a manner that each garland will describe one of the following letters: L, U, S, C, or 1 (fig. 194). This should result in an amolgamation of the letter patterns forming the desired degree of density and color blend.

180. TIME DISTANCE CONVERSION

See table 119.

181. WEIGHTS AND SPECIFIC GRAVITIES

See table 120.

Table 116. Characteristics of Infantry Weapons

Wepens	Unleaded Weight (Appiaximate lbs)	Type of fand	Cyclic (C) of Moximum tan (W) of file. Ends pal min	Sustoined late al Fine, Inds pal min	Maximum (ffectiv: tole of fils. lnds pat min	Maimum tonge (Mesiest 25) Melers	Maximum Effertive lenge (Mestesi 25) Merts	Appri Efmion Busting arta Matas	temarks
Hand Gmiodas 4964?	1					40		15	
- 34 [$\mathrm{Wr}^{\text {] }}$]	2					35		25	
Pistol Autamotic Cal 45 (1811A1	21/3	7 End Magation				1500	50		
Sobnadisnouvn (4) 45 벼N	θ	30 tind Hagazine	450(C)	40-60	40-60	1550	100		Eplaced by M-14 tifle, with liped 12
$\begin{aligned} & \text { US Corbine } \\ & \text { Cal .30, } \mathbf{\omega l} 2 \end{aligned}$	51/2	30 Ind Maporitim	750-775(c)	40-60	40-60	2025	250		Replaced by M-14 tile
$\begin{aligned} & \text { US Rifle, Cal } \\ & 762 \mathrm{my} \text {, M14 } \end{aligned}$	91/2	20 Bnd Mapazion	700-7s0(c)	15 (5mm(whmatic) 20 (ante. matle)	20-40	3775	450		fufl Autematit capo. Billity muins the impallotion ol seler. for Surtained rote based on limitad ress Hped is major titam t used in conjunditan with rifis shan used as an auramatk ufio.
US Rifle, Cal . 3011	81/2	t Ind Clip		8-10	16-24	3200	450		Bing ripleced by the - 14 1 file
US Etifo, Cel 50141 milh tife Grenabo Leuncher, $197 \mathrm{h3}$, Hoot Rifie Grt. mode, 401 4 Slaht M1S	101/	Mamua!	4(1)	4	2	275	115		Camplete Pound Weighs Approx 11/2 lbs
US tifle, Cal 1.4214y whth mlector and blped 10	12	20 And mogerine	700-7500	Is (Smin avtematic) 20 (anto matic)	20-40 (5mmiautematic) 40-60 (Ausematic)	37-85	40		Eyplaces the browand witornatic uifo

Table 116.-Continued

Weapens	Unloaded Werght (Approximete Ibs)	Type of Feed	Cyclic (I) ol Moximum Rate (ili) of Fice, Rnds por min	$\left\|\begin{array}{c} \text { Sustoined late } \\ \text { of fire. } \\ \text { Rnds por min } \end{array}\right\|$	$\begin{aligned} & \text { Maximum } \\ & \text { Effective liate } \\ & \text { of fire, } \\ & \text { ends par min } \end{aligned}$	$\begin{gathered} \text { Moximum } \\ \text { Range } \\ \text { (Wholest 25) } \\ \text { Molers } \end{gathered}$	Moximum Eflective lange (Meorest 25) Maters	Asplx Eflective Bursting areu Moters	Remorks
Biawning Autamotic lifinc Cal 3. mi918i2	191/	20 kNd magarine	$350(\mathrm{C})$ slow rete $500(\mathrm{C}, \mathrm{fast}$ rate	40-60	120-150	3300	460 MI Tg 700 Aroc targat		M-14 Rifle mith wilec. tor and bipod M2
Mathinequn tal 7.62 M M 1160	Gun 33	belt morallis split link disinte- groting	5sac)	100	200 (laid)	3725	1100		
Browning Machinsgun Col 30 H1919 4	33	bell matalic link dislint- proting	400-675	100	200 (19pid)	3200	1100		Moy be fired tram Iripod Mount
US Rifno H14E2 7	121/2	20 End magatine	700-75010	15 (Samisutamatic) 20 (automatic)	$\begin{aligned} & \text { 20-40 (Sami- } \\ & \text { autamatic) } \\ & 40-60 \text { (Auta- } \\ & \text { matic) } \\ & \hline \end{aligned}$	3/25	700 (fict Tgt, samiautamatic anly 700 Arae lgt		
	7	20 Ind magaint	700-800 (1	20	$\begin{aligned} & \text { 45-65 (Somi- } \\ & \text { putanotic) } \\ & 150-200 \\ & \text { (Mutomelic) } \\ & \hline \end{aligned}$	2653			
s0.MM Ganeda Leunchen 179	6	froch loceded single shat			5-7	100	$\begin{aligned} & 150 \text { (flit tgi) } \\ & 350 \text { (Anson } \\ & \text { frompt) } \end{aligned}$		
Modınagun, Col 50, MI, M?	176	bll metallis link	400-500 ($)$	40 er loss	$\begin{aligned} & \text { More then } 40 \\ & \text { (liopid) } \end{aligned}$	6000	725 AM Torgat -1025 Ground torgal		

Table 116.-Continued

Wexpons	Ualoreded Werght (Appraximate (bs)	type of Faed	Cyclit (t) ar Maximum tote (n) ol firs. teds poi min	Suste aned lata of Fite, lands par ma	Marimutin Eflective lata of 1110 , lends por min	Maimum loage [Maciest 25] Metas	Madmum Effective laga (Wemes! 25)山aters	Appix Efiective Avrstiag Aren Heters	tenarks
35 in tacker Levincher M20Al	13	Band Leediag by hend		4		125	155 Moving Tarpin 275 5tationery Terget	18 E \%	
Portably flams. thrower M4A1-7	42	fual Propalled by gos under pressore	(antineous dicherfo t-9 Sex	Cantinuous discharpe 1-9 sec	Continuous discharpe f. 1 26	20-25 Llathickmed 40-50 hlatend fual	20-25 Unithichenend 40-50 thickned fuel		Oparatlon copotity 4h gols of fual valuhing 25 to 27 lbs
914M Montar, - ${ }^{3}$ whb Heum M2343	tonal 2 Ciped 40 lomeplate 25.5 Sight 4	Muntio loodtry by hand	12 fer 2 win ating HE, M362 vith duorge	3 wing HE, d $\mathbf{3} 62$ with charge I		445 (HE , M374)	453 (HE, 374)	$23: 20(4)$	
42 In Mortor, 는 M30 चith meunt,监4	640	Munle Loadlap by hond	201 ul 2 for 2 mis, d for next 80 min	2	1	5500	5500	I 15(4)	
106M R Rith, MOA1 vitt gothing gun 50 (al	460 when glound meunted	trach leoding by hand Peflice gura 10 lind megozine	1 pal 6 ses vith 001 more than 5 rounds befora lotiliog ilth ceel	1		$7100(4)$	1100	14 redtus (HEP-T)	Maxlmon firctive reapo dinternilimo by withre yon

Table 117. Rates and lengths of Marches. ${ }^{1}$

Unit	Avarage Retes of March (KMPH) ${ }^{2}$				Days Merch Kilometers
	On Reeds		Cress-country		
	Day	NIght	Dey	Night	
Foot treeps	4	3.2	2.4	1.6	20-32
Trucks, generel	40	40 (lights) 16 (bleckeut)	12	8	280
Trecked vehicles	24	24 (lights) 16 (blockeut)	16	8	240
Truck-drewn ertillery	40	40 (lights) 16 (bleckeut)	12	8	280
Trectar-drown ertillery	32	32 (lights) 16 (blackeut)	16	8	240

1 This teble is fer generel plenning ond cemperison purposes. All rates given are varieble in eccerdance with the mevement conditions es determined by reconnois sence.

2 These rates include normel periedic rest helis.

Figure 194. Garnishing.

182. CONVERSION FACTORS

See table 121.

183. WEIGHTS AND CHARACTERISTICS OF SOILS

See toble 122.

184. VEHICLE RECOVERY EXPEDIENTS

o. Generol. Narmally proper vehicle operatar troining, operatar experience, and common sense con prevent most vehicles from becoming stuck ar in a positian where they cannat be used. In the tactical situation, vehicle loss connot always be prevented, due to enemy action or terrain which has to be maneuvered. For o complete caverage of all aspects of vehicle recovery see FM 20-22.
b. Field Expedient Vehicle Recovery. See figures 195, 196, 197, and 198.

Kilometers (Km) -
Miles (mi)
To convert kilometers to miles: Multiply the number of kilometers by the foctor . 62
$\mathrm{Mi}=\mathrm{Nr}$ of $\mathrm{Km} \times .62$
To convert miles to kilometers:
Multiply the number of miles by the foctor 1.6
$\mathrm{Km}=\mathrm{Nr}$ of $\mathrm{mi} \times 1.6$

Meters (M) — Yards (yds)
To convert meters to yards:
Multiply the number of meters by the foctor 1.1
Yds $=N r$ of $M \times 1.1$
To convert yords to meters:
Multiply the number of yords by the foctor. 91
$M=N r$ of $y d s \times .91$

For Time Distance (TD):
Divide the distonce (kilometers) by the rote of morch (kilometers per hour).
TD (hours) - $\frac{D \text { (Kilometers) }}{R \text { (Kilometers per hour) }}$
To convert fractionol ports of on hour to minutes, multiply the froctional port by 60

For Time Length (TL) of Foot Column:
Multiply rood spoce (RS) of the column by foctor for rate of morch.
$T L$ (minutes) $=(R S \times$ foctor $)$
Select foctor from table below

Rote (kmph)	Foctor
4.0	.0150
3.2	.0187
2.4	.0250
1.6	.0375

For Rood Spoce (RS) of Foot Troops:
Multiply number of men by foctor for formation ond add the totol dis. tonce of the intervols between units.
RS (meters) $=(\mathbf{N r}$ of men \times foctor $)+$ distonces
Select factor from toble below

Formotion	2 M Man	5 M Mon
	2.4	5.4
Single File	1.2	2.7

Toble 118.—Continued

For Time Length (TL) Vehicles (Open Column):
Multiply number of vehicles by foctor for formotion ond rote of morch ond odd time intervols (TI) between units.
TL (minutes) $=(\mathrm{Nr}$ of vehicles \times foctor $)+\mathrm{TI}$'s
Select foctor from toble below
$\frac{\text { Rote (kmph) }}{16}$
24
32
40
48
$\frac{M / V e h}{100}$

Foctor
3750
.2500
.1875
.1500
.1250
$\overline{\text { For Time Length (TL) of Motors (Close Column): }}$ Multiply number of vehicles by . 12 ond odd the time intervols (TI) between units.
$\mathrm{TL}($ minutes $)=(\mathrm{Nr}$ of vehicles $\times .12)+\mathrm{TI}$'s
For Completion Time (CT):
Add TL of column, TD from IP to RP, ond ony scheduled holts other thon normol breoks, to the IP time.
$C T=I P$ time $+T L+T D+$ Scheduled Holts
Exomple:

| Hr | Min |
| :--- | :--- | :--- |
| 07 | $45 \quad$ IP time (clock time) |

01	12	TL of column (1 hr 12 min)
05	55	TD (IP to RP, 5 hrs 55 min)
01	00	Meal holt (one hour)
$C T=14$	112	1552

The move will be completed of 1552 hours.
For Rood Spoce (RS) of vehicles:
Multiply the TL (minutes) by the rote in kilometers per hour ond divide by $\delta 0$.
RS (kilometers) $=$

$$
\frac{\mathrm{TL}(\min) \times R \text { (Kilometers per hour) }}{60 \text { (minutes/hour) }}
$$

