

HEADQUARTERS
No.
DEPARTMENT OF THE ARMY Washington, D.C., 24 May 71

ENGINEER FIELD DATA

FM 5-34. 12 December 1969, is changed as follows:
Page 374, Paragraph 12-6a is superseded as follows:

12-6. ATTACHMENTS

a. Clips. Clips are used in making eyes in wire rope. The correct method of attaching clips is shown in figure 12-8. The base of each clip should bear against the live, or long rope, end; and the U-bolt should bear against the dead, or short, end. The number and spacing of clips and the proper torque to be applied are shown in table' 12-6.1.

By Order of the Secretary of the Army:

Official:
VERNE L. BOWERS, Major General, United States Army, The Adjutant General.
W. C. General, Spited States Army, Chief of Staff.

THE ARMY LIBRARY
WASHINGTON, D. C.

Distribution:
To be distributed in accordance with DA Form 12-11 requirements for Engineer Field Data.

CHANGE
 NO. 1

HEADQUARTERS
DEPARTMENT OF THE ARMY WASHINGTON, D.C., 16 December 1970

ENGINEER FIELD DATA

FM 5-34, 12 December 1969, is chonged os follows:
Page 374. Porogroph 12-60 is superseded os follows:

12-6. ATTACHMENTS

a. Clips. Clips ore used in moking eyes in wire rope. The correct methad af oftoching clips is shown in figure 12-8. The base of eoch clip should beor ogoinst the deod, ar shart, end. The number ond spocing af clips and the proper torque to be opplied ore shawn in table 12-6. 1

Page 374．1．Table 12－6．1 is odded as fallows：
Toble 12－6．1．Number，Size，Spocing，and Torque of Clips Necessory ta Assemble Wire Rape Eye－Laap Connections with a Praboble Efficiency of Not Greoter Than 80 Percent．

Wire rope diameter		Nominol size of clips （inch）	Number of clips	$\begin{aligned} & \text { Spacing } \\ & \text { of } \\ & \text { clips } \end{aligned}$		Torque to be opplied to nuts of clips$(\mathrm{ft}-\mathrm{lb})(\mathrm{m}-\mathrm{kg} \times 0 \quad 1382)$	
${ }^{\frac{5}{16}}$	（7．95）	者	3	2	（50）	25	（3．5）
暑	（9．52）	音	3	21 ${ }^{\frac{1}{4}}$	（57）	25	（3．5）
$\frac{7}{16}$	（11．11）	$\frac{1}{2}$	4	$2 \frac{3}{4}$	（70）	40	（5．5）
$\frac{1}{2}$	（12．70）	$\frac{1}{2}$	4	3	（76）	40	（5．5）
8	（15．85）	5	4	$3 \frac{3}{4}$	（95）	65	（9．0）
$\frac{3}{4}$	（19．05）	$\frac{3}{4}$	4	$4 \frac{1}{2}$	（114）	100	（14）
$\frac{7}{8}$	（22．22）	1	5	$5 \frac{1}{4}$	（133）	165	（23）
1	（25．40）	1	5	6	（152）	165	（23）
$1 \frac{1}{4}$	（31．75）	$1 \frac{1}{4}$	5	71	（190）	250	（35）
$1{ }^{\text {\％}}$	（34．92）	$1 \frac{1}{2}$	6	$8 \frac{1}{4}$	（210）	375	（52）
$1 \frac{1}{2}$	（38．10）	1／$\frac{1}{2}$	6	9	（230）	375	（52）
$1 \frac{3}{4}$	（44．45）	$1 \frac{3}{4}$	6	$10 \frac{1}{2}$	（267）	560	（78）

Nate：The spacing af clips shauld be six times the diometer af the wire rope．To assemble end－to－end connection the number of clips indi－ cated above should be increased by two，and the praper tarque indi－ coted obove shauld be used on oll clips；U－balts ore reversed of the center of cannection so that the U－balts are an the dead（reduced lood） end af each wire rape．

By Order of the Secretary of the Army:

Official.
W. C. WESTMORELAND, General, United States Army, Chief of Staff.
KENNETH G. WICKHAM, Majar General, United States Army, The Adjutant General.

Distribution:

Ta be distributed in accardance with DA Farm 12-11 requirements far Engineer Field Data.
-
?
FIELD MANUAL NO. 5-34
HEADQUARTERS
DEPARTMENT OF THE ARMYWASHINGTON, D.C., 12 December 1969
ENGINEER FIELD DATA
CHAPIER 1. INTRODUCTION
Paragraph Page
Section I. Purpose and Scape 1-1. 1-2 1
II. References $1-3,1-4$ 1
CHAPTER 2. EXPLOSIVES AND DEMOLITIONS
Section I. Introduction 2-1-2-3 2
II. Calculation of charges 2-4-2-9 8
III. Destruction of Obstacles 2-10-2-12 33
IV. Construction Projects 2-13-2-16 38
CHAPTER 3. LANDMINE WARFARE
Section I. Introduction 3-1-3-3 49
II. Minefield Installation 3-4-3-6 54
III. Reporting and Recording 3-7, 3-8 80
IV. Mine Removal 3-9-3-15 83
CHAPTER 4. FIELD FORTIFICATIONS
Section I. General Dora. 4-1, 4-2 96
II. Types. 4-3-4-7 98
III. Obstacles 4-8-4-23 123
CHAPTER 5. MARKING OF \&RIDGES AND VEHICLES
Section I. Bridge and Vehicle Clossificotion
System 5-1-5-3145
II. Vehicle Classification. 5-4, 5-5 148
III. Bridge Classificotian and Marking 5-6-5-8 151
IV. Traffic Controls 5-9, 5-10 160
CHAPTER 6. FLOATING EQUIPAGE
Section I. Anchorage Systems
II. Light River Crossing Equipment.......... 6-3-6-5 163 176

[^0]Paragraph Page
Section III. Heavy Floating 8 ridge Equipment. 6-6-6-9 185
IV. Amphibious River Crossing Equip- ment. 6-10,6-11 198
CHAPTER 7. FIXED 8RIDGES
Section I. Highway 8ridge Classification 7-1-7-4 204
II. Highwoy 8ridge Design 7-5, 7-6 231
III. Panel 8ridge, 8ailey Type, M2 7-7-7-9 250
IV. Miscellaneous 8 ridging 7-10-7-13 274
CHAPTER 8. CONCRETE CONSTRUCTION. 8-1-8-12 280
9. MILITARY ROAD CONSTRUCTION 9-1-9-8 304
10. ARMY AIRFIELDS AND HELIPORTS... 10-1-10-7 345
11. MAP READING 11-1-11-10 354
12. RIGGING 12-1-12-16 363
13. UTILIZATION OF HEAVY EQUIP-
MENT 13-1-13-8 389
14. FIELD SANITATION 14-1-14-3 404
15. RECONNAISSANCE 15-1-15-11 411
16. COMMUNICATIONS 16-1-16-5 446
17. MISCELLANEOUS FIELD DATA 17-1-17-19 455
APPENDIX A. REFERENCES 537
INDEX 540

CHAPTER 1

INTRODUCTION

Section I. Purpose and Scope

1-1. PURPOSE

The purpose of this manuol is to provide pertinent doto in o convenient farmat for afficers ond noncommissioned officers of the plotoon level.

1-2. SCOPE

a. Contents. Dato hos been condensed on o wide voriety of subjects pertinent to the duties of engineer unit personnel, particulorly officers and noncommissioned officers.
b. Comments. Users of this monuol ore encouroged to submit camments or recommendations for changes to improve this monual. Comments should be keyed to the specific poge, poragroph, ond line of text in which the chonge is recommended. Reasons will be provided for each comment to insure understonding ond proper evoluotion. Comments should be prepared using DA Form 2028 (Recommended Changes to Publicotions) and forworded direct to the Commandont, U.S. Army Engineer School, Fort Belvoir, Virginia 22060.

Section II. References

1-3. MANUALS

Pertinent monuals ond ather military publicotions ore listed in appendix \mathbf{A}.