Table 119. Time Distonce Conversion

Miles per hour	Knots	Feet per second	Kilometers per hour	Meters per second
1	0.8684	1.4667	1.609	0.447
2	1.74	2.93	3.22	0.894
3	2.61	4.40	4.83	1.34
4	3.47	5.87	6.44	1.79
5	4.34	7.33	8.05	2.24
6	5.21	8.80	9.66	2.68
7	6.08	10.27	11.27	3.13
8	6.95	11.73	12.87	3.58
9	7.82	13.20	14.48	4.02
10	8.68	14.67	16.09	4.47
11	9.55	16.13	17.70	4.92
12	10.42	17.60	19.31	5.36
13	11.29	19.07	20.92	5.81
14	12.16	20.53	22.53	6.26
15	13.03	22.00	24.14	6.71
16	13.89	23.47	25.75	7.15
17	14.76	24.93	27.36	7.60
18	15.63	26.40	28.97	8.05
19	16.50	27.87	30.58	8.49
20	17.37	29.33	32.19	8.94
21	18.24	30.80	33.80	9.39
22	19.10	32.27	35.41	9.83
23	19.97	33.73	37.02	10.28
24	20.84	35.20	38.62	10.73
25	21.71	36.67	40.23	11.18
26	22.58	38.13	41.84	11.62
27	23.45	39.60	43.45	12.07
28	24.32	41.07	45.06	12.52
29	25.18	42.53	46.67	12.96
30	26.05	44.00	48.28	13.41
31	26.92	45.47	49.89	13.86
32	27.79	46.93	51.50	14.31
33	28.66	48.40	53.11	14.75
34	29.53	49.87	54.72	15.20
35	30.39	51.33	56.33	15.65

368
Table 119.-Continued

Miles per hour	Knots	Feet per second	Kilometers per hour	Meters per second
36	31.26	52.80	57.94	16.09
37	32.13	54.27	59.55	16.54
38	33.00	55.73	61.16	16.99
39	33.87	57.20	62.76	17.43
40	34.74	58.67	64.37	17.88
41	35.60	${ }^{\circ} 60.13$	65.98	18.33
42	36.47	61.60	67.59	18.78
43	37.34	63.07	69.20	19.22
44	38.21	64.53	70.81	19.67
45	39.08	66.00	72.42	20.12
46	39.95	67.47	74.03	20.56
47	40.81	68.93	75.64	21.01
48	41.68	70.40	77.25	21.46
49	42.55	71.87	78.86	21.90
50	43.42	73.33	80.47	22.35
51	44.29	74.80	82.08	22.80
52	45.16	76.27	83.69	23.25
53	46.03	77.73	85.30	23.69
54	46.89	79.20	86.90	24.14
55	47.76	80.67	88.51	24.59
56	48.63	82.13	90.12	25.03
57	49.50	83.60	91.73	25.48
58	50.37	85.07	93.34	25.93
59	51.24	86.53	94.95	26.38
60	52.10	88.00	96.56	26.82
61	52.97	89.47	98.17	27.27
62	53.84	90.93	99.78	27.72
63	54.71	92.40	101.39	28.16
64	55.58	93.87	103.00	28.61
65	56.45	95.33	104.61	29.06
66	57.31	96.80	106.22	29.50
67	58.18	98.27	107.83	29.95
68	59.05	99.73	109.44	30.40
69	59.92	101.20	111.05	30.85
70	60.79	102.67	112.65	31.29

Toble 119.—Continued

Miles per hour	Knots	Feet per second	Kilometers per hour	Meters per second
71	61.66	104.13	114.26	31.74
72	62.52	105.60	115.87	32.19
73	63.39	107.07	117.48	32.63
74	64.26	108.53	119.09	$\mathbf{3 3 . 0 8}$
75	65.13	110.00	120.70	33.53
100	86.84	146.67	160.94	44.70

Figure 195. Use of wheels for o winch.

185. FIRE EXTINGUISHERS

o. Closses of fires.
(1) Closs A. These ore fires in ordinory combustible moteriols such as bedding, mottresses, dunnoge, books, cloth, convos, wood, and poper.

Figuire 196. Log used to anchor tracks.

Figure 197. Simple lever.

Figure 198. Anchoring a wheel.
(2) Closs B. These are fires which occur in flammable substances such os gasoline, jet fuel, and sa farth.
(3) Class C. These ore live electrical fires.
(4) Class D. These are cambustible metal (magnesium, etc.) fires.
b. Carbon Dioxide Extinguishers.

See figure 199.
(1) Agent. This extinguisher uses CO_{2} as an agent. CO_{2} converts to a liquid when under pressure, as it is while standing in an extinguisher.
(2) Inspection. Manthly inspection requires checking the wire and lead seal which holds the valve lacking pin to see that it is not braken and checking for physical damage ta the extinguisher. Semionnual inspection requires that the extinguisher be weighed to insure thot the extinguisher hos a full charge. Recharging is necessary if the weight is 10 percent deficient.

Table 120. Weight and Specific Gravities.

Substonce	Weight, lbs. per cu. ft.	Specific gravity
Bituminaus Asphaltum Caal, anthracite Caal, bituminaus Caal, cake Petraleum, gasaline Tar, bituminous.	$\begin{aligned} & 81 \\ & 97 \\ & 84 \\ & 75 \\ & 42 \\ & 75 \end{aligned}$	$\begin{gathered} 1.1-1.5 \\ 1.4-1.7 \\ 1.2-1.5 \\ 1.0-1.4 \\ 0.66-0.69 \\ 1.20 \end{gathered}$
Building moterials Ashes, einders Cement, portland, loose Cement, partland, set	$\begin{array}{r} 40-45 \\ 94 \\ 183 \\ \hline \end{array}$	$2.7-3.2$
Coal and cake, piled Caal, onthracite Coal, bituminaus, lignite Caal, charcoal Caal, cake .	$\begin{aligned} & 47-58 \\ & 40-54 \\ & 10-14 \\ & 23-32 \end{aligned}$. \cdots
Earth, etc., excavated Chalk Clay, damp, plastic. Clay, dry. Clay ond gravel, dry. Clay, marl Earth, dry, loase Earth, dry, packed Earth, maist, loose Earth, maist, packed. Earth, mud, flowing. Earth, mud, packed. . Sand gravel, dry, loose. . Sand gravel, dry, pocked Sand gravel, wet	137 110 63 100 137 76 96 78 96 108 115 $90-105$ $100-120$ $118-120$	$\begin{gathered} 1.8-2.6 \\ \cdots \\ \cdots \\ 1.8-2.6 \end{gathered}$
Liquids Oils, minerals, lubricants Water, $4^{\circ} \mathrm{C}$. (max density) Water, ice Water, snow, fresh follen	$\begin{aligned} & 57 \\ & 62.428 \\ & 56 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} 0.90-0.93 \\ 1.0 \\ 0.88-0.92 \\ 0.125 \end{gathered}$

Table 120.—Continued

Substance	Weight, lbs. per cu. ft.	Specific gravity
Mosanry, oshiar Granite, syenite, gneiss Limestane, marble. Sandstane, bluestone.	$\begin{aligned} & 165 \\ & 160 \\ & 140 \end{aligned}$	$\begin{aligned} & 2.3-3.0 \\ & 2.3-2.8 \\ & 2.1-2.4 \end{aligned}$
Masanry, brick Pressed brick. Comman brick Saft brick	$\begin{aligned} & 140 \\ & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 2.2-2.3 \\ & 1.8-2.0 \\ & 1.5-1.7 \end{aligned}$
Mosonry, concrete Cement, stane, sand	144	2. 2-2.4
Masanry, dry rubble Granite, syenite, gneiss. Limestane, marble Sondstane, bluestane	$\begin{aligned} & 130 \\ & 125 \\ & 110 \end{aligned}$	$\begin{aligned} & 1.9-2.3 \\ & 1.9-2.1 \\ & 1.8-1.9 \end{aligned}$
Masanry, mortar, rubble Granite, syenite, gneiss Limestone, marble Sandstone, bluestane	$\begin{aligned} & 155 \\ & 150 \\ & 130 \end{aligned}$	$\begin{aligned} & 2.2-2.8 \\ & 2.2-2.6 \\ & 2.0-2.2 \end{aligned}$
Metals, allays, ares Aluminum, cast, hammered Copper, cast, ralled Iran, cast, pig. Iran, wrought. Lead Magnesium olloys Manganese Steel, ralled Zinc, cast, ralled	$\begin{aligned} & 165 \\ & 556 \\ & 450 \\ & 485 \\ & 710 \\ & 112 \\ & 475 \\ & 490 \\ & 440 \end{aligned}$	$\begin{gathered} 2.55-2.75 \\ 8.8-9.0 \\ 7.2 \\ 7.6-7.9 \\ 11.37 \\ 1.74-1.83 \\ 7.2-8.0 \\ 7.85 \\ 6.9-7.2 \end{gathered}$
Minerals Asbestas Bauxite	$\begin{aligned} & 153 \\ & 159 \end{aligned}$	$\begin{gathered} 2.1-2.8 \\ 2.55 \end{gathered}$

Table 120.—Cantinued

Substance	Weight, lbs. per cu. ff.	Specific gravity
Rack		
Limestane, marble	165	2.5-2.8
Sandstane, bluestane	147	2.2-2.5
Riprap, limestane	80-85	
Riprap, sandstane	90	
Riprap, shale . . .	105	
Salids, variaus		
Glass, cammon	156	2.4-2.6
Hay and straw (bales)	20	
Paper.	58	0.70-1.15
Patataes, piled	42	
Rubber gaods.	94	1.0-2.0
Salt, granulated, piled	48	
Sulfur. .	125	$1.93-2.07$
Waal		1.32
Stane, quarried, piled		
Basalt, granite, gneiss. .	96	.
Greenstane, harnblende	107	. .
Limestone, marble, quartz	90	
Sandstone.	82	
Shale.	92	
Excavatians in water		
Clay.	80	
River mud. .	90	
Sand or gravel	60	
Sand ar gravel and clay	65	
Sail	70	
Stone riprap	65	.

Table 120.—Cantinued

Substance	Weight, lbs per cu. ft.	Specific gravity
Timber, U.S. seasoned (Maisture content by weight: seasaned timber, 15% ta 20\%; green timber, up ta 50%)		
Ash, white, red...	40	0.62-0.65
Cedar, white, red	22	0.32-0.38
Chestnut	41	0.66
Cypress	30	0.48
Elm, white	45	0.72
Fir, Dauglas spruce.	32	0.51
Fir, eastern	25	0.40
Hemlack	29	0.42-0.52
Hickary.	49	0.74-0.84
Locust.	46	0.73
Maple, hard	43	0.68
Maple, white	33	0.53
Oak, chestnut.	54	0.86
Oak, live . .	59	0.95
Oak, red, black	41	0.65
Oak, white.	46	0.74
Pine, Oregon	32	0.51
Pine, red. .	30	0.48
Pine, white	26	0.41
Pine, yellaw, langleaf	44	0.70
Pine, yellaw, shartleaf	38	0.61
Paplar.	30	0.48
Redwaad, Califarnia	26	0.42
Spruce, white, black	27	0.40-0.46
Walnut, black.	38	0.61
Walnut, white.	26	0.41

(3) Operotion and use. Place extinguisher in vertical position, remove horn from bracket holding horn by rubber or wooden handle to prevent frost bite. Remove cocking pin from discharge valve and discharge agent. CO_{2} extinguishers should be used on Class $\mathrm{B} \& \mathrm{C}$ fires.
c. Pump Type Water Extinguishers. See figure 200.
(1) Agent. Water extinguishers use water as an agent. Care must be taken to prevent this extinguisher from freezing.
(2) Inspection. Inspection incłudes visual and actual operation every month. Semiannual in spection includes visual inspection, actual operation, and lubricating the plunger rod.
(3) Operation and use. To operate, point the nozzle toward the fire and pump the water by operating the pump hande. DO NOT USE ON ELECTRICAL OR GASOLINE FIRES.
d. Soda-Acid Extinguishers. See figure 201.
(1) Agent. Sada-acid extinguishers use water as the extinguishing agent. When the extinguisher is inverted, the soda and acid mix producing a gas which expels the water.
(2) Inspection. Inspection includes visual checking of the extinguisher and removing cap to check for acid, soda, and water. Annual inspection requires discharge, cleaning, and recharging. Care must be taken to prevent this extinguisher from freezing.
(3) Operation and use. To operate, grasp the nozzle and invert the container. The chemical reaction and pressure occur almost immediately after inverting the extinguisher. DO NOT USE ON ELECTRICAL OR GASOLINE FIRES.
e. Foam Extinguishers.