1-4. STANDARD AGREEMENTS

Information in this manual reflects the application of Stondard NATO Agreements (STANAG) and Standardization af Operotions and Logistics (SOLOG) Agreements.

CHAPTER 2

EXPLOSIVES AND DEMOLITIONS

Section I. Introduction

2-1. CHARACTERISTICS OF EXPLOSIVES

See table 2-1 for the principal types of U.S. explosives commonly used for military purposes.
o. Detanating velocity. See table 2-1.
b. Relative effectiveness factor.
(1) The formulas used in this chapter give the weight of explosive (P) required for a demolition task in pounds of TNT.
(2) Where a type of explosive other thon TNT is used, the correct weight of explosive is obtained by dividing P by the relative effectiveness foctor for the explosive used. See table 2-1, column 4.
(3) Example. For o steel cutting charge, P is found to be 21 lbs of TNT. Composition $\mathrm{C}-4$ is to be used. Therefore, the correct weight of $\mathrm{C}-4$ required is $21 \div 1.34=15.7 \mathrm{lbs}$. of $\mathrm{C}-4$. Use 16 lbs . of $\mathrm{C}-4$.
(4) This adjustment is not used for rules of thumb.
(5) For further details see FM 5-25.
c. Rounding-Off Rule.
(1) When using explosives, never use less than the calculoted omount. Some explosives like C-4 ond M118 can be cut to the desired amount, while with other types the ability to size explosives is limited.
(2) For charges calculated by formula, use the following round-off steps:
(a) Calculate one (1) chorge for TNT using a demolition formula to at least two decimals.
(b) Use the relative effectiveness factor, if required.
(c) Round off answer for one charge to next package size.
(d) Multiply answer for one charge by the number of charges to obtain the total explosive required.

Toble 2-I. Chorocteristics of Principal U.S. Explosives

Nome	Principol use	Smollest cop required for detonotion	Relative effectiveness os externol chorge	Velocity of detonotion, fps	$\begin{gathered} \text { Volue } \\ \text { os } \\ \text { crotering } \\ \text { chorge } \end{gathered}$	Intensity of poison: ous fumes	Woter resistonce	Pockoging
TNT	Moin chorge, booster charge; cutting ond breoching chorge, generol ond militory use in forword oreos	Speciol blosting cop, electric or nonelectric	1.00	23,000	Good	Dongerous	$\left\lvert\, \begin{aligned} & \text { Excel- } \\ & \text { lent } \end{aligned}\right.$	$\begin{aligned} & 1 \mathrm{lb}, 50 \text { or } 56 \\ & \text { to box } \end{aligned}$
Tetrytol, M1, M2			1.20	23,000	Foir	Dongerous	Excellent	16 2h-1b blocks in wooden box
$\begin{aligned} & \text { Composition C3 } \\ & \text { M3, M5 } \end{aligned}$			1.34	25,000	Excellent	Dongerous	Good	$162+\mathrm{lb}$ blocks in wooden box
M5A1 Composition C4 M112.			1.34	26,000	Excellent	Slight	Excellent	$242 \frac{1}{2} \cdot \mathrm{lb}$ blocks in wooden box
Ammonium nitrote (crotering chorge)	Crotering ond ditching	Speciol blosting cop, electric or nonelectric	0.42	14,800	Excellent	Dongerous	Poor	40-lb chorge in metol con
Sheet explosive M186, M118 chorge demolition	(See C-4)	(See C-4)	1.14	24,000	Poor	Slight	Excellent	$80 \frac{1}{2}-1 \mathrm{~b}$ sheets/box 25 -lb roll

Table 2-1. Characteristics of Principal U.S. Explasives-Continued

Name	Principal use	Smallest cop required far detanation	Relotive effectiveness 05 externol chorge		$\begin{gathered} \text { Volue } \\ \text { os } \\ \text { crotering } \\ \text { chorge } \end{gathered}$	Intensity of poisonous fumes	Woter resistance	Pockoging	
```Militory dynamite M1.```	Quarrying stumpingditching	(See C-4)	0.92	20,000	Goad	Dangerous	Good	$\begin{array}{l\|} \frac{1}{2}-\mathrm{lb} 1 \\ \text { to box } \end{array}$	
Stroight $40 \%$ dynomite $50 \%$ (Commercial) $60 \%$	Lond cleoring, crotering, quorrying, ond generol use in reor oreos, such os ditching and stumping	No. 6 commerciol cap, electric or nanelectric	$\begin{aligned} & \overline{0.75} \\ & 0.79 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 15 \overline{000} \\ & 18,000 \\ & 19,000 \end{aligned}$	Good	Dongerous	Poor Good Excellent	$\begin{array}{\|l\|} \hline 102 \\ 103 \\ 106 \end{array}$	Sticks per 50 lb box
Ammonio 40\% dynamite 50\% (Cammerciol) 60\%			$\begin{aligned} & 0.41 \\ & 0.46 \\ & 0.53 \end{aligned}$	$\begin{array}{r} 8,900 \\ 11,000 \\ 12,700 \end{array}$	Excellent	Oongerous	Gaod   Good   Good	$\begin{array}{\|l} 110 \\ 110 \\ 110 \end{array}$	Sticks per 50 lb bax
$\begin{array}{cl}  & 40 \% \\ \text { Gelatin } & 50 \% \\ \text { dynomite } & 60 \% \end{array}$			$\begin{aligned} & 0.42 \\ & 0.47 \\ & 0.76 \end{aligned}$	$\begin{array}{r} 8,000 \\ 9,000 \\ 16,000 \end{array}$	Good Goad Good	Slight	Good   Very   Goad Very Goad	$\begin{aligned} & 130 \\ & 120 \\ & 110 \end{aligned}$	Sticks per 50 lb bax
PETN	Detanating card	Special blasting cap, electric or nanelectric	1.66	$\begin{aligned} & 20,000 \\ & 24,000 \end{aligned}$	NA	Slight	Gaad		
	Blasting cop	NA							

Table 2-1. Chorocteristics of Principol U.S. Explosives - Continued

Nome	Principol use	Smollest cop required for detonotion	Relotive effectiveness OS externol chorge	Velocity 'of detonotion, fps		Intensity of poison ous fumes	Woter resistonce	Pockoging
Tetryl	Booster chorge	Speciol blosting cop, electric or nonelectric	1.25	23,400	NA	Dongerous	Excellent	
Composition B	Bongolore torpedo -do-	Speciol blosting cop. electric or nonelectric	$\begin{aligned} & 1.35 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 25, D D D \\ & 16,000 \end{aligned}$	Good   Excellent	Dongerous Dongerous	Excel-   lent   Poor	Bulk
Block Powder	Time blosting fuze	NA	0.55	131D   Mox Depends on Con-finement	Foir	Dongerous	Poor	Bulk
Nitrostorch	Substitute for TNT	Speciol blosting cop, electric or nonelectric	0.80	15,000	Good	Dongerous	Sotis-foctory	$1-1 b$ blocks

## 2-2. SAFETY

o. Sofety regulotions will be observed in oll situotions to the fullest extent permitted by time, by moteriols ovoiloble, ond by requirements of the mission.
b. Alwoys hondle explosives corefully.
c. Responsibility for the preporotion, plocement, or firing of chorges is never to be divided; one person should be responsible to supervise oll phoses of o demolition mission.
d. See toble 2-2 for minimum sofe distonces.
e. For further informotion, see AR 385-63.
f. Do not mix explosives ond detonotors.
g. Hondle misfires with extreme core.
h. Do not toke chonces.

Toble 2-2. Minimum Sofe Distonce for Personnel in the Open

Pounds   of ex-   plosive	Safe   distance   in feet	Pounds   of ex-   plosive	Safe   disfance   in feet	Pounds   of ex-   plosive	Safe   distance   in feet
$1-27$	900	46	1065	90	1344
28	910	48	1080	95	1365
30	930	50	1104	100	1400
32	951	55	1141	125	1500
34	965	60	1170	150	1600
36	990	65	1200	200	1750
38	1000	70	1225	300	2000
40	1020	75	1260	400	2200
42	1030	80	1290	500	2400
44	1050	85	1310		

NOTE. MINIMUM distonce for personnel in armissile-proof shelter is 300 feet.
Far charges over 500 lbs, use

$$
\text { Distance }=300^{3} \sqrt{\text { Pounds of explasives }}
$$

## 2-3. FIRING SYSTEMS

Firing systems for explosives are illustrated in figure 2-1. A nonelectric detonating ossembly is shown in figure 2-2.


Figure 2-1. Firing systems for explosives.


Figure 2-2. Nonelectric detonating ossembly.

## Section II. Calculation of Charges

## 2-4. STEEL-CUTTING CHARGES

o. Formula for structural steel. Charges to cut I-beoms, built-up girders, steel plotes, columns, and other structural steel sections ore computed by formula as follows:
$P=\frac{3}{8} A$
$P=$ pounds of TNT
$A=$ cross-section area, in square inches, of the steel member to be cut.
b. Formulo for other steels.
(1) The formulo below is recommended for the computotion of cutting chorges for high-corbon or olloy steel, such os thot found in mochinery.

$$
P=D^{2}
$$

$P=$ pounds of TNT
$D=$ diometer or thickness in inches of section to be cut.
(2) For concrete reinforcing rods, choins, cobles ond other mild steel items of o diometer of 2 inches or less, use the following rule of thumb:

$$
\begin{aligned}
1 \text { inch or less } & =1 \mathrm{lb} \text { TNT } \\
\text { Over } 1 \text { inch to } 2 \text { inches } & =2 \mathrm{Ib} \text { TNT } \\
\text { Over } 2 \text { inches } & =P=? \mathrm{~B}
\end{aligned}
$$

(3) Roilrood roils thot ore 5 inches in height moy be cut with 1 pound of TNT. For roils less thon 5 inches in height $\frac{1}{2}$ pound is odequote.
c. Exomple:
(1) Colculote the omount of TNT required to cut the steel wide-flonge section (fig. 2-3).

Colculotion: $P=\frac{7}{8} A(S$ ee 0 obove). .

$$
\begin{aligned}
& \text { Areo in flonges }=2 \times \frac{1}{2} \mathrm{in} . \times 5 \mathrm{in} .=5 \mathrm{sq} \text {. in. } \\
& \text { Areo in web }=\frac{g}{8} \mathrm{in} . \times 11 \mathrm{in} .=4 \frac{1}{6} \mathrm{sq} \text {. in. } \\
& \text { Totol oreo }=9 \text { gq. in. } \\
& P=\frac{3}{8} A \\
& P=\frac{3}{8} \times 9 \frac{1}{8}=3.42 \text {, therefore, use } 4 \text { lbs TNT } \\
& \text { ( } P \text { is rounded up to next higher pockoge size.) }
\end{aligned}
$$

(2) Plostic explosive is best suited for cutting steel. How much composition C-4 explosive is required to cut the wide-flonge section shown in figure 2-3? Since the omount of TNT required is 3.42 pounds ond composition $\mathrm{C}-4$ hos o relotive effectiveness foctor of 1.34 (column 4 of toble $2-1$ ), the omount of $C-4=\frac{3.42}{1.34}=2.55$ pounds. Use 3 pounds of $\mathrm{C}-4$.
d. Exomple. How much INT is required to cut the steel choin in figure 2-4?

Coliculotion: $D=\frac{z}{8}$ inch. (Diometer is less thon 1 in . therefore use rule of thumb $b(2)$ obove.)

$$
P=1 \mathrm{lb} . \text { of TNT }
$$



Figure 2-3. Wide flange section.

Use 1 pound of TNT of A ond 1 paund at B ta destray the chain link. e. Table. See table 2-3 for omount of TNT required to cut different rectangular steel sectians.
f. Advanced Techniques. These charges are based on the use of plastic explosive (C4), especially the M112 block which may be ottached directly to the target surface. Sheet explosives (M118 and M186) may may alsa be used provided thot charges ore of least $\frac{1}{2}$ inch thick. These chorges may also be prepored in advance far tronsportation to the demolition site. Plostic explasive must be cut to the proper dimensions nat malded.


Figure 2-4. Steel chain.

Table 2-3. Cutting Charges for Rectangular Steel Sectian

Thickness of Section in Inches	Pounds of TNT 3/8 A, Structural Steel												
	Width of Section in Inches												
	2	3	4	5	6	8	10	12	14	16	18	20	24
1/4	. 2	. 3	.4	. 5	. 6	. 8	1.0	1.2	1.3	1.5	1.7	1.9	2.3
3/8	. 3	. 5	. 6	. 7	. 9	1.2	1.4	1.7	2.0	2.3	2.6	2.8	3.4
1/2	. 4	. 6	. 8	1.0	1.2	1.5	1.9	2.3	2.7	3.0	3.4	3.8	4.5
5/8	. 5	. 7	1.0	1.2	1.4	1.9	2.4	2.9	3.3	3.8	4.3	4.7	5.7
$3 / 4$	. 6	. 9	1.2	1.4	1.7	2.3	2.8	3.4	4.0	4.5	5.1	5.7	6.8
\%	. 7	1.0	1.4	1.7	2.0	2.7	3.3	4.0	4.6	5.3	6.0	6.6	7.9
1	. 8	1.2	1.5	1.9	2.3	3.0	3.8	4.5	5.3	6.0	6.8	7.5	9.0