See figure 202.
(1) Agent. The foam type extinguisher is similar in size and shape to the soda-acid type extinguisher, but the operation consists of two agents mixing, producing a gas which expels the foam.
(2) Inspection. Inspection visual, removing cap to inspect ingredients.
(3) Operation and use. To operate, grasp nozzle and invert container.
f. Fire Extinguisher Use. See table 123.

Table 121 . Conversion Factors

Multiply	by	to obtoin
Acres	43,560	square feet.
acres	4,047	square meters.
acres	1.562×10^{-3}	square miles.
acres	5645.38	square vuras.
acres.	4,840	square yards.
ocre-feet	43,560	cubic-feet.
ores.	0.02471	acres.
ares	100	square meters.
of mosphares	76.0	ams. of mercury.
of mospheres	29.92	inches of mercury.
of mospheres.	33.90	feet of water.
afmaspheres.	10,333	kgs. per square meter.
of mospheres	14.70	pounds per sq. inch.
atmaspheres.	1.058	tons per sq. foot.
Bars	9.870×10^{-1}	afmaspheres.
bors.	1	dynes per sq. cm.
bars	0.01020	kgs. per square meter.
bars	2.089×10^{-3}	pounds per sq. foot.
bars.	1.450×10^{-5}	pounds per sq. inch.
boord-feet.	144 sq. in. $\times 1 \mathrm{in}$.	cubic inches.
British thermal units.	0.2520	kilogram-calaries.
British thermal units	777.5	foot-pounds.
British thermal units.	3.927×10^{-4}	horse-power-hours.
British thermal units	1.054	jaules.
British thermal units	107.5	kilogram-meters.
British thermal units...	2.928×10^{-4}	kilowatt-hours.
B.t.u. per min.	12.96	foat-pounds per sec.
B.t.u. per min..	0.02356	horso-power.
B.t.u. per min	0.01757	kilowatts.
B.t.u. per min.	17.57	watts.
B.t.u. per sq. ft. per min.	0.1220	watts per square inch.
bushels........... ..	1.244	cubic feet.
bushels.	2,150	cubic inches.
bushels.	0.03524	cubic meters.
bushels..	4	pecks.

Toble 121. - Continued

Multiply	by	to abtain
bushals	64	pints (dry). quarts (dry).
Centeres.	1	squere meters.
centigrems	0101	groms.
centiliters.	0.01	liters.
centimeters	0.3937	inches.
centimeters.	0.01	mefers.
centimeters.	393.7	mils.
centimeter	10	millimeters.
centimetars-dynes	$1.020 \times 10-3$	centimater-grams.
centimeter-dynes.	1.020×10^{-8}	meter-kilogrems.
centimeter-dynes	7.376×10^{-8}	pound-feet.
contimater-groms	980.7	centimeter-dynes.
centimetar-groms	10^{-5}	mafer-kilograms.
centimeter-grems	7.233×10^{-5}	pound-feet.
centimeters of mercury	0.01316	ofmospheres.
centimeters of mercury	0.4461	feat of water.
centimeters of mercury	136.0	kgs. per squere meter.
centimeters of mercury	27.85	pounds per sq. foot.
centimeters of mercury.	0.1934	pounds per sq. inch.
centimeters par second	1.969	foet per minute.
centimeters per second.	0.03281	feet per second.
contimeters per second.	0.036	kilometers per hour.
centimetars par second.	0.6	meters per minuta.
centimeters per second.	0.02237	miles per hour.
centimeters per second.	3.728×10^{-4}	miles per minute.
cms. per sec, per s	0.03281	fast per sec. per sec.
cms. per sec. per sec.	0.036	kms. per hour per sec.
cms. per sec. per sec.	0.02237	miles per hour per sec.
circuler mils	$5.067 \times 10-6$	square centimeters.
circular mils	7.854×10^{-7}	square inches.
rculor mils	0.7854	squere mils.
cord-faet	$4 \mathrm{ft} \times 4 \mathrm{ft} \times 1 \mathrm{ft}$.	cubic feet.
cords	$8 \mathrm{ft} \times 4 \mathrm{ft} \times 4 \mathrm{ft}$.	cubic feet.
ubic centimeters	3.51×10^{-5}	cubic feet.
cubic centimeters	6.102×10^{-2}	cubic inches.

Multiply	by	to obtain
cubic centimeters.	10^{-6}	cubic maters.
cubic centimeters.	1.308×10^{-6}	cubie yords.
cubic centimeters	2.642×10^{-4}	gallans
cubic centimeters	10^{-3}	liters.
cubic centimeters	2.113×10^{-3}	pints (liq.).
cubic centimeters.	1.057×10^{-3}	quarts (liq.).
cubic feet	2.832×10^{4}	cubic ams.
cubic feet.	1,728	cubic inches.
cubic feet.	0.02832	cubic maters.
cubic feet....	0.03704	cubic yords.
cubic feet	7.481	gallans.
cubic feet....	28.32	liters.
cubic feet.	59.84	pints (liq.).
cubic feet.	29.92	quarts (liq.).
cubic feet per minute.	472.0	cubic cms. per sec.
cubic feet per minute	0.1247	gallans per sec.
cubic feet per minute....	0.4720	liters per secand.
cubic feet per minute..	62.4	lbs. of water per min.
cubic inches	16.39	cubic centimeters.
cubic inches.	5.787×10^{-4}	cubic feet.
cubic inches.	1.639×10^{-5}	cubic mefers.
cubic inches	2.143×10^{-5}	cubic yards.
cubic inches	4.329×10^{-3}	gallans.
cubic inches.	1.639×10^{-2}	liters.
cubic inches	0.03463	pints (liq.).
cubic inches	0.01732	quarts (liq.).
cubic meters.	10^{6}	cubic centimeters.
cubic meters	35.31	cubic fest.
cubic meters............	$61,023$	cubis inches.
cubic meters.	1.308	cubic yards.
cubic mefers....	264.2	gallans.
cubic meters..	10^{3}	liters.
cubic meters.	2113	pints (liq.).
cubic mefers	1057	quarts (liq.).
cubic yards.	7.646×10^{5}	cubic centimeters.
cubic yards	$\begin{gathered} 27 \\ 46,656 \end{gathered}$	cubic feet. cubic inches.

Table 121.-Continued

Table 121.-Continued

Multiply	by	to abtoin
ergs per second ergs per second \qquad ergs per second ergs per second. ergs per second Fothoms. \qquad feet feet feet........ feet . . . feet feet of woter. feat of woter \qquad feet of woter feat of woter. feet of woter. feet per minute feet per minute feet per minute feet per minute feet per minute. feet per second feet per second feet per second feet per second. feet per second feet per second feet per 100 feet feet per sec. per sec. feat per sec. per sec. feet per sec. per sec. foet per sec. per sec. foot-pounds foot-pounds foot-pounds foot-pounds. foot-pounds.	4.426×10^{-6} 7.376×10^{-8} 1.341×10^{-10} 1.434×10^{-9} 10^{-10} 6 30.48 12 0.3048 .36 $1 / 3$ 0.02950 0.8826 304.8 62.43 0.4335 0.5080 0.01667 0.01829 0.3048 0.01136 30.48 1.097 0.5921 18.29 0.6818 0.01136 1 30.48 1.097 0.3048 0.6818 1.286×10^{-3} 1.356×10 5.050×10^{-7} 1.356 3.241×10^{-4} 	foot-pounds per minute. foot-pounds per second. horse-power. kg.-colories per minute. kiolwotts. feet. centimeters. inches. meters. voros. yords. otmospheres. inches of mercury. kgs. per squore meter. pounds per sq. ft. pounds per sq. inch. centimeters per sec. feet per second. kilometers per hour. meters per minute. miles per hour. centimeters per sec. kilometers per hour. knots per hour. meters per minute. miles per hour. miles per minute. per cent grode. cms. per sec. per ser. kms. per hr. per sec. maters par sec. per sec. miles per hr. per sec. British thermol units. ergs. horse-power-hours. joutes. kilogrom-colories.

Table 121.-Continued

Table 121. - Continued

Table 121. -Continued

Multiply	by	to obtain
kilogrom-metars	9.807×10^{7}	*rgs.
kilogrom-motors.	7.233	foot-pounds.
kilogrom-meters	9.807	joules.
kilogrom-maters	2.344×10^{-3}	kilogrom-colorles.
kilogrom-metors	2.724×10^{-6},	kilowott-hours.
kgs. per cubic moter	10^{-3}	groms per cubic cm.
kgs. per cubic metor.	0.06243	pounds por cuble foot
kgs. per cubic motor	3.613×10^{-5}	pounds por cubic inch.
kgs. por cubic mater	3.405×10^{-10}	pounds per mil. foot.
kgs. por metor...	0.0720	pounds per foot.
kgs. por squaro mator	9.678×10^{-3}	otmospheras.
kgs. per square metor	98.47	bors.
kgs. pme squaro moter.	3.281×10^{-3}	fael of wotar.
kgs. por squaro motor.	2.896×10^{-3}	inches of mercury.
kgs. por squaro mator.	0.2048	pounds per squore ft.
kgs. por squaro meter.	422×10^{-3}	pounds per squoro in.
kgs. por sq. millimator	10^{8}	kgs. por squore moter.
kilolinas	10^{3}	moxwolls.
lolito	10^{3}	liters.
kilomotors	10^{5}	contimotors.
kilomofors	3281	foot.
m	10^{3}	motors.
kilometors	0.6214	miles.
kilomotors	1093.6	yords.
kilomoters por hour.	27.78	contimotars per sec.
kilomotors por hour.	54.68	feot per minuto.
kilomators per hour.	0.9113	feot per second.
kilomotors por hour.	0.5396	knots per hour.
kilomotors per hour.	16.67	meters per minute.
kilomotors por hour.	0.6214	milos per hour.
kms. por hour por soc	27.78	ems. per sec. par sec.
kms. por hour por soc.	0.9113	$\mathrm{ft}^{\text {c. por sec. per sec. }}$
kms. por hour por soc.	0.2778	metors por sec. per sec.
kms. per hour por soc.	0.6214	miles per hr. per soc.
kilomotors por min.	60	kilomotors per hour.
kilowotts	56.92	8.1. units per min.
kllowots	4.425×10^{4}	foot-pounds per min.

Table 121.-Continued

Multiply	by	to abtain
kiloworts.	737.6	foot-pounds per sec.
kilowotts	1.341	horse-power.
kilowotrs.	14.34 103	kg.colories per min.
kilowotts	10^{3}	wotts.
kilowatt-hours.	3415	8ritish thermol units.
kilowott-hours	2.655×10^{6}	foot-pounds.
kilowott-hours kilowott-hours	1.341	horse-power-hours.
kilowott-hours	3.6×10^{6}	joules.
kilowott-hours	${ }^{860.5}$	kilogrom-colories.
kilowoth-hours	3.671×10^{5}	kilogrom-maters.
knots.	1.853	feat per second.
knots.	1.152	miles per hour.
Links (engineer's)	12	inches.
links (surveyor's).	7.92	inches.
liters.	10^{3}	cubic centimaters.
liters.	0.03531	cubic feet.
liters.	61.02	cubic inches.
liters.	10^{-3}	cubic meters.
liters.	1.308×10^{-3}	cubic yords.
liters	0.2642	gollons.
liters.	2.113	pints (liq.)
litars	1.057	quorts (liq.).
fiters per minute	5.885×10^{-4}	cubic feet par second.
litars per mimute	4.403×10^{-3}	gollons par socond.
$\log _{10} \mathbf{N} \ldots \ldots$.	$\begin{gathered} 2.303 \\ 0.4343 \end{gathered}$	$\log _{e} N$ or ln N.
$\log \varepsilon N$ or in N lumens per sq. ft..	$\begin{gathered} 0.4343 \\ 1 \end{gathered}$	$\log _{10} N$. foot-condles.
Meters.	100	centimeters.
meters	3.2808	feot.
meters	39.37	inches.
meters	10^{3}	kilometers.
meters	10^{3}	millimeters.
meters	1.0936	yords.
meter-kilogroms	9.807×10^{7}	centimatar-dynas.