## To use table:

1. Measure rectangular sectians af member separately.
2. Using toble, find chorge far each sectian.
3. Add charges for sections to find total chorge.
4. Never use less than calculated charge.
5. If dimensian is nat in the toble, use next higher dimensian.
(1) Ribban charge. This charge, if properly calculated and placed, cuts steel with considerably less explasive than standard charges. It is effective an nancircular steel targets (figs. 2-5 and 2-6).

figure 2-5. Ribbon charge.

C-SHAPED CHARGE TO CUT WEG AND HALF OF'TOP AHD BOTTOM FLAHGES

A. BEAMS LESS THAN 2 IN THICK

B. BEAMS 2 IN THICK OR MORE

DETOHATE FROM CEHTER

C. PRIMING

Figure 2-6. Placement of ribbon chorges on structural steel sections.
(2) Diamand charge. This is used an high carban steel ar steel allay targets (fig. 2-7). it is shaped like a diamand.


SIDE VIEW


Figure 2-7. Diamand charge.
(3) Saddle charge. This charge is used an solid cylindrical mild steel torgets up ta 8 inches in diameter. Detonation is initiated at the apex of the long axis (fig. 2-8).


SIDE VIEW


Figure 2-8. Saddle charge.

## 2-5. TIMBER-CUTTING CHARGES

o. Test shots. Different types of timber in vorious locolities require vorying omounts of explosive to cut them. Test shats should be mode to determine the specific omount of explosive required for o specific type of timber.
b. Formulos.
(1) For untomped externol chorges. To cut trees, piles, posts, beoms, or other timber, the following formulo gives o test shot.

$$
P=\frac{D^{2}}{40} \text { or } P=0.025 D^{2}
$$

when $P=$ pounds of TNT required ond

$$
\left.\begin{array}{rl}
D= & \text { diometer or leost cross sectional dimension of timber in } \\
& \text { inches ond }
\end{array}\right] \begin{aligned}
& \frac{1}{40}=0.025 \text { = constont. }
\end{aligned}
$$

For other explosives, odjustments for $P$ ore mode occording to porogroph 2-1b. See figure 2-9 for plocement of chorge.
(2) For tomped internol chorges. The following formulo gives o test shot:

$$
P=\frac{D^{2}}{250} \text { or } P=0.004 D^{2}
$$

where $P=$ pounds of explosive (ony type)
$D=$ diometer or leost cross sectionol dimension in inches of dressed timber ond
$\frac{1}{250}=0.004=$ constont


Figure 2-9. Placement of external cutting charge on timber.


Figure 2-10. Internal timber-cutting chorge.

See figure 2-10 for placement of chorge.
(3) Far cutting trees to creote on abatis. To cut trees and leove them attached ta their stumps, the follawing farmula gives a test shot.

$$
P=\frac{D^{2}}{50} \text { or } P=0.02 D^{2}
$$

where $P=$ paunds of TNT needed for external chorges
$D=$ diameter of timber in inches and

$$
\frac{1}{50}=0.02=\text { constant }
$$

Far other explosives, odjustments are made accarding to poragraph 2-1b.
c. Calculations by table. Use toble 2-4 as a guide far both internal and external timber cutting test charges.

Table 2-4. Timber Cutting Test Shat Chorges

Type of Charge	Explosive	Leost dimension of timber in inches									
		6	8	10	12	15	18	21	24	30	36
		Paunds of explosive									
Internol	Any	1/2	$1 / 2$	$1 / 2$	1	1	11/2	2	21/2	4	6
External	W1	1	2	21/2	4	6	$81 / 2$	111/2	141/2	221/2	321/2
Abatis   External	TT	1	11/2	2	3	41/2	61/2	9	111/2	18	26

## 2-6. PRESSURE CHARGES

o. Use. Pressure charges are effective against simple spon, reinfarced concrete T-beam bridges.
b. For Tamped Pressure Charges. Use the following formulo:
$P=3 H^{2} T$ where $P=$ pounds of TNT required far each beam

$$
\begin{aligned}
& H=\text { height af beam (including thickness af roadway) } \\
& \text { in feet, and } \\
& T=\text { thickness af beam in feet. }
\end{aligned}
$$

If $H$ and $T$ are not whole numbers, round them aff to the next higher quorter foat dimension. Neither is ever considered ta be less thon I faot in the formulo. A minimum of 10 inches of tomping surraunding the charge is required. For ather explasives, odjustments are made occording to parograph 2-1b
c. Far Untamped Pressure Charges. Increase the calculated volue of $P$ by one-third in the farmulo (b above) if the pressure charge is nat tomped.
d. Exomple. How much TNT is required ta destray the bridge span in figure 2-11? The amaunt is calculated in figure 2-11.


Figure 2-11. Colculotion ond plocement of pressure chorges.
e. Continuous Bridge Spons. For concrete stringer bridges of continuous spons, chorges ore colculated by the breoching formulo (poro $2-8 b$ ). Chorges should be so ploced ond colculoted to insure thot the breoching rodius or rodii will couse o complete severonce of the cross concrete section. The steel probobly will not be cut by the explosion.
f. Toble. Use toble 2-5 for colculation of pressure chorges for simple spon reinforced concrete T -beoms.

## 2-7. CRATERING CHARGES

o. Requirements. Rood croters, to be effective obstocles, must be too wide for sponning by trock-loying vehicles ond too deep ond steep-sided for ony vehicle to poss through them. (Blosted rood croters will not stop modern tonks indefinitely, becouse repeoted ottempts by the tonk to troverse the croter will pull loose soil from the slopes of the croter into the bottom reducing both the depth of the croter ond ongle of the slopes. Rood croters ore considered effective ontitonk obstocles if the tonk requires three or more posses to troverse the croter, thereby providing sufficient time for ontitonk weopons to stop the tonk. Rood croters must olso be lorge enough to tie into noturol or monmode obstocles ot each end.) Antitonk ond ontipersonnel mines ore often ploced ot the site to homper repoir operotions ond thus increose the effectiveness of the

Table 2-5. Tamped Pressure Charges - Increase by $1 / 3$ if Untamped

Height of Bean in Feat	Paunds of TNT for Each Beam (Tampod Chargas)								
	Thicknass af Beam in Feet								
	1	1\%	1\%	1\%	2	2\%	24	24	3
	12 in .	15 in.	18 in .	21 in.	24 in .	27 in .	30 in.	33 in.	36 in.
1 (12 in.)	3								
$11 / 15 \mathrm{in}$.)	5	6							
18/2(18 in.)	7	9	11						
$13 / 21 \mathrm{in}$.)	10	12	14	16					
204 in.$)$	12	15	18	21	24				
21/4 (27 in.)	16	19	23	27	31	35			
$2 \%$ (30 in.)	19	24	29	33	38	43	47		
24 (33 in.)	23	29	34	40	46	51	57	63	
3 (36 in.)	27	34	41	48	54	61	68	75	81
31/4(39 in.)	32	40	48	56	64	12	80	88	95
3k (42 in.)	37	46	56	65	74	83	92	101	111
34/4 (45in.)	43	53	64	74	85	95	106	116	12
4 (48 in.)	48	60	72	84	96	108	120	132	144
41/4 (51 in.)	55	68	82	95	109	122	136	149	163
4\% (54 in.)	61	76	92	107	122	137	152	169	183
4\% (57 in.)	68	85	102	119	136	153	170	187	203
5 (60 in.)	75	94	113	132	150	169	188	207	225

crater. Road craters angled at about $45^{\circ}$ to the roadway are more effective obstacles than craters blasted perpendicular to the roadway. See also c below.
b. Hasty Raad Crater. Hasty road craters blasted with boreholes less than 5 feet deep and loaded with less than 50 -lb explosive charges are ineffective against modern tanks. For placement and size of charges see figure 2-12.
c. Deliberate Road Crater. See figure 2-13.

Holes of equal depth, spaced at 5 -foot Intervals. Uat 10 -pounds of explasives per foat of depth. Resulting crater dopth approx. Ih times depth of bare-


Figure 2-12. Plocement of chorges for hosty road crater.


Figure 2-13. Plocement of chorges for deliberate rood crater.
d. Relieved Face Crater. The crater will be approximately 7 feet deep and 30 feet wide. Instantaneous delay caps must be used to get desired delay detonation. The greatest improvement over the other types of craters is the resulting trapezoidal shape. For plocement and size of charge, see figure 2-14.


Figure 2-14. Relieved face crater.
e. Antitank Ditch Cratering. In open country, antitank ditches are constructed to strengthen prepared defensive positions. As they are costly in time and effort, much is gained if the excavation can be made by means of the cratering methods described above. To be effective, an antitank ditch must be wide enough and deep enough