Toble 121.-Continued

Multiply	by	to obtoin
mefer-kilogrems.	10^{5}	centimater-groms.
meter-kiiogrems.	7.233	pound-feet
mefers per minute.	1.667	centimeters per sec.
moters per minute	3.281	fest per minuta.
moters per minuto	0.05468	feet per second.
meters per minute	0.06	kilomaters per hour.
mefers per minute	0.03728	miles per hour.
meters per second	196.8	feat per minuta.
moters per second	3.281	feot par second.
meters per second.	3.6	kilomaters per hour.
mefers per second	0.06	kilometers per min.
meters per second	2.237	miles per hour.
meters per second.	0.03728	milos per minute.
maters per sec. per sec.	3.281	feat per sec. per sec.
meters per sec. per sec.	3.6	kms. par hour per sec.
meters par sec. per sec.	2.237	miles per hour per sec.
microns.	10^{-6}	meters.
miles	1.609×10^{5}	contimaters.
les	5280	fust.
miles	1.6093	kilometers.
milos	1760	yords.
miles	1900.8	voros.
miles per hour	44.70	centimeters per sec.
miles per hour	88	feet per minufe.
miles per hou	1.467	fest per second.
miles per hour	1.6093	kilometers per hour.
miles per hour	0.8684	lnots par hour.
miles per hour.	26.82	maters par minuta.
miles per hour per sec.	44.70	cms. par sac. par sac.
miles per hour per sec.	1.467	feat per sec. per sec.
miles par hour par sec	1.6093	krns. per hour per sec.
miles per hour per sec	0.4470	H. per sec. per sec.
miles per minute.	2682	contimeters per sec.
miles per minuto	88	faet per second.
miles per minuto.	1.6093	kilometers per min.
miles per minute.	0.8684	knots per minute.
miles per minute	60	miles per hour.

Table 121.-Continued

Table 121.-Continued

Table 121.-Continued

Multiply	by	to obtain
revs. per sec. per sec. rads	$\begin{gathered} 60 \\ 16.5 \end{gathered}$	revs. per min. pes sec. feat.
Seconds (angle)	4.848×10^{-6}	radions.
sphares (salid angle).	12.57	sterodions.
spherical right anglas	0.25	hemispheres.
spherical right anglas	0.125	spheres.
spherical right anglas	1.571	sterodions.
square centimeters	1.973×10^{5}	circular mils.
square centimeters	1.076×10^{-3}	square feet.
square centimeters	0.1550	square inchas.
square centimeters	10^{-6}	square meters.
square centimeters	100	square millimeters.
square feet	2.296×10^{-5}	acres.
square feet	929.0	square centimeters.
square feet	144	square inches.
square feet	0.09290	square meters.
square feat	3.587×10^{-8}	square miles.
square faet.	. 1296	square varas.
square feet.	1/9	square yards.
sq. feet-faet sqd	2.074×10^{4}	sq. inches-inches sqd.
square inches.	1.273×10^{6}	circular mils.
square inches.	6.452	square centimeters.
square inches.	6.944×10^{-3}	square feat.
square inches	10^{6}	square mils.
square inches	645.2	square millimeters.
sq. inches-inches sqd	41.62	sq. cms. -ms. sqd.
sq. inches-inches sqd	4.823×10^{-5}	sq. foet-feet sqd.
square kilometers.	$\begin{gathered} 247.1 \\ 10.76 \times 10^{6} \end{gathered}$	ocres.
square kilametars.	10.76×10^{6}	square feef.
square kilameters.		square meters.
square kilamaters.	$\begin{gathered} 0.3861 \\ 1.196 \times 10^{6} \end{gathered}$	square miles.
square kilometers		square yords.
square meters.	2.471×10^{-4}	ocres.
square meters	10.764	square feet.
square meters	3.861×10^{-7}	square miles.
square meters	1.196	square yords.
square miles.	640	acres.

Table 121.-Continued

Toble 121.-Continued

Table 122. Approximate Materials Characteristics*

- The weight ond load factor of material will vary with such factars as groin size, moisture content, ond degree af compactian. If an exact material weight must be determined, then o test must be run on that particular sample.

Table 123. Fire Extinguisher Use

Type	Closs A fire	Closs 8 fire	Closs C fire	Class D fire
CO_{2} Extinguisher	Good	Excellent	Excellent	Good
Woter Extinguisher . . . Excellent	Do not use	Do not use	Do not use	
Soda Acid Extinguisher . .	Excellent	Do not use	Do not use	Do not use
Foam Extinguisher . . . Good	Excellent	Excellent	Do not use	
Commerciol Powders and Granular Materials	Do not use	Do not use	Do not use	Good

Figure 199. Carban dioxide extinguisher.

186. MAP DISTANCE CONVERSION

See table 124.
187. CONSTRUCTION DRAWING SYMBOLS

See figure 203.

Toble 124. Mop Distance Conversion

$\begin{aligned} & \text { Map } \\ & \text { distonce } \end{aligned}$	Ground distance	Representative fraction (RF)							
							$1 / 250,000$		$1 /$
One inch	Inches	25,000	50,000	75,000	100,000	200,000	250,000	500,000	1,000,000
	Feet	2,083	4,167	6,250	8,333	16,667	20,833	41,667	83,333
	Yards	694	1,389	2,083	2,778	5,555	6,944	13,888	27,776
	Meters	635	1,270	1,905	2,540	5,080	6,350	12,700	25,400
	Miles	0.4	0.8	1.2	1.6	3.2	4	8	16
	Kilometers	. 64	1.3	1.91	2.54	5.08	6.35	127	25.4
One centimeter	Incties	9,843	19,685	29,528	39,370	78,740	98,425	196,850	393,700
	Feot	820	1,640	2,460	3,281	6,562	8,202	16,404	32,808
	Yords	273	547	820	1,094	2.187	2,734	5,468	10,936
	Meters	250	500	750	1,000	2,000	2,500	5,000	10,000
	Miles	0.16	0.3	0.5	0.6	1.2	1.5	3	6
	Kilometers	. 25	. 50	. 75	1.00	200	250	5.00	10.00

Figure 200. Pump type water extinguisher.
188. CONVERSION-ENGLISH UNITS TO METRIC UNITS See table 125.

Figure 201. Soda-acid extinguisher.
189. REQUESTING AND ADJUSTING ARTILLERY FIRE
a. For details refer to FM 6-135-Adjustment of Fire by the Combat Soldier.

Figure 202. Foam extinguisher.

Figure 203. Construction drowing symbols,

Figure 203-Continued.

Figure 203-Continued.

Figure 203-Continued.
b. Initiol fire request: (preferobly in the order listed below)

Element

(1) Identificotion of observer
(2) Warning order
(3) Locotion of target
ond the oximuth in mils from the observer to the target
(4) Noture of torget
(5) Type of
odiustment*
(6) Ammunition*
(7) Fuze oction*
(8) Control

Exomple
(1) This is Red Leg 49
(2) Fire mission
(3) Coordinotes 384562

Azimuth 4380 (to neorest 10 mils)
(4) Crew-served weapon
(5) Omit if oreo fire desired
(6) Omit this and HE will be fired
(7) Omit this, ond fuze point detonoting will be fired
(8) Will odjust

[^6]c. Adjustment of rounds:
(1) Correct the bursts loterolly to the observer-torget line by multiplying the estimoted range in thousands of meters, from the observer to the torget, times the ongle, in mils, formed by the targer, observer ond bursts. (See diogrom below.)
(2) Bracket the target in ronge olong the observer torget line ond continue to split (or holve) this brocket, olwoys keeping the torget within the bracket.
(3) After determining the appropriote corrections, combine them in the some tronsmission by sending the loteral correction followed by the ronge correction. In exomple given below the correction would be Right 100 Add 400 (both in meters).
(4) Correct successive bursts using the some procedures, until o 100 meter ronge brocket exists. Then add or drop 50 meters and fire for effect.

```
NOT TO SCALE
```

Observer measures this angle ta the neorest 10 mils

Observer estimotes the observer target distance to the neorest 100 meters

Laterol Correction

Multiply the range from the abserver to the target, in thousands of meters (2), times the ongle in mils (50) formed by the torget, observer ond bursts.

$$
\begin{gathered}
2 \times 50=\text { Right } 100 \text { meters } \\
\text { Ronge Correctian }
\end{gathered}
$$

Determine if the bursts are shart or over the target in relotianship ta the observer torget line. Then odd or drap a sufficient number af meters (recammended increments for initial bracket are 400 ar 800 meters), to insure thot the bursts are an the oppasite side of the target. This estoblishes your first brocket which con easily be split (or halved) when carrecting successive bursts.

406
Table 125. Conversion -English-Metric Systems
LENGTH

Example: 2 inches $=5.08 \mathrm{~cm}$

Table 125.—Cantinued

One unit (belaw) Equals	mm	cm	maters	km
mm (millimeters)	1.	0.1	0.001	$0.000,001$
m(centimeters)	10.	1.	0.01	$0.000,01$
mefers	$1,000$.	100.	1.	0.001
km (kilometers)	$1,000,000$.	$100,000$.	$1,000$.	1.

One unit (below) 1 Equols	gm	kg	metric ton
gm (grem)	1.	0.001	$0.000,001$
kg (kilograms) metric ton	$1,000,000$.	$1,000$.	0.001

units of centimeters

cm	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.10
Ind	0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.31	0.35	0.39

fractions of an inch

Inch	$1 / 16$	$1 / 8$	$3 / 16$	$1 / 4$	$5 / 16$	$3 / 8$	$7 / 16$	$1 / 2$
cm	0.16	0.32	0.48	0.64	0.79	0.95	1.11	1.27
Inch	$9 / 16$	$5 / 8$	$11 / 6$	$3 / 4$	$13 / 16$	$7 / 8$	$15 / 16$	1
cm	1.43	1.59	1.75	1.91	2.06	2.22	2.38	2.54

408
Table 125.-Continued WEIGHT'

ounces \ldots groms						
pounds						
kg						
short		metric				
ton $^{2} \longrightarrow$ ton						
metric						
10n ${ }^{3}$	\rightarrow ton					
		1	\dagger	\dagger	1	1
1	1.10	0.91	2.20	0.45	0.04	28.4
2	2.20	1.81	4.41	0.91	0.07	56.7
3	3.31	2.72	6.61	1.36	0.11	85.0
4	4.41	3.63	8.82	1.81	0.14	113.4
5	5.51	4.54	11.02	2.67	0.18	141.8
6	6.61	5.44	13.23	2.72	0.21	170.1
7	7.72	6.35	15.43	3.18	0.25	198.4
8	8.82	7.26	17.64	3.63	0.28	226.8
9	9.92	8.16	19.84	4.08	0.32	255.2
10	11.02	9.07	22.05	4.54	0.35	283.5
16	17.63	14.51	35.27	7.25	0.56	453.6
20	22.05	18.14	44.09	9.07	0.71	567.0
30	33.07	27.22	66.14	13.61	1.06	850.5
40	44.09	36.29	88.18	18.14	1.41	1134.0
50	55.12	45.36	110.23	22.68	1.76	1417.5
60	66.14	54.43	132.28	27.22	2.12	1701.0
70	77.16	63.50	154.32	31.75	2.47	1984.5
80	88.18	72.57	176.37	36.29	2.82	2268.0
90	99.21	81.65	198.42	40.82	3.17	2551.5
100	110.20	90.72	220.46	45.36	3.53	2835.0

Exomple: Convert 28 pounds to kg
28 pounds $=20$ pounds +8 pounds
From the tables: $\mathbf{2 0}$ pounds $=9.07 \mathrm{~kg}$ ond 8 pounds $=3.63 \mathrm{~kg}$
Therefore, 28 pounds $=9.07 \mathrm{~kg}+3.63 \mathrm{~kg}=12.70 \mathrm{~kg}$
${ }^{1}$ The weights used for the English system ore ovoirdupois (common) weights.
${ }^{2}$ The short ton is 2000 . pounds.
${ }^{3}$ The metric ton is $1000 . \mathrm{kg}$.