to stap on enemy tank. It may be impraved by placing o log hurdle an the enemy side, by plocing the spails in the friendly side, ond by digging the face in the friendly side verticol.
f. Rules of Thumb.
(1) To insure against misfires, all ommonium nitrote cratering charges must hove an additionol primer, a one-paund chorge placed on top af each can and incorporoted into a dual firing system (figs. 2-1 and 2-2).
(2) Rule of thumb for number of hales required for a hasty ond o deliberate raad croter is:

$$
N=\frac{L-16}{5}+1
$$

Where $L$ is the tatal length af the blown crater.
(3) Rules of thumb for number af holes in a relieved face crater ore:

Friendly side

$$
N=\frac{1-10}{7}+1
$$

Where $L$ is the tatal length of the blown crater
Enemy side
$N=$ Number on friendly side minus ane.

## 2-8. BREACHING CHARGES

o. Use. Breoching chorges have their mast importont use in the destruction of bridge piers, bridge abutments, ond field fortifications of a permonent type, or in breaching wolls and blawing holes in cancrete slabs ar roadways.
b. Farmula. $P=R^{3} K C$
$P=$ pounds of TNT required
$R=$ breaching rodius in feet, highest $\frac{1}{2}$ faat increment
$\dot{K}=$ moterial foctor (table 2-6) which indicotes strength and hardness of material to be demolished (when it is not known whether or not concrete is reinfarced, it is ossumed ta be reinforced).
$\mathrm{C}=$ tomping foctar (fig. 2-15)
Nate. For externol chorges, use at leost 5 pounds for reinfarced cancrete ond at least 3 pounds for dense concrete.

Toble 2-6. Volues of Moteriol Foctor K for Use in Colculoting Breoching Chorges
Formulo $P(I N T)=R^{3} K C$

VALUES OF K		
Moteriol	$R$	$K$
Eorth	All volues	0.07
Poor mosonry, shole, hordpon good timber ond eorth construction	Less thon 5 ft 5 ft or more	$\begin{aligned} & 0.32 \\ & 0.29 \end{aligned}$
Good mosonry concrete block rock	1 ft or less   Over 1 ft to less thon 3 ft   3 ft to less thon 5 ft   5 ft to less thon 7 ft   7 ft or more	$\begin{aligned} & 0.88 \\ & 0.48 \\ & 0.40 \\ & 0.32 \\ & 0.27 \end{aligned}$
Dense concrete, first closs masonry	1 ft or less   Over 1 ft to less thon 3 ft   3 ft to less thon 5 ft   5 ft to less thon 7 ft   7 ft or more	$\begin{aligned} & 1.14 \\ & 0.62 \\ & 0.52 \\ & 0.41 \\ & 0.35 \end{aligned}$
Reinforced concrete (Concrete only, will not cut reinforcing steel)	1 ft or less   Over 1 ft to less thon 3 ft 3 ft to less thon 5 ft 5 ft to less thon 7 ft 7 ft or more	$\begin{aligned} & 1.75 \\ & 0.96 \\ & 0.60 \\ & 0.63 \\ & 0.54 \end{aligned}$

Toble 2-7. Breaching Charges, Reinforced Concrete Only

$\left\{\begin{array}{c} \text { THICKNESS } \\ \text { OF } \\ \text { CONCRETE } \end{array}\right.$	METHODS OF PLACEMENT					DISTANCE   BETWEEN   ChARGES	
		4, 20.	20. 1	20.2		INTER. NAL	EXTERNAL
FEET	POUNDS OF TNT					FEET	FEET
2	2	8	14	18	28	2	4
24	2	16	27	30	54	2K	6
3	4	22	39	44	78	3	8
3\%	8	35	62	69	124	3\%	7
4	8	52	93	103	185	4	8
44	11	73	132	146	263	4\%	9
6	15	79	142	158	284	5	10
64	20	106	189	210	378	6K	11
8	22	138	245	273	480	8	12
6\%	28	173	312	346	623	8\%	13
7	36	183	334	371	667	7	14
74	43	228	410	458	621	7\%	15
8	62	277	498	553	998	8	18

NOTES,

1. FOR BEST RESUITS place Charge in shape of a flat souare.
2. FOR CHARGES IESS THAN 40 LBS USE CHARGE THICKNESS OF 2" (ONE BLOCK THICK I; FOR CHARGES 40 LBS TO LESS THAN 300 LBS USE CHARGE THICKNESS OF i" |ONE MAVERSACK THICKJ, FOR CHARGES 300 L8S OR MORE USE CHARGE THICKNESS OF B" [TWO HAVERSACKS THICKI.

TO USE TABLE:

1. MEASURE THICKNESS OF CONCRETE.
2. OECIOE HOW YOU WILI PLACE THE CHARGE AG AINST THE CONCRETE. COMPARE YOUR METHOD OF PLACEMENT WITH THE DIAGRAMS AT THE TOP OF THE PAGE. IF TMERE IS ANY QUESTION AS TO WHICH COLUMN TO USE, ALWAYS USE THE COIUMN THAT WILG GIVE YOU THE GREATEST AMOUNT OF TNT.

- FOR OTHER TYPES OF CONSTRUCTION, SEE TABLE 2 - 8


## 28



NOTE: FOR WATER, IF THE BREACHING RADIUS IS GREATER THAN THE DEPTH OF WATER USE 2.0 IF EQUAL TO OR LESS USE 1.0

Figure 2-15. Values of Tomping Foctor "C".
c. Tables. For reinforced concrete breoching, see toble 2-7. See toble 2-8 for the breoching of mosonry items other thon reinforced concrete.

Toble 2-8. Breoching Chorges for Moteriol Other Thon Reinforced Concrete*

\left.| Conversion foctors for moteriol other thon reinforced concrete |  |  |
| :---: | :---: | :---: |$\right]$| Ordinory mosonry, hordpon |
| :--- |
| shole, ordinory concrete, rock, |
| good timber, ond eorth |
| construction |$\quad$| Dense concrete <br> first closs <br> mosonry |
| :---: |
| 0.1 |

To use toble:

1. Determine the type of moteriol in the object you plon to destroy; if in doubt, ossume the moteriol to be of the stronger type; e.g., unless you know differently, ossume concrete to be reinforced.
2. Using the obove toble, determine the oppropriote conversion foctor.
3. Using toble 2-7, determine the omount of explosive thot would be required if the object were mode of reinforced concrete.
4. Multiply the number of pounds of explosives (from toble 2-7) by the conversion foctor from the toble obove.

[^1]d. Number of Charges. To demolish a pier, slab, or woll, use this formulo:
$N=\frac{W}{2 R}$ where $N=$ number of chorges,
W = width of pier, slab, or wall, in feet, and
$R=$ breoching radius in feet.
If the number of chorges are 0 to less than $1 \frac{1}{4}$, use 1 charge; $1 \frac{1}{4}$ to less thon $2 \frac{1}{2}$, use 2 charges; $2 \frac{1}{2}$ or more, round off to nearest whole number.
e. Exomples.
(1) Find the size and number of TNT charges required to breach o reinforced concrete wall thot is 25 feet long ond 4 feet thick. Use external charges ploced at ground level and untomped. Size of charges:
\[

$$
\begin{aligned}
& P=R^{3} K C, \quad R=4, \quad K=.80, \quad C=3.6 \\
& P=(4)^{3} \times(.80) \times(3.6)=184.3 \text { pounds, use } 185 \text { pounds of TNT. }
\end{aligned}
$$
\]

Number of chorges:

$$
\begin{aligned}
& N=\frac{W}{2 R} W=25, R=4, \\
& N=\frac{25}{(2)(4)}=31 / 8 \quad \text { Use } 3 \text { charges. }
\end{aligned}
$$

(2) How mony pounds of TNT are required to breach a timber and earth wall $6 \frac{1}{2}$ feet thick and on explosive chorge placed at the bose of the wall without tomping? The conversion factor is 0.5 (table 2-8). If this wall were made of reinforced concrete, 623 pounds of TNT would be required to breach it (toble $2-7$ ). Multiply 623 pounds of TNT by 0.5 and the result is 312 pounds of TNT required to breoch the wall.
f. Breaching Hord-Surface Pavements.
(1) A hard-surface povement is breoched so that holes con be dug for crotering charges. Use o 1 -pound charge of explosives for each 2 inches of pavement thickness, with tomping twice as thick os pavement.
(2) Povement may be breoched by chorges ploced in boreholes drilled or blasted through the pavement. A shaped charge reodily blasts o smoll diometer borehole through the pavement ond into the subgrode.

Concrete should not be breached at an expansion joint because the concrete will then shatter on only one side of the joint.
g. Shaped Charges. Table 2-9 shows the size of boreholes obtained by using the standard shaped charges.
h. Advanced Jechniques. Counterforce charge. This technique is very effective against comparatively small cubical concrete and masonry objects and columns 4 feet or less in thickness and width. The amount of explosive is calculated as follows:

$$
P=1 \frac{1}{2} \times \text { thickness of target in feet ( } 1 \frac{1}{2} \text { pounds per foot). }
$$

Fractional measurements are rounded off to the next higher foot prior to multiplication.
The calculated amount of explosive is divided in half to make two identical charges. The two charges must be placed exactly opposite each other, primed at the exact rear center point, and detonated simultaneously for optimum results (fig. 2-16).


Figure 2-16. Counterforce charge.

Table 2-9. Size of Boreholes Made by Shaped Charges

Material	Information needed	M243 shaped charge	M3 shoped charge
Armor Plate	Penetration   Average Diameter of hole	12 in $1 \frac{1}{2}$ in	$\begin{aligned} & \text { At least } \quad 20 \mathrm{in} \\ & 2 \frac{1}{2} \mathrm{in} \end{aligned}$
Reinfarced concrete	Maximum wall thickness that can be perfarated   Depth of penetratian in thick walls   Average diameter of hole Minimum diameter of hole	36 in   30 in   24 in 2 in	60 in 60 in $3 \frac{1}{2}$ in 2 in
10-inch cancrete pavement with 21-inch rock base course	Optimum standoff Minimum depth af penetration Maximum depth of penetration Minimum diameter of hole	60 in 71 in 109 in $6{ }^{3}$ in	42 in 44 in 91 in 13 in
3-inch cancrete pavement with 24-inch rock base course	Optimum standaff Minimum depth af penetration Maximum depth of penetration Minimum diameter of hole	三	42 in 38 in 90 in 34 in
Permafrost	Depth of hole with 30 inch standoff   Depth af hole with 42 inch standoff   Diameter of hole with 30 inch standoff   Depth of hole with 50 inch standoff   Diameter of hole with 50 inch standoff   Diameter of hole with narmal standoff	$\begin{aligned} & 72 \text { in } \\ & 60 \text { in } \\ & 6 \text { to } \\ & 1 \frac{1}{2} \text { in } \\ & - \\ & - \\ & 26-30 \\ & \text { to } 4 \\ & \text { in } \end{aligned}$	$\left[\begin{array}{l} - \\ - \\ - \\ 72 \mathrm{in} \\ 8 \mathrm{ta} \\ 5 \mathrm{in} \\ 26-30 \\ \text { to } 7 \\ \text { in } \end{array}\right.$
Ice	Depth with 42 inct standoff Diameter with 42 inch.standoff	$\begin{aligned} & 7 \mathrm{ft} \\ & 3 \frac{1}{2} \mathrm{in} \end{aligned}$	$\begin{aligned} & 12 \mathrm{ft} \\ & 6 \mathrm{in} \end{aligned}$

## 2-9. BRIDGE ABUTMENT DEMOLITION

Placing charges in the fill behind an abutment is ecanomical in explosives ond conceals the chorges from the enemy.
o. Abutments 5 Feet Thick or Less ond 20 Feet ar Less in Height. See figure 2-17 far details.
b. Abutments Mare Than 5 Feet Thick and 20 Feet or Less in Height. Place breaching charges in cantact with the rear face of the abutment (fig. 2-18). Colculate the size and number of charges by the farmula in figure 2-18. Charges are ploced ot o depth greater than ar equol ta $R$. The spacing between charges and number of charges ore determined by the calculatians explained in paragraph 2-8.
c. Abutments Over 20 Feet High. Place a combinotion of external breaching charges (alang bottam of the river face of the abutment) and fill charges (behind the obutment) to destroy obutments more thon 20 feet high. Fire them simultaneously. The fill chorges are either 40 paund charges, a abave, or breaching charges, $b$ above, depending an the thickness of the abutment.

Beginning 5 feot in from the side of the road, place 40 -pound cratering charges in holes 5 feet deep. 5 feat on centers and 5 feot behind the river face of the obutment.

$$
\text { Formulo: } N=\frac{w}{5}-1
$$

where $N=$ no. boreholes $\mathrm{W}=$ width of obutment


Figure 2-17. Charges placed in the fill behind a reinforced abutment less than 5 feet thick and 20 feet ar less in height.


Figure 2-18. Chorges in a fill behind o reinfarced cancrete abutment mare than 5 feet thick ond 20 feet ar less in height.

## Section III. Destruction of Obstacles

## 2-10. CONCRETE OBSTACLES

o. Small Obstacles. For smoll obstacles ( $100 \mathrm{ft}^{3}$ or less), such as thase faund an beoches, use hand-ploced charges. As shawn in figure 2-19, use 1 paund af military explosive, tetrytal or greoter, per cubic faat of reinfarced concrete.
b. Large Obstacles. For large abstacles (greoter than $100 \mathrm{ff}^{3}$ ) use breoching farmulo (fig. 2-20).

NOTE : SATCHEL CHARGES ARE USED TO DESTROY THESE OBSTACLES. IN COMPUTING THE NUMBER OF SATCHELS REQUIRED, ROUND UP TO THE NEXT FULL 2OLB. SATCHEL.


Figure 2-19. Explosive pocks needed to destroy typicol small concrete obstocles.

figure 2-20. Plocement of breoching charges on wolls.

## 2-11. STEEL AND LOG OBSTACLES

o. Placement. The illustrations in figure 2-21 show severol abstacles and the placement and sizes of chorges to destray or cut them.
b. Chorges for Log Obstocles. Generally, the chorge should be placed at o joint where the obstacle is weokest. Agoinst lag éribs, ploce 30 ta 40 pounds of explosives in the center of the earth fill twothirds the depth of the crib ond tamp thoraughly: Similar charges are placed on 8 -faat centers for the full length of wooden pasts. Lag scaffalding (often under water) is destrayed by tying three 15 -foot lengths of bongalore torpeda together and plocing them at right ongles ta the line af scaffolding. This cleors a lane 12 feet wide. Charges placed on obstacles driven into the ground should be ottoched below or os close to the surfoce of the ground as possible.


Figure 2-21. Placement of charges for destruction of steel ond log obstacles.

## 2-12. WALLS

o. Cancrete Walls Not Bockfilled. Use the breoching formulo an walls. The positions, amounts, ond patterns of charges are shawn in figure 2-20.
b. Bockfilled Wolls.
(1) Concrete. Increase by 20 percent the charges specified for walls nat bockfilled. On some wolls where this may not be enaugh, use o secand shot or cleor with dazers or hond lobor.
(2) Logs. Place 0500 -paund charge 10 feet lang an tap of the woll 2 feet from the fan (fig. 2-22).


Figure 2-22. Breaching a bockfilled log wall.

## Section IV. Construction Projects

## 2-13. QUARRYING

a. Quarry Development. Whenever possible, military quarries are opened on hillsides and warked parallel to the strike of the rack (fig. 2-23). Overburden is removed ta the right or left of this direction. The quarry may be developed as a single ar multiple bench operation depending an the total product required, expected duration of aperation, and the physical characteristics of the deposit.

STRIKE IS A DIRECTIONAL REFERENCE FROM NORTH


SAMPLEMAP SYMBOL
Figure 2-23. Measuring strike and dip.
b. Quorry Objectives. The mojor objectives of quorry operations ore to reduce the praduct ta the proper size for introduction into the rock crusher and to cantrol the rock thraw. To accomplish these objectives requires closely contralled blosting and on understanding of rock mechonics.
c. Borehole Orientotian.
(1) The barehole pottern is gaverned by:
(a) the energy created by the explosive
(b) the resistance to frocture of the rack
(c) the diometer of the explosive chorge
(2) Design af the barehole pattern involves six critical dimensions (fig. 2-24).


Figure 2-24. Criticol quarry dimensions.

Table 2-10. Quarry Indicatars

(a) Diameter of explosives
in inches
(b) Burden.................................................... 8
(c) Ledge Height. L
(d) Subdrilling in feet in feet in feet

d. Quarry Design. Field design af a borehale pattern which will produce acceptable results under normal canditians can be accamplished as follows: (See TM 5-332 for quarry design.)
(1) Determine diameter af explosive ( $D_{e}$ ) governed by the size of the drill and explosives availoble; $D_{e}$ usually is $2 \frac{3}{4}$ inches for a 3 -inch borehole.
(2) $B=3.0 D_{e}$ for normal canditions (i.e., dense explosive and average rock).
(3) $L=(1.5$ to 4.0$) B$; $L$ narmally is governed by jaints, seams, or topography of the site.
(4) $J=0.3 \mathrm{~B}$ for all vertical boreholes.
(5) $T=0.5$ ta $1.0 B$ (Start with $0.75 B$ and adjust as results demand).
(6) $\mathrm{S}=(1.0$ to 2.0$) \mathrm{B}$ (Stort with 1.28 and adjust as results demand).