Table 125-Continued

VOLUME

cu. meters \longrightarrow cu. $\mathrm{ft} \longrightarrow \mathrm{Cu} . \mathrm{yd}$						
cu.						
cu. ft						
1	0.037	0.028	27.0	0.76	35.3	1.31
2	0.074	0.057	154.0	1.53	70.6	2.62
3	0.111	0.085	! 81.0	2.29	105.9	3.92
4	0.148	0.113	108.0	3.06	141.3	5.23
5	0.185	0.142	135.0	3.82	176.6	6.54
6	0.212	0.170	162.0	4.59	211.9	7.85
7	0.259	0.198	189.0	5.35	247.2	9.16
8	0.296	0.227	216.0	6.12	282.5	10.46
9	0.333	0.255	243.0	6.88	317.8	11.77
10	0.370	0.283	270.0	7.65	353.1	13.07
20	0.741	0.566	540.0	15.29	708.3	26.16
30	1.111	0.850	810.0	22.94	1059.4	39.24
40	1.481	1.133	1080.0	30.58	1412.6	52.32
50	1.852	1.416	1350.0	38.23	1765.7	65.40
60	2.222	1.700	1620.0	45.87	2118.9	78.48
70	2.592	1.982	1890.0	53.52	2472.0	91.56
80	2.962	2.265	2160.0	61.16	2825.2	104.63
90	3.333	2.548	2430.0	68.81	3178.3	117.71
100	3.703	2.832	2700.0	76.46	3531.4	130.79

Exomple: $3 \mathrm{co} . \mathrm{yd}=81.0 \mathrm{co} \mathrm{ft}$
Volume: The cubic meter is the only common dimension used for meosuring the volume of solids in the metric system.

APPENDIX I

REFERENCES

1. ARMY REGULATIONS (AR)

AR 10-5
AR 105-30
AR 105-31
AR 320-50
AR 385-63
AR 525-8

Carps of Engineers.
Jaint Use of ICAO Phanetic Alphabet.
Message Preparatian.
Autharized Abbreviatians and Brevity Codes.
Safaty Regulatians far Firing Ammunitian far Training, Target Practice, and Cambat.
Use of Metric System for Linear Measurement in United States Army Operatians.
2. DA PAMPHLETS (DA PAM)
DA PAM 30-107
Coast and Landing Beach Intelligence.
DA Pam 310-1
Military Publicatians: Index af Administrative Publicatians.
DA Pom 310-3 Military Publicatians: Index af Training Publicatians.
DA Pam 310-4 Index af TM's, TB's, SB's, LO's, and MWO's.
DA Pam 310-5 Military Publicatians: Index af Graphic Training Aids and Devices.
DA Pam 310-7 Military Publicatians: Index af TO\&E's, TO's, and TA's.
3. SPECIAL REGULATIONS (SR)

SR 385-10-20 Administration of Army Safety Pragram.
SR 420-510-1 Fire Preventian and Pratectian.
4. FIELD MANUALS (FM)

FM 3-5
FM 3-8
FM 3-10
FM 3-12
FM 5-1
FM 5-13
FM 5-15
FM 5-20
FM 5-21
FM 5-22
FM 5-23

Chemical, Biolagical, Radialagical (CBR) Operatians.
Chemical Carps Reference Mandbaak.
Chemical and Bialagical Weapans Emplayment.
Operational Aspects af Radialagical Defense.
Engineer Troap Organizatians and Operatians.
The Engineer Saldier's Handbaak.
Field Fartificatians.
Camauflage Basic Principles and Field Camouflage.
Camauflage af Fixed Installations.
Camauflage Materials.
Field Decay Installatians.

FM 5-25
(S) FM 5-26

FM 5-30
FM 5-31
FM 5-35
FM 5-36
FM 6-135
FM 10-13
FM 20-22
FM 20-32
FM 21-5
FM 21-6
FM 21-10
FM 21-26
FM 21-30
FM 21-31
FM 21-40
FM 21-41
-
FM 21-60
FM 21-76
FM 24-1
FM 24-18
FM 30-5
FM 31-10
FM 31-60
FM 31-70
FM 31-71
FM 55-15
FM 101-10

Explasives and Demalitians.
Emplayment af Atamic Demalitians Munitians (ADM) (U).
Engineer Intelligence.
Use and Installatians af Baabytraps.
Engineer Reference and Lagistical Data.
Raute Recannaissance and Classificatian.
Adjustment af Fire by the Cambat Saldier.
Quartermaster Reference.
Vehicle Recavery Operatians.
Land Mine Warfare.
Military Training.
Techniques of Military Instructian.
Military Sanitatian.
Map Reading.
Military Symbols.
Tapagraphic Symbals.
Small Units Pracedures in Chemical, Bialagical, and Radialagical (CBR) Operatians.
Saldier's Handbaak far Chemical and Bialagical Operatians and Nuclear Warfare.
Visual Signals.
Survival.
Tactical Cammunicatians Dactrine.
Field Radia Techniques.
Combat Intelligence.
Barriers and Denial Operatians.
River Crassing Operatians.
Basic Cald Weather Manual.
Narthern Operatian.
Transpartatian Reference Data.
Staff Officers' Field Manual: Organizatianal, Technical, and Lagistical Data, Part I
5. TECHNICAL MANUALS (TM)

TM 3-220
TM 5-200
TM 5-210
TM 5-216
TM 5-220

CBR Decantaminatian.
Camauflage Nets and Net Sets.
Military Flaating Bridge Equipment.
Armared Vehicle Launched Bridge.
Passage af Obstacles Other Than Minefields.

TM 5-232
TM 5-233
TM 5-258
TM 5-270
TM 5-277
TM 5-279
TM 5-280
TM 5-297
TM 5-302
TM 5-311
TM 5-312
TM 5-315
TM 5-330

TM 5-331
TM 5-332
TM 5-335
TM 5-337
TM 5-342
TM 5-349
TM 5-461
TM 5-541
TM 5-617
TM 5-618
TM 5-624
TM 5-700
TM 5-725
TM 5-742
TM 5-9541
TM 9-1375
TM 9-1910

Elements af Surveying.
Constructian Surveying.
Pile Constructian.
Cableways, Tramways, and Suspensian Bridges.
Panel Bridge, Bailey Type, M2.
Suspensian Bridges far Mauntain Warfare.
Fareign Mine Warfare Equipment.
Wells.
Constructian in the Theater af Operatians.
Militory Pratective Constructian.
Military Fixed Bridges.
Firefighting.
Planning, Site Selectian, and Design af Rcads, Aiffields, and Heliparts in the Theater of Operatians.
Management; Utilization af Engineer Constructian Equipment.
Pits and Quarries.
Drainage Structures, Subgrades, and Base Caurses.
Bituminaus, Cancrete, and Expedient Paving Operatians.
Logging and Sawmill Operation.
Aretic Constructian.
Engineer Handtoals.
Control of Sails in Military Construction.
Roofing; Repairs and Utilities.
Painting; Repairs and Utilities.
Roads, Runways, and Miscellaneaus Pavements; Repairs and Utilities.
Field Water Supply.
Rigging.
Concrete and Musanry.
AN/PRS Mine Detecting Set.
Demalition Materials.
Military Explosives.

APPENDIX II
 DIMENSIONS OF VEHICLES

Momenclofure	Closs -mpty	Width inches	Height inchos
Towed Artillary			
Howitzes, light, fowed: $105 . \mathrm{mm}$, M101 or ml01A1	4	84.5	62.
Howitzer, light, towad: $105 \cdot \mathrm{~mm}, \mathrm{M102}$.	2	76.0	62.75
Howitzer, madium, towed: $155-\mathrm{mm}$, M114 ond M114Al.	9	96.	71.
Howitzer, modium, towed: $155 \cdot \mathrm{~mm}$, ouxiliory propalled, M123AI.	9	110.	81.
Howitzer, hoovy, towed: 8 -inch, M115.	$21 *$	112.	109.

Troctors, Trucks ond Truck Troctors

Truck, ombulance: $\mathbf{1 / 4}$-ton, $4 \times 4, \mathrm{M} 43$	3	73.	92.
Truck, corgo: $1 / 4$-ton, $4 \times 4, \mathrm{~m} 37$ ond M 3781 , w/ond $w / 0$ winch.	3	73.5	7.
Truck, corgo: $21 / 2 \cdot$ ion, $6 \times 6, \mathrm{~m} 135$, w/ond	6	88.	80.
Truck, corgo: $21 / 2 \cdot$ ion, $6 \times 6, \mathrm{~m} 34, w /$ ond $w / 0$	5	88.	109.
Truck, corgo: $21 / 2$-ton, $6 \times 6, \mathrm{M} 35, \mathrm{w} /$ ond w/o	5	96.	112.
Truck, corgo: $21 / 2$-ton, 6×6, M36 ond M36C, w/ond w/o winch	6	96.	124.5
Truck, corgo: $21 / 2 \cdot 10 \mathrm{n}, 6 \times 6, \mathrm{M} 211, \mathrm{w} /$ ond $\mathrm{w} / 0$	6	96.	112.5
Truck, corgo: 5-ion, $6 \times 6, \mathrm{M} 41, \mathrm{w} /$ and $\mathrm{w} / 0 \mathrm{~m}$	9	96.	111.5
Truck, corgo: 5 -ton, $6 \times 6, \mathrm{M} 4, \mathrm{w} /$ ond $\mathrm{w} / 0$ winch	9	97.	116.
Truck, corgo: 5-ton, $6 \times 6, \mathrm{M} 5, \mathrm{w} /$ and $w / 0$	10	96.	117.5
Truck, corgo: $10 \cdot$ ton, 6×6, m $125 \mathrm{w} /$ winch	14	114.	129.5
Truck, corgo dump: $21 / 2$-fon, $6 \times 6, M 342$, w/ ond w / o winch	7	96.	01.
Truck, dump: $21 / 2 \cdot$ ton, 6×6, $\mathrm{m} 59, \mathrm{w} /$ ond $w / 0$ winch.	6		103.
Truck, dump: $21 / 2 \cdot \mathrm{ton}, 6 \times 6, \mathrm{~m} 215, \mathrm{w} /$ ond $w / 0$ wind	7	96.	108.
Truck, dump: 5 -ton, $6 \times 6, \mathrm{M} 5, \mathrm{w} /$ and $w / 0$ winds.	10	97.	11.
Truck tonk: gosoline, $\mathbf{2 1 / 2}$-ton, $6 \times 6,1,200-\mathrm{gol}, \mathrm{m} 49$ ond M49C	6	95.5	97.5
Truck, tonk: gosoline, $21 / 2$-ton, $6 \times 6,1,200-g 01$, M217 ond M217C	7	96.	102.
Ir uck, tonk: woter, $21 / 2$-ton, $6 \times 6,1,000 \cdot \mathrm{gol}$, M50, w/ ond $w / 0$ winch.	7	95	97

See footnote end of oppendix II.