e. Characteristics of Breakage. Toble 2-10 gives certain cause-effect relationships encauntered in blasting. An $X$ in the indicatar calumn signifies a possible cause. Read across the raw ta determine the possible cause. Correct the barehole pattern accordingly. Often more than ane cause will give similar results. Then, further study af local conditions ar o trial and error correction for the cause marked will be necessary.

## 2-14. BLASTING BOULDERS

a. Size of Charge. See table 2-11.

Table 2-11. Charges for Blasting Boulders

Boulder diameter, ft	Lbs af TNT required		
	Blockhaling	Snakeholing	Mudcapping
$1 \frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{2}$	1
2	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{2}$
3	$\frac{1}{4}$	2	2
4	$\frac{2}{4}$	3	$3 \frac{1}{2}$
5	$\frac{8}{8}$	$\frac{1}{2}$	6

b. Methods of Blosting. See figure 2-25 for details.

## SNAKEHOLING

FUSE OR LEAD WIRE


## MUDCAPPING



Figure 2-25. Methods of blosting boulders.

## 2-15. DITCHING

o. Canditians. Raugh, open ditches $2 \frac{1}{2}$ to 12 feet deep and 4 to 40 feet wide can be blasted in most types of soil, except in gravel and sond. Trees, stumps, and lorge boulders are charged seporately, but are fired simultoneously with ditching charges.
b. Test Shots. Before beginning the ditching, run test shots ta determine the proper depth, spocing, and weight of chorges far desired results. Begin with holes 2 feet deep and 18 inches apart for small ditches and increase the charge and depth os required.
c. Alinement ond Grade. Mark ditch centerlines by chalk or transit line and holes along it. When survey instruments are used, the grade of the ditch can be accurately controlled by checking the hole depth every 5 or 10 hales ond each change in grode. Drill holes in soft ground with shorp punch ar quicksand punch (fig. 2-26). The depth of the hale normally is a foot above the grodeline of the ditch. Load ond tomp them immediately to prevent cove-ins and insure chorge is at proper depth.


$$
11 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}
$$

1'PUNCH POINT

NOTE: PUNCH POINT REMOVED AND CHARGE IS PLACED THROUGH PIPE BOTTOM OF HOLE.

Figure 2-26. Punches used to place charges ot proper depth in soft ground.
d. Detonotion Methods.
(1) Propogotion method. Prime the hole, or holes, of one end of the proposed ditch, concussion will set off the succeeding chorges, using stroight dynomite. It works in moist soils, porticulorly in swomps contoining stumps with the ground under severol inches of woter (fig. 2-27). If more thon one line of chorges is used to obtoin o wide ditch, eoch line is primed. Over-chorge the prime hole 1 or 2 pounds.

Note. The propogotion method con be used only with 50 percent stroight, or greater, commerciol dynomite.


Figure 2-27. Propogotion method of detonotion.
(2) Electricol method. Use ony high explosive in this method of ditching, ond in ony soil except sond regordless of moisture. Prime eoch chorge with on electric cop. Blow oll charges simultoneously.
(3) Detonoting cord method. Use ony high explosive with this method. This method is effective in ony soil except sond ond grovel, regordless of the omount of moisture. Eoch chorge is primed with detonoting cord ond connected to o ring moin.
e. Looding Methods.
(1) The method of looding for o deep, norrow ditch is pictured in figure 2-28
(2) The relief method of looding for shollow ditches is depicted in figure 2-29. Ditches 1 ond 3 ore blosted first to relieve the chorge in ditch 2.
(3) Figure 2-30 shows the posthole method of looding for shollow ditches in the mud.


Figure 2-28. Method of loading a deep norrow ditch.


Figure 2-29. Relief methad of laading for shollow ditches.


Figure 2-30. Post-hole method of looding for shollow ditches in mud.
(4) The cross section method of looding to cleon ond widen ditches is exploined grophicolly in figure 2-31.


Figure 2-31. Cross section method of looding to cleon ond widen ditches.

## 2-16. BLASTING TREES AND STUMPS

a. Size af Charge Required. The size af the chorge required vories with the size, variety, and age af the tree or stump, and with the soil conditians. The rules af thumb, c below, and figure 2-31, show thot when militory dynamite is being used the size af the chorge varies with the size and oge of the tree. To remave stumps praperly, test shots ore required.
b. Drilling Holes for Charge. In drilling holes far the chorge, follow illustrotians in figure 2-32.


LARGE LATERAL BRACE ROOTS


## RULES OF THUMB, USE DYNAMITE AS FOLLOWS:

III FOR DEAD STUMPS AI POUND PER FOOT OF DIAMETER,
[2] FOR LIVE STUMPS 2 POUNDS PER FOOT OF DIAMETER.
(3) FOR STANDING TIMBER-ADD 50 PERCENT FOR STANDING TIMBER.

Figure 2-32. Stump blosting methods for vorious raot structures.
c. Rules of Thumb. Use dynomite os follows:
(1) For deod stumps - 1 pound per foot of diometer.
(2) For live stumps - 2 pounds per foot of diometer.
(3) For stonding timber-odd 50 percent for stonding timber.

## CHAPTER 3

## LANDMINE WARFARE

## Section I. Introduction

## 3-1. TYPES OF MINEFIELDS

Minefields are classified inta five types according ta their tacticol function. They are protective (hasty and deliberate), defensive, barrier, nuisonce, and phony.

## 3-2. PLANNING AND SITING

a. In planning minefields the cammander must cansider:
(1) Overoll cancept af aperations.
(2) Probable future missians.
(3) Avoiloble resources.
(4) Stote of training of personnel.
b. The siting of minefields may be influenced by:
(1) Nature af enemy threot (mechanized, infantry, etc.).
(2) Locatian af other obstacles.
(3) Likely ovenues of enemy appraach.
(4) Terrain.
(5) Passibility af later expansian af field.
(6) Possibility af channeling the attacking farce into moss-firecavered oreas.
(7) Passibility of laying many minefields in large scale patterns so thot penetration of the foremost field is contoined by subsequent fields.
(8) Enemy copabilities far breaching and harassing ar interfering with mine loying.
(9) Availability af mines and restrictians on use of certoin rype mines.
(10) Experience of traaps and materials available for mine loying.

## 3-3. TYPES OF MINES

a. Live Service Mines. These include antitank mines, ontipersonnel mines, and the M24 off-route mine. Live service mines ore listed ond described in table 3-1.

Table 3-1. Mine Data


## Table 3-1-Continued



Table 3-1-Continued

M25 BLAST ANTIPERSONNEL MINE (ELSIE)	M49A1 TRIP FLARE	PRESSURE FIRING DEVICE
	  Magal itiliater or lation rease IID Fitf	
Push mine inlo giound Kerp cust cap in place It ground is hard oig meke milh baronel	Allact Ildit to past tree pit	
	Allaciflip wie lo ancher ithen to ligget Puld 1"sget io wefical pesilign and seculd	
		Remove prolective :ap liom slandald base and cirip on monelecilice oldstinic cas Atisen lining device astembly to chalge Altach anchored trip mit
		To Arm Remore lecking satety pin fiss agd positive suteh pin last
Io Diserm Restuce satet chip and Ith cturge contannet from mine	Chech both enids of trup wire and cut mear trigger	
Tha MSS antipersomel mirse mill penetrate a soldres's ound and foet or puacture a \|2-aly tise the tuble	Warmicy matil leos aligent at mituit flat Mote for hoose thip wire intistimen. arisen tite mite to eve of satety pin	POSIIM SNFTT Pa hot   To Dirurm Invert nail tength of mire ore oriunal salety pin in ocsitive suleti oin hole tus: then inser sumbiat pin in locking suiet prin fale Cur tip ence ant separata fring onnce and erplasme Unicreer standard base

## Toble 3-1-Continued



[^2]b. Training Mines. These mines are used in training and on maneuvers The two types available are:
(1) Practice mines. These mines are blue with white lettering and resemble specific models or a basic type of service mine. Practice mines simulate detonation by o report and a puff of smoke.