DIMENSIONS OF VEHICLES-Continued

Homencloture	Closs empty	Width inches	Height inches
Troctors, Trucks ond Truck Tractars-Cantinued			
Truck, troctor: $21 / 2$-ton, $6 \times 6, \mathrm{~m}$, $w /$ and $w / 0$ winch.	6	93.5	97.5
Truck, frocter: $21 / 2$-ton, $6 \times 6, \mathrm{~m} 221, \mathrm{w} /$ ond $\mathrm{w} / 0$ winch.	5	96	102.
Truck, troctor: 5 -ton, $6 \times 6, \mathrm{M} 2$, w/ ond $\mathrm{w} / 0$ winch.	11	97.	103.5
Truck, tractor: 10 -ton, $6 \times 6, \mathrm{M} 123$ ond M123C.	18	114.	113.
Truck, troctor: $12-t$ en, $6 \times 6, \mathrm{M} 26, \mathrm{M} 26 \mathrm{Al}$, and M26A2..	28	130.5	123.
Troctor, full trocked, high speed: 18-ton, M4, M4A1, M4A1C, M4A2.	13	97.	108.
Troctor, full trocked, high speed: M8A1, and M8A2.	21	130.5	120.
Truck, wrecker: crone, $21 / 2$-ton, $6 \times 6, \mathrm{Ml08}, \mathrm{w} /$ winch.	9	96.0	99.0
Tr uck, wracker: light, $21 / 2$-ton, $6 \times 6, \mathrm{M60}$, w/ winch.	11	96.	100.
Truck, wrecker: medium, 5 -ton, $6 \times 6, \mathrm{M62,w/winch}$.	16	97.	102.5
Truck, corgo: $11 / 4$-ton, $4 \times 4, \times \mathrm{m} 676$.	2	78.	91.
Truck, ombulonce: $11 / 4$-ton, $4 \times 4, \times M 679$.	2	78.	94.1

Tanks, Self-Propelled Weapans, and Persannel Carriers

Gun, onfi-oircroft ortillery, self-propelled: twin $\mathbf{4 0}$-mm, M42 and M42Al	20	127.	112.5
Gun, ontitonk, self-propelled: 90-mm, M56	6	101.5	81.
Gun, field ortillery, self-propalled: $155-\mathrm{mm}, \mathrm{M53}$	42	141.	140.
Gun, field ortillery, self-propelled: $175-\mathrm{mm}$, H107, (T235EI)	29	124.	137.
Howitzer, heovy, self-propelled: full trocked, 8-inch, M55 (T108).	41	141.	146.
Howitzer heovy, self-propelled: 8-inch, M110 (T236E1).	27	124.	116.
Howitzer, light, self-propelled: full tracked, $105-\mathrm{mm}$, M37	18	118.	95.
Howitzer, light, self-propelled: full trocked, $105-\mathrm{mm}, \mathbf{M 5 2}$ ond M52AI.	23	124.	131.
Howitzer, light, self-propelled: $105-\mathrm{mm}, \mathrm{T} 195 \mathrm{l}$ ond M108	20 *	130.	124.5
Howitzer, medium, self-propelled: full trocked, $155-\mathrm{mm}$, M44 ond M44A1	27	128.	127.
Howitzer, medium, self-propelled: $155-\mathrm{mm}$, II9E1 ond M109	24^{*}	130.	124.5
Mortor, infontry, self-propelled: full trocked, 107 mm (formerly 4.2-inch), M84	19	128.5	109.

See footnote end of oppendix II.

DIMENSIONS OF VEHICLES-Continued

Momenclature	Class empty	Width inches	Height inches
Tanks, 5elf-Propelled Weapans, and Persannel Carriers-Cantinued			
Rifle, self-prapelled, full-tracked: multiple, 106-mm, M50	8	102.5	84.
Tank, cambat, full tracked: $76 \cdot \mathrm{~mm}$, M41, M41A1, M41A2, and M41A3.	21	126.	121.5
Tank, cambot, full tracked: $90-\mathrm{mm}$ gun, M47.	45	138.5	116.5
Tank, combat, full tracked: $90-\mathrm{mm}$ gun, M48 and M48C. .	46	148.	128.
Tonk, combat, full tracked: $90-\mathrm{mm}$ gun, M48A1..........	46	143.	123.5
Tank, combat, full tracked: $105-\mathrm{mm}$ gun, M60 and M6041	45	143	126.5
Tank, cambat, full tracked: $\mathbf{1 2 0}-\mathrm{mm}$ gun, M103 and M103A1.	57	148.	113.5
Tank, combat, full fracked: flomethrower, M67	51	143.	123.5
Tank, combat, full trackad: $90-\mathrm{mm}$ gun, M48A2 w/dazer blade	54		
Carrier, persannel, full tracked: armared, M59.	18	128.5	104.
Corrier, persannal, full tracked: armared, M75	17	112.	119.
Corrier, persannel, full tracked: armared, M113.	$9 *$	106.	79.5
Corrier, persannel, full tracked: armared Mll4A	7	91.75	91.0
Recovery vehicle, full trocked: heavy, M51.	54	143.	129.
Recovery vehicle, full trocked: medium, M74	51	122.	133.5
Recavery vehicle, full trocked: light, ormared, M578.	25	124.	130.5
AVLB Launcher w/bridge falded M-48.	60	158.	157
AVLB launcher w/bridge folder M-60.	58	158.	159

Troilers			
Oally, trailer canvertar: 18-tan, 4-wheel, m199...........	4	114.75	59.
Semitrailer, law-bed: wrecker, 12-tan, 4-wheel M270 and M270A1	8		
Semitrailer, law-had: 15-ton, 4-wheel, M172. Semitrailer, tonk: gasaline, 12-tan, 4-wheal,	6	\cdots	\cdots
M131, M131A1, ond M13142.	7		. \cdot.
Semitrailer, tank transporter: 45-tan, 8-wheel, MISAI.... Semitrailer, yan: cargo, 12-tan, 4-wheel, M128Al and	16	\cdots	\cdots
M128A1C, M129A1 Semitrailer, van: carga, 6-ton, 2-wheel, M119 and	6		\cdots
Mil9A1. .	4		

785-094 O-66-27

416			
DIMENSIONS OF VEHICLES-Continued			
Namenclafure	$\begin{aligned} & \text { Class } \\ & \text { emply } \end{aligned}$	Width inches	Height inchos
Trailers.-Cantinued			
Irailer, carga: $3 / 4-\tan , 2$ wheel, miol. Irailer, carga: 11/2-tan, 2-wheal, M104, M104A1, and M104A2	2	72. 83.	83. 99.1
Irailer, law-bed: guided missile, 7-fan, 4-wheel, XM529..	6		
Pershing			
Carrier, missile equipment, full tracked: XM474E2........	5		

APPENDIX III
 FOREIGN CONVERSION FACTORS

Denominatians	Where used	American equlvalents
Almude.	Partugal.	4.422 gals.
Ardeb	Egypt.	5.6188 bu .
Are.	Motric.	0.02471 acre.
Arr't'l ar li'ra	Partugal.	1.0119 lbs .
Arrabo.	Argentine Republic.	25.32 lbs
Arraba	Brazil.	32.38 lbs .
Arraba	Cubo.	25.36 lbs .
Arraba	Paraguay.	25.32 lbs .
Arrabo	Venazuela.	25.40 lbs .
Arraba (Ilquid).	Cuba, Spaln and Venazuala...	4.263 gols.
Arshine.	Russia.	28 in .
Arshine (sq.).	Russio.	$5.44 \mathrm{sq} . \mathrm{ft}$.
Artel.	Maracca.	1.12 lbs .
Baril.	Argentine Republic...... and Mexica.	20.077 gals. 20.0787 gals.
Barral.	Malta (custams)	11.2 gals.
Berkavers.	Russia. .	361.128 lbs .
Bangkal	Fod. Malay Statas.	832 grains.
Baum	Sumatra.	7,096.5 sq. matrs.
Bu.	Japan.	0.12 inch.
Bushal	British Empire.	1.03205 U.S. bu.
Coffiso.	Malta. .	5.40 gals .
Condy.	India (Bambay)	569 lbs .
Candy.	India (Madras).	500 lbs.
Contar	Egypt...	99.05 lbs .
Contar.	Maracta.	112 lbs
Cantar	Turkey.	124.45 lbs .
Cantara.	Malta.	175 lbs .
Cost, Matric.	Metric.	3.086 graims.
Catiy ..	China.	$1.3331 / 5 \mathrm{lbs}$.
Catty.	Jopen.	1.32 lbs .
Catty	Java, Malacca.	1.36 lbs .
Cotty.	Thailand. . . .	23/3 lbs.
Catty (stond).	Thailand.	1.32 lbs .
Catiy...	Sumatra.	2.12 lbs .
Centara.	Contral Americo	4.2631 gals.
Centner.	Brunswick.	117.5 lbs .
Contner	Bremen	127.5 lbs .

FOREIGN CONVERSION FACTORS—Continued

Oenominotians	Where used	American equivalents
Centner	Oenmark, Narway..	110.23 lbs.
Centner	Prussia.	113.44 lbs .
Centiner.	Sweden.	93.7 lbs.
Ceniner	Oauble ar metric	220.46 lbs.
Chetvert	Russia.	5.957 bu.
Ch'ih	Chino.	12.60 inches.
Ch'ih (metric).......	Chino.	1 meter.
Cho.	Japan.	2.451 ecres.
Camb	Englond.	4.1282 bu.
Cayan	Thailand.	2,645.5 lbs.
Cuadro..............	Argentine Republic.	4.2 acres.
Cuadra..............	Poraguay	94.70 yds.
Cuadra (sq.).	Paraguay	1.85 acres.
Cuadra.	Uruguay.	1.82 acres.
Cubic meter...	Metric.	$35.3 \mathrm{cu} . \mathrm{ft}$.
Cwt. (hund. weight)..	British	112 lbs .
0essiatine...........	Russia	2.6997 acres.
Fanega (dry).........	Ecuadar, Salvadar.	1.5745 bu.
Fanega	Chile.	2.75268 bu.
Fanego	Guotemolo, Spain.	1.53 bu .
Fonego	Mexico.	2.57716 bu.
Fanega (dauble).....	Uruguay	7.776 bu.
Fanego (single).....	Uruguay	3.888 bu.
Fonega.	Venezuela	3.334 bv .
Fonego (liquid).....	Spain.	16 gols.
Feddan.	Egypt.	1.04 acres.
Frall (rais's).........	Spain.	50 lbs .
Frasca.	Argentine Republic.	2.5098 liq. qts.
Frasco	Mexico	2.5 liq. qts.
Frasilo	Zanzibar.	3 S lbs.
Fuder	Luxemburg.	264.18 gals.
Funt	Russio.	0.9028 lb .
Gollan.	Gritish Empire.	1.20094 U.S. gol.
Garnice.	Poland	1.0567 gal .
Gram............... .	Metric.	15.432 grains.
Hectare.	Metric.	2.471 oces.
Hectalitre: Ory......	Metric.	2.838 bv .
Hectalitre: Liquid....	Metric	26.418 gals.

FOREIGN CONVERSION FACTORS - Continued

Denaminations	Where used	American equivalents
Jorib.	Persio (Now).	2.471 acces.
Joch.	Austrio (Germony).	1.422 acres.
Joch	Hungary.	1.067 actes.
Kon.	Japan.	5.97 feot.
Kilagram kila.	Metric.	2.2046 ibs.
Kilametre.	Metric.	0.62137 mile.
Klafter.	Austria (Germany).	2.074 ds.
Kaku.	Japon.	5.119 bv .
Kwamme	Japon.	8.2673 lbs .
Last.	8elgium, Netheriands.	85.134 bu .
Last	Engiand.	82.56 bu.
Last.	Germany .	2 metric tons. (4.409 + Ibs.).
Last.	Prussio.	112.29 bu .
Last.	Scatlond, Ireland.	82.564 bu.
League (land).	Paraguay	4.633 acres.
	Ching...	1,890 ft.
Libro (lb.).	Argantine Republic.	1.0128 lbs .
Libra.	Central America.	1.014 lbs .
Libro.	Chilo.	1.014 lbs .
Libra.	Cubo.	1.0143 lbs .
Libra	Mexico.	1.01467 lbs .
Libra	Peru.	1.0143 lbs .
Libro.	Uruguay.	1.0143 ibs.
Libra.	Venazuela.	1.0143 ibs.
Litre.	Metric.	1.0567 liq. qts.
Litre	Metric.	0.90810 dry qts.
Livre (lb.).	Greece.	1.1 lbs.
Livre..	Guiona (Dutch).	1.089 lbs .
Laod, timber.	England.	$50 \mathrm{~cm} . \mathrm{ft}$.
Lumber (std.).	in Eurape.	$165 \mathrm{cu} . \mathrm{ft}$., or $1,980 \mathrm{ft} . \mathrm{b} . \mathrm{m}$.
Manzana.	Nicaragua.	1.742 actes.
Manzana.	Costa Rica, Solvadar.	1.727 actes.
Marc.	Balivia.	0.507 lb .
Maund	india.	82 2-7 lbs.
Metre.	Metric.	39.37 inches.
Mil.	Denmark.	4.68 miles.
Mii (geagraphic).	Denmark.	4.61 miles.
Milla..	Ni coraguo..........	1.1594 miles.

FOREIGN CONVERSION FACTORS - Continued

Denominatians	Where used	American equivalents
Milla.	Handuras	1.1493 miles.
Mina (ald).	Graece.	2.202 lbs.
Margen....	Prussia.	0.63 acte.
Oke.	Egypt.	2.8052 lbs .
Oke (Ocque)	Graece.	2.82 lbs .
Oke.	Turkey	2.828 lbs.
Pic.	Egypt.	22.83 inches.
Picul.	8arnea and Celebes.	135.64 lbs.
Picul.	China	$1331 / 3 \mathrm{lbs}$.
Picul.	Java.	136.16 lbs.
Picul.	Philippine Republic	139.44 lbs .
Pia.	Argentine Republic.	0.94708 fati.
Pio.	Spain.	0.91416 fat.
Pik.	Turkey	27.9 inches.
Paod.	Russia. .	36.113 lbs .
Pund (lb).	Denmark	1.102 lbs .
Quart.	British Empire	1.20094 liq. qt .
Quart	British Empiro.	1.03205 dry qt.
Quarter.	Great Britain.	8.256 bu .
Quintal	Argentine Republic.	101.28 lbs.
Quintal.	Brazil	120.54 lbs.
Quintal.	Castile, Peru.	101.43 lbs.
Quintal.	Chile...	101.41 lbs.
Quintal.	Mexica.	101.47 lbs.
Quintal.	Merric.	220.46 lbs.
Rattle	Israel	6.35 lbs.
Sack (flaur)	England.	280 lbs.
Sagene...	Russia. .	7 feet.
5alm..	Malta.	8.2 bu .
So	Japan.	0.02451 acre.
Seer	India.	2 2-35 lbs.
Shaku.	Japan...	11.9303 inches.
Sha.	Japan.. ..	1.91 liq. quarts.
Skalpund	Swaden . .	0.937 lbs.
Stane....	8rifish.	14. Ibs.
Sun.	Japan	1.193 inches.
Tael Kuping	China.	575.64 grs. (tray).
Tan.......	sapon.	0.25 acre.

Deneminations	Where used	American equivalents
Tthetvert	Russia.	S. 96 bu .
Ta.	Japen.	2.05 pecks.
Ton.	Space maasure.	$40 \mathrm{~m} . \mathrm{ft}$.
Tande cereals.	Donmark.	3.9480 bu .
Tande Land.	Denmark.	1.36 ares.
Tanne.	France.	2204.62 lbs .
Tsuba.	tapen.	$35.58 \mathrm{sq} . \mathrm{ft}$.
Tsun.	China.	1.26 inches.
Tunna (wheat).	Sweden.	4.5 bu.
Tunnlond. . . .	Swoden.	1.22 acres.
Vara..	Argentine Republic.	34.0944 inches.
Vara.	Casta Rica, Salvada.	32.913 inchos.
Vara.	Guatemala	32.909 inchas.
Vara.	Handuras.	32.953 inches.
Vara.	Nicaragua.	33.057 inches.
Vara.	Chile and Peru	32.913 inches.
Vara	Cubo..	33.386 inches.
Vara.	Mexica.	32.992 inches.
Vedra	Russia.	2.707 gols.
Verst.	Russia.	0.663 mlle.
Viako.	Poland.	41.50 aces.
Wey.	Scatland and Ireland.	41.282 bu .

INDEX

Paragraphs Page
Abatis 10 e 13
Abatis raadblack 46 108
Abutment demolitian 14 24
Adjusting artillery 189 398
Advanced demolition techniques 18 32
Airfields:
Arctic construction 122 244
Design 123 244
Hasty construction 120 240
Helicopters 124 244
Nomenclature 121 243
Stondards 119 240
Aluminum flaating faotbridge 128
Ancharage systems 61 128
Angles 174 350
Antennos 164 325
Antipersannel mines 250(2) 44
Antitonk ditch croter 13 e 24
Antitank mines 25o(1) 44
Applicotian of equipment 146 304
ARCE:
French 67 139
Roft 75 147
Arctic construction 118 232
Artillery fire 189 398
Assault baats 79 152
Attachments for rigging 133 284
AVLB 92 196
AVLB raft 77 149
Bailey bridge 83 175
Bailey bridge classification 85 175
Bailey bridge canstruction 84 175
Barbed wire. (See Wire obstacles)
Barbed wire ties 48 116
Batching of cancrete 103 213
Belt of log posts 46Benching20b34
Paragraphs Page
Bending mament 169a 337
Bent capacifies 81 c 163
Bent design, piles 82d 171
Bituminaus material identification 117 231
Blasting baulders 21 35
Blasting trees and stumps 23 43
Black and tackle 130 277
Baard feet 170 339
Baats, engineer 79 152
Barehales $19 b$ 33
Braces far cancrete farms $95 \mathrm{c}(4)$ 201
Breaching charges 12 15
Breading farmula $12 b$ 15
Breading minefields 39 83
Breaching pavements $12 f$ 18
Bridges:
Aluminum faatbridge 62 128
ARCE - French 67 139
AVLB 92 196
Bailey B3 175
Class 60 fixed spans 78 152
Class 60 flaating 135
Deck balk fixed spans 152 78
Faur rape 196
High pine 142 296
Light suspensian B8 194
Light tactical 63 131
Lag bridges 93 197
Marking 5B 123
Masanary arch B6 186
MFAB/F-U.S. 68 139
M4 flaating 64 131
M4T6 flaating 66 135
Reinfarced cancrete B7 1BB
Sigers 58b 123
Three rape B9 194
Timber trestle 80-B2 154
Traffic cantral 58c 125
Truss bridge 91 196
Bridge recannaissance $125 c$ 259
Bunkers 45 101
Bunker design 45c 103
Coble 129 276
Comoufloge 27,179 45,355
Comoufloge nets. 179 355
Comouflage point 171 339
Copocities of posts ond piles 81 c 163
Copocity, productive of equipment' 150 308
Coution crossing 58c(5) 125
CBR:
Decontominotion 156 319
Nucleor Preporting 157 319
Protection 154 319
Rodiological decontominotion 158 319
Reporting 155 319
Centerline stoker 110 220
Choins 129 276
Chorocteristics of explosives 5 2
Chorges:
Breoching 12 15
Crotering 13 21
Pressure 11 14
Shoped 12 g 18
Steel cutting 9 9
Timber cutting 10 11
Circle 174 350
Closs 60 flooting bridge 65 135
Closs 60 roft 73 145
Clossificotion signs 58b, 59b 123, 126
Cleoring fields of fire 42 88
Cleoring minefields 40 85
Clips ond clomps for rigging 133 284
Code: 163 324
Emergency 163 324
Morse 160 320
Ponnel 162 320
Column form 96 e 204
Compoction equipment 148 304
Communicotions:
Alphobet 161 320
Antennos. 164 325
Emergency code 163 324
Morse code 160 320
Ponnel code 103 320
Cammunicatians-Cantinued Paragraphs Poge
Radia lacatian 165 328
Cancrete:
Batching 193 213
Braces 95c(4) 201
Bridge classificatian 87 188
Calumn farm 96 e 204
Curing 105c 213
Design 100 209
Estimating valumes of materials 98b
Estimation101207
Excavatian 94 200210
Farm design 96 203
Farming 95 200
Mix 97d 207
Mix design 102 211
Mixer cleaning 106 214
Mixing 104 213
Mixing by hand 99 207
Obstacles, destructian 15 26
Placing 105 213
Pressure $96 b$ 203
Rate af placing 960 203
Sand and aggregate $97 b$ 205
Sheathing 95(1) 201
Shae plate 95c(5) 201
Slump 100b 209
Strength $97 c$ 207
Studs95(2)
Stud spocing 96 c 203201
Tie wires 95c(7) 202
Wale spacing 96d 204
Walers 95c(3) 201
Water-cement ratia 100a 209
Yakes 95(8) 202
17a Cancrete wall destruction 26
Canstruction:
Arctic airfields 122 244
Hasty airfields 120 240
Raads in Arctic 118 232
Conversian:
English-Metric 188397
Foctors 182 364
Time-distonce 180 358
Convoys 178 355
Counter-force chorge 18 32
Crotering chorges 13 21
Crones 149 307
Cross-sections of roods 109 218
Crossings:
Coution 58c(5)125
Normol 58c(4) 125
Risk 58(5) 125
Cube 174 353
Culverts $116 b$ 224
Curing of concrete 105c 213
Cylinder 174 353
Deodmen 132 280
Decontominotion 156 319
Decontominotion, rodiological 158 319
Deliberote rood croter 13b 21
Demolitions. (See Explosives.)
Demolition sofety 5 2
Derrick 140 293
Design Aiffields 123 244
Design of concrete mix 100 209
Design of concrete mix by triol method 102 211
Design requirements of roods 107 215
Designotion of units 126 271
Destruction. (See Explosives).
Diomond chorge 18 32
Dimensions of lumber 169 337
Disinfection of woter 167 332
Ditching:
Alinement ond grade 22c 38
Conditions 220 38
Detonotion methods 22d 40
Looding methods 22e 40
Test shots 22b 38
Double opron fence 49,50, 51 116, 118
Droinoge 116 224
Driftpine 171 339
Eorth lifting 149 307
Paragrophs Page
Elasticity 169
Electrical wiring 168 333337
Emplacements, types 43
Enemy minefields 36, 37
Enemy minefields. (See minefields)
Engineer stream crassing equipment. 79
90
English-Metric canversion 184
Equipment:
Application 146 304
Capacity 150
Campactian 148
Earth lifting 149
Graders 147
Productivity copacity 150
Praductian far scrapers 145
Rallers 148
Scrapers 144 298
81,82
152364
308304
307304
308300
304
Sheeps faat 148a 304
Tractars 143 298
Estimating cancrete 101 210
Estimating manpawer 166 332
Excavatian far cancrete 94 200
Excavatian, rads 20 34
Expedient paint 171 339
Expedient shaped charge 32
Explasives:
Abatis 10 e 13
Abutment demalition 14 24
Advanced demalitian techniques 18 32
8lasting baulders 21 35
8lasting trees and, stumps 23 43
8reading charges: 12 15
Farmula $12 b$ 15
Number of charges 12 d 16
Pavements 12 f 18
Shaped charges 12 g 18
15 Concrete abstacles 26
Caunter-force charge 18 32
Cratering charges 13 21
Deliberate raad crater 13 b 21
Hasty raod crater 13 c 21
Relieved face crater $13 d$ 23
Antitank ditch 13 e 24
Diamand chorge 18 32
Ditching 22 38
Expedient shaped charge 32
Firing systems 6 2
Firing systems, ditching 22d 40
Minimum charges. 18 32
Platter charge 18 32
Pressure charges 11 14
Tamped 116 14
Untamped $11 c$ 14
Cantinuous spans $11 e$ 14
Quarrying 19 32
Railraad rail cutting 9 c 9
Relative effectiveness 7 6
Ribban charge 32 18
Rack excavation 34
Raund af rule 6
Soddle charge 32
Safety 2
Steel and lag abstacles 26
Steel cutting 9
Timber cutting charges 10 11
Wall destructian 17 26
185
Extinguishers 369
44 b
Facing revetment 99
Factors, canversian 182 364
Factar "C' (tamping) 12 b 15
Factar "K'" (tamping). 12b 15
Fasteners 171 339
Ferry recannoissance 125 g 268
Fields of fire 42 88
Fire 185 369
Fire, artillery 189 398
Firing systems, explasives 6 2
Fixed spans 78 152
Faur strond cattle fence 55 120
Fard recannaissance $125 f$ 265
Farm calumn 96 e 204
Paragraphs Page
Form design 96203
Forming for concrete 95 200
Forms 95 200
Fartifications, priority of tastes 41 88
Foxholes 43 90
Functions of numbers 176 355
Garbage pits 153b 314
Geometric figure 174 350
Gin pole 134 287
Gin pole construction 139 293
Grade stakes 114 223
Graders 147 304
Gravity, specific 181 358
Grease trap 153c 315
Guyline 141 296
Hasty road crater $13 c$ 21
Helicopters 124 244
Highline 142 296
Highway bridge classification 81 157
Highway bridge design 82 168
Holdfast 131 278
Hooks 129 276
Knife rest 57b 121
Knots 128 276
Latrines 153a 314
Light tactical bridge 63 131
Light tactical raft 71 144
Log bridges 93Log post abstacles46
197Low wire fence54108
Lumber, dimensions 169 337120
M4 floating bridge 64 131
M4 raft 72 144
M476 flaating bridge 66 135
M4T6 raft 74 145
Marking of bridges 58 123
Marking of vehicles 59
Manpower estimates 166126332
Materials, strength 169 337
Material starage valume estimatian 98b 207
Mathematics 175 353
Mechanical advantage af blacks 130 277
Metric canversian 188397
MFAB/Ferry, U.S. 68,76 139, 147
Mine detectian3882
Mine symbals 35 80
Mines:
Antitank 25a(1) 44
Antipérsannel 25a(2) 44
Training 25b 44
Types 25 44
Minefields:
Breaching 39Camauflage2745
40
Clearing 85
29c Cluster numbering 45
24a Data 44
38
Detectian methads 82
32b Gaps 64
Installation 30 56
Lanes 32a 64
Layaut 29 45
Lagistical data 33 77
Marking 31 59
Mine symbals 35 80
Paitern 29a 45
Pratectian of personnel 26 45
Recannaissance 36 81
Recards, friendly 34b 80
Recards, enemy fields 37b 82
Reparts, enemy fields 37a 82
Reparts, friendly 34a 77
Siting $24 b$ 44
Trapwires 29d 56
Types 24a 44
Minimum explasive charges 18 32
Mixer cleaning 106 214
Mixing cancrete by hand 99 207
Mixing af cancrete 104 213
Poragraphs Page$86 \quad 186$
Masonry arch classification
169 337
Madular af elasticity
$169 b$ 337
Modulus, sectian.
169a 337
Mament, bending$81 a, b$157, 161Mament checkMament design82a, b 168, 169
Marse Cade 160 320
Mavement, traaps 178 355
Nails 171 339
Nets, camauflage 179 355
Nomenclature af airfields 121 243
Narmal crassing 58c(4) 125
Nuclear attack reporting 157 319
Numbers, functions 176 355
Obstacles, impravised 46 108
Offset stakes 113 223
Paint 171 339
Paint, camauflage 171 339
Paint, expedient. 171 339
Panji jungle trap 46 108
Pannel cade 162 320
Phanetic alphabet 161 320
Picks 131 278
Pile bent design 82d 171
Pile capacities 81c 82d 163, 171
Pile design charts 82d 171
Pins, drift 171 339
Placing cancrete 105 213
Platter charge 18 32
Palygans 174 350
Partland cement concrete 94-106 200
Past capacities 81 e 163
Pressure charges 11 14
Prism 174 350
Praductian capacity af equipment 150 308
Pratectian CBR 154 319
Pratectian af persannel 26 45
Protective wire $47 b$ 114
Purifying water 167 332
Quorrying:
Amount of explosives 19c 34
Methods 19a 32
Snokehales 19b(2) 33
Spocing boreholes 19b 33
Vertical hales 19b(1) 33
Rodio antennas 164 325
Radio locotion 165 328
Rofts:
ARCE-Franch 75 147
ALVB raft 77 149
Class 60 raft 73 145
Expedient, aluminum footbridge 70 141
Light tactical raft 71 144
M4 raft 72 144
M4T6 Raft 74
MFAB/Ferry-U.S. 76 147145
Pawer ond personnel 69 141
Roilroad rail eutting 9 c 9
Rote of placing cancrete 960 203
Reconnaissonce:
Clossificatian formulo 1250(6) 252
Bridge 125c 259
Ferry. 125 g 268
Fard 125 f 265
Report 125d 265
Route 1250 249
Symbols 126 271
Tunnel 125e 265
Types 125 249
Woter 125h 268
Woter supply $125 i$ 271
Recards, minefield 34b 80
Recavery of vehicles 184 364
Reinforced cancrete bridge 87 188
Relotive effectiveness factor7
Relieved face croter 13d 236
Reports, minefield
Reports, minefield 340 340 77 77Report, reconnoissance125d
Reporting CBR 155265
Reporting nuclear ottock
Reporting nuclear ottock 157 157 319319
Page
Requirements, for woter 332
167Porogrophs
Revetments 91 44
Revetment, expedient 96
440(3)
Ribbon charge 32
Rigging:
Attachments 133 284
Boom derrick 140 293
Chains 129 276
Clips and clomps 133 284
Deadmen 132 280
Gin pole 134 287
Gin pole canstruction 139 293
Guy line 141 296
High line 142 296
Hooks 129 276
Knots 128 276
Mechonical advantage 130
Pickets131277278
Ropes 129 276
Shears 138 290
135 Slings 287
136
Sling formulo 288
137 Sling lood chort 290
58d(5)
Risk crossing 125
125b Rood reconnaissonce 253
Roads:
Arctic construction 118 232
Bituminous moteriol identification 117 231
Centerline staker 110 220
Cross sections 109 218
Culverts $116 b$ 224
Design requirements 107 215
Droinoge . 116 224
Grade stoker 114 223
Hosty construction $147 c$ 304
Offset stoker 113 223
Shoulder stoker 111 222
Slope staker 112 222
Sails 115 224
Staker. 110 220
Types. 108 215
Rock excovotion 20 34
Rollers 148 304
Roofing 173 349
Ropes 129 276
Round off rules - explosives 8 6
Route recannoissance types 125 249
Rules of thumb 82c 170
Rules of thumb: Brocing 82d(3) 170
Cops 82d(2) 170
Curbs 82d7) 170
Flooring 82d(5) 170
Foatings 82(4) 170
Mondroil 82d7) 170
Posts82d 1)170
Sills82d2)170
Treod82d 6)170
Soddle chorge 18 32
Safety-explosives 5 2
Sondbags44이1)95
Sanitation:
Garboge pits 153b 314
Greose trap 153c 315
Lotrines 1530 314
Showers 1526 313
Soakage pits 153c 315
Washing focilities 152 313
Scoop loader 149 307
Scrapers 144 298
Scroper production 145 300
Screws 171 339
Section modulus 169b 337
Shoped chorges 12 g 18
Shorpened stokes 46 108
Shear 169 337
Shears 138 298
Sheor check $810, b \quad 157$, 161
Shear design
820, b 168, 169
Sheathing for concrete forms 95d 1) 201
Sheepsfaot 148a 304
Shoe plote 95(5) 201
Shoulder stokes 111 222
Parogrophs Poge
Signs, bridge58b
Signs, vehicle 59b 126123
Sling farmulo 136 288
Sling liaad chort 137 290
Slope stakes 112 222
Slings far rigging 135
100b Slump. 209
Snakeholes 19b(2) 33
Saakage pits 153c 315
Sad reverment 440(2) 96
Sail bearing copocities 82(4) 170
Sails testing 115 224
Sails, weight 183 364
Specific grovity 181 358
Sphere. 174 350
Spiker 171 339
Staker for raads 110 220
Standards far Army airfields 119 240
Steel cutting charges 9 9
Steel ond log abstocle destruction 16 26
Strength of materiols. 169 337
Studs far concrete farms 95(2) 201
Stud spocing 96Supplementory wire47e114
88
Suspension bridge design 194
126
Symbals for recannoissance 271
47。 Toctical wire 47。 114
Tanglefaat 57d 121
Tonk recavery 184 364
Tie wires for cancrete farms 95(7) 202
Timber 170 339
Timber cutting-explasives. 10 11
Timber, properties of 170 339
Timber trestle classificotian 81 157
Timber trestle design 82
168
Time distance conversion 180 358
Tractors 143 298
Traffic cantral, bridges. 58c 125
Trapezaid 174 350
Training mines 25b 44
Trestle opron fence 57e 121
Trestle bent capacities 816 163
Triangles 174 350
Triganometric functions. 174 350
Tripwires 29d, 57c 56, 125
Triple standord cancertina 52, 53 118
Troop Movements. 178355
Truss bridge clossification 91 196
Truck recovery 184 364
Tunnel reconnoissonce 125e 265
Types af roods. 108 215
Unit designations 126 271
Vehicle recavery 184 364
Verticol holes. 19b(1) 33
Wale spacing 96d 204
Walls-bock filled, destructian 17b 30
Woshing facilities 152 313
Woter-cement ratio 100a 209
Water for concrete 95c(3) 201
Woter disinfection 167 332
Woter flaw thraugh pipes 167 332
Water purification 167 332Water Reconnaissonce125h
Water requirements 167 332268Woter supply$125 i$Weopons177
Weights 181
358271355
Weights af soils 183 364
Cambinatian bonds 56 120
Wire obstacles:
49, 50, 51
Dauble apran fence.
47
Estimating wire requirements
55
Four strand cattle fence. 120
53b
Joining cancertinos 119
57b Knife rest 121
54
Low wire fence 120
47b Protective wire 114
47 c Supplementary wire 114
47d Supply ond lobar 114
47a Tactical wire 114
57d Tonglefoot 121
Wire Obstacles-Continued Porographs Page
Trestle opron fence 57e121
Triple standord concertina 52, 53 118
Wire-tias 48116
Wire-rope roadblock 46 108
Wire ties 48116
Wiring, olectricol 168 333
Yokes for concrete forms 9548) 202

By Order of the Secretory of the Army:

Official:

```
J. C. LAMBERT,
Mojor General, United States Army,
The Adjutont General.
```

Distribution:
Active Army:
DCSPER (2)
ACSI (2)
DCSLOG (2)
DCSOPS (2)
CORC (2)
CRD (1)
COA (1)
CINFO (1)
TIG (1)
TJAG (1)
CNGB (2)
CofEngrs (2)
USACDC Agcy (5) except USACDCEA (15)
ARADCOM (2)
ARADCOM Rgn (1)
USCONARC (5)
USACDC (2)
OS Maj Comd (5)
LOGCOMD (5)
MDW (1)

HAROLD K. JOHNSON, General, United States Army, Chief of Staff.

Armies (5)
Corps (3)
Div (2)
Div Arty (1)
Engr Bde (10)
Engr Gp (10)
Inf BG (10)
Engr Bn (10)
Engr Ca (35)
Engr Det/Teom (5)
USATC (2)
Svc Colleges (5)
USMA (1)
Br Svc Sch (5) except
USAOC\&S (40)
USAAGS (10)
USAAVNS (15)
USASCS (65)
USASWS (10) USACMLCS (15) USATSCH (20)

Distribution-Continued

USAECFB (2)
PMS Sr Div Units (5)
AMS (2)
Engr Dist (5)

USAERDL (6)
Army Hosp (1)
USA TmI Comd (5)
Army Tml (5)

NG: Stote AG (3); Units - some as Active Army except ollowonce is one copy to each unit.
USAR: Units-same as Active Army except allowonce is one copy to eoch unit.
For explonotion of abbreviotions used, see AR 320-50. us government printing office i956 of-785-094
-

†LSSLOOOOE

[^0]: "May be portiol issue of M4I6 bridge sats. 5ee table 36.

[^1]: - Limited by roadway widths.

 NOTES.

 1. Figures in porentheses represent wheeled vehicle closs and other figures represent trocked vehicle closs.
 2. These capocities are for mast critical position af obutments.
 3. For symmetrical erection of type B, with respect to obutments, the stated copocities moy be increosed 10 tons.
 4. Number of narmol deck panels utilized depends on spon length desired.
[^2]: *Nomolly, o crane is not used for single- ar double-story ossembly.

[^3]: - Limited by roadway width.

[^4]: *A sofety foctor of 15 percent should be ollowed when selecting the woter content required. If 2,800 -psi concrete of 28 doys is required, o woter content corresponding to o strength of $\mathbf{3 , 2 0 0}$ psi should be selected.

[^5]:
 from o dead stap, ond disregarding moisture content.
 ${ }^{2}$ Data nat contained in TM 55 -Series- 10.
 ${ }^{3}$ Pieparad surface requirad.
 ${ }^{5} 48$ ' roto:
 ${ }^{\circ}$ Assumes deupoint of $32^{\circ} \mathrm{F}$.
 ${ }^{7}$ Using L-7 engiries.

[^6]: *Narmally used only by artillery observers.