(2) Inert mines. These are service mines painted either black with white letters or OD with black letters and contain no explosive components. They may be loaded with sand, plaster, concrete, and the like to familiarize troops with the weight and feel of live service mines.
c. Flares. Data on flares are found in table 3-1.
d. Antihandling Devices. Descriptions and methods of arming and disarming are found in table 3-1.

## Section II. Minefield Installation

## 3-4. MINEFIELD CHARACTERISTICS

a. Patterns. The standard pattern minefield is shown in figures 3-1 and 3-2.


Figure 3-1. Standard pattern minefield fenced, marked, and referenced.

## ENEMY




Figure 3-3. Minefield clusters.
c. Numbering. The clusters in each strip are numbered from right to left os yau face the enemy beginning with the raw focing the enemy (fig. 3-4). Cluster number 1 is the first cluster of the right boundory in the raw facing the enemy, or the first cluster ofter a turning point.


Figure 3-4. Method of numbering clusters in mine strips.
d. Trip Wires. Trip wires, if laid, are attached ta selected antipersannel mines in the row an the enemy side of the strip centerline. There is anly one trip-wire mine ta a cluster, and na claser than one every third cluster (fig. 3-5).


Figure 3-5. Safety line and trip wires an enemy raw.
e. Arrangement. Mine strips are not parallel, but their centerlines must•be at least 18 paces apart at all paints. A centerline may have as many turning paints as desired (fig. 3-6).


Figure 3-6. Turning points.

## 3-5. MINE LAYING

a. Platoon Organizatian. The plataan organization and duties af platoon members are autlined in table 3-2.

Table 3-2. Organizatian and Duties of Mine Laying Plotoon

Persannel	Officer	NCO	EM	Equipment
Supervisory   personnel	1	1	$\ldots$	Officer: Map, lensatic cam-   poss, notebook, ond   minefield record
farms.				

b. Limitatians. The pracedure described here may vary according to the men and materials available, the terrain, and the proximity of the enemy.
c. Laying Out the Field and Placing Mines. When the OIC orrives in the area with his siting and marking parties, he proceeds ta lay the minefield as illustrated in figures 3-7 thraugh 3-12.


Figure 3-7. Initial steps in laying a minefield.


Figure 3-8. Establishing the right baundary stake lacatians.

62


Figure 3-9. Laying out the IOE.


Figure 3-10. Laying out strip A and establishing mine dumps.


Figure 3-11. Minefield campletely taped.


Figure 3-12. Laying mines in a regular strip.

## d. Mine field Marking.

(1) Rear area minefields are completely fenced with two strands af barbed wire at the time of laying (fig. 3-13). As shawn in figure 3-1, the fence dies not follow the exact baundary of the field, but rather is placed in a zig-zag pattern. The marking fence will be placed na claser than 20 paces to the nearest mine. Standard markers (fig. 3-14) are hung an the upper strand with the word MINES, BOOBYTRAPS, etc., facing away from the field. If a minefield has been contaminated with toxic chemical agents, the standard chemical contamination marker is hung alang with the standard mine marker. Lanes are marked as shown in figure 3-15.


Figure 3-13. Standard minefield marking fence.


Figure 3-14. Standard marking signs.


Figure 3-15. Standard rear area lane markings.
(2) Lanes in farward areas are marked inconspicuausly by wire, tape, ar clasely-spaced objects placed on the graund. The entrance is identified by markers such as pickets marked with tape, piles af stares, etc. Lone exits on the enemy side are not marked. Minefield fencing, marking, and comauflage must be carefully maintained.
e. Lanes and Gaps.
(1) Lanes. A minefield lane is a safe path or route thraugh a minefield. Lanes are 8 meters wide for one-way vehicle traffic and 16 meters wide for two-way traffic.
(2) Gaps. A minefield gap is that partion of a minefield in which no mines have been laid. The purpose af a gap is to enable o friendly farce to pass thraugh the field in tactical formation. Gaps ore seldom less than 100 meters wide.

Toble 3-3. Minefield Requirements for 100 Meters of Front

Density			Strips rqr	Mines required			Croted mines		Vehicles required for croted mines		Monhours	Meters of wire	Number of Pickets
AT	Apers Frog	Apers 8lost		AT	Apers Frag	Apers Blost	Weight in tons	Volume in Cu ft	5T cargo (W) governs)	5T dump (Vol governs)			
1	1	1	3	164	164	164	4.98	228.5	1.00	1.68	87	1200	30
1	2	2	3	164	312	312	5.85	260.1	1.17	1.91	120	1200	30
1	4	8	8	164	623	1213	7.82	3378	1.57	2.47	234	2000	50
2	4	8	9	312	623	1213	11.44	512.7	2.29	3.76	279	2400	60
3	4	8	9	459	623	1213	15.05	686.7	3.01	5.03	323	2400	60

Explonotory Notes:

1. AT, Apers Frag and Apers Blost mines are M15, M16, and M14 respectively.
2. Mines totols include IOE and $10 \%$ sofety foctor.
3. IOE cluster composition used is 1-2-2 (except for the 1-1-1 ond 1-2-2 minefields where the IOE cluster composition is 1-1-1).
4. Mon-hours ore bosed on loying rote of 4 AT , or 8 AP frogmentotion, or 16 AP blost mines per mon-hour Includes $\mathbf{2 0 \%}$ factor ta compensate for minefield siting, morking, ond recording.
5. Quantities indicoted ore for 100 meter of front.
6. The fencing moteriol requirements for minefields other than 100 m frontoge con be opproximoted from this toble.

Table 3-4. Land Mine Logistical Data

Mine   Model \& type	Wi   (lbs)   per   mine	Mine packoging dato					Copacity of indicoted ormy vehicles (Note figures in parentheses indicote moximum lood w/in $100 \%$ overlood copobility ond/or moximum volume of corgo spoce)				
		No. of mines, etc., per crate	Wi (lbs) per crote	Crote dimensions (ins)			M-35 $2 \frac{1}{2}$ ton corgo truck (Cargo space $147 \times 88 \times 60$ ins)				
				Lgth	Width	Hgt	No of crotes	How corried	No of thers of crates	Tatol No mines	Total wt (tons)
M-15 AT	31	- uncroted mines	-	$\begin{gathered} 1313 \\ \text { ins diom } \end{gathered}$		5	-	flot (flat, 11 on end)	$\begin{gathered} 3- \\ \text { (3) } \end{gathered}$	$\begin{gathered} 162 \\ (209) \end{gathered}$	$\begin{gathered} 251 \\ (324) \end{gathered}$
		b 1, w/fuze \& octivoror	49	18	1513	75	$\begin{gathered} 103 \\ (200) \end{gathered}$	flat	$\begin{gathered} 3 \\ (5) \end{gathered}$	$\begin{gathered} 103 \\ (200) \end{gathered}$	$\begin{array}{r} 253 \\ (49) \end{array}$
M-19 AT	28	2, w/fuzes \& activators	80	1625	105	16	$\begin{gathered} 63 \\ (125) \end{gathered}$	on end   (on side)	$\begin{gathered} 1 \\ (3) \end{gathered}$	$\begin{gathered} 126 \\ (250) \end{gathered}$	$\begin{gathered} 2.52 \\ (5) \end{gathered}$

Table 3-4-Continued

Capacity af indicated army vehicles (Nate figures in parentheses indicate maximum laad $\mathbf{w} / \mathrm{in} 100 \%$ averlaad capability and/ar maximum valume of carga space)														
M-105 $\frac{1}{2}$ tan traler (Carga Space $133 \times 87$ $\times 71$ ins)					M-47 21 Ton Dump Truck (Carga Space $108 \times 70 \times 15+i n s)$ (Valume determines copacity)					M-5) 5 Tan Dump Truck (Carga Space: $125 \times 82 \times 23 \mathrm{ins}$ ) (Valume determines capacity)				
No. of crates	Haw carried	Na. of tiers af crates	$\begin{aligned} & \text { Tatal } \\ & \text { Na } \\ & \text { mines } \end{aligned}$	Total wf. (tons)		Haw carried	Na . of Hers of crates	Tatal Na mines	Tatal wt. (tans)	Na af crates	Haw carried	No of thers of crates	Tatal Na mines	$\begin{aligned} & \text { Tatal } \\ & \text { wt } \\ & \text { (tons) } \end{aligned}$
-	$\begin{gathered} \text { flat } \\ \text { (on edge) } \end{gathered}$	$\begin{gathered} 3 \\ (2) \end{gathered}$	$\begin{gathered} 100 \\ (200) \end{gathered}$	$\begin{array}{r} 155 \\ (3.1) \end{array}$	-	$\left\|\begin{array}{c} \text { on end } \\ \text { (on flot) } \end{array}\right\|$	$\begin{gathered} 1 \\ (3) \end{gathered}$	105	1.62	-	flot	5	270	4.1
$\left\|\begin{array}{c} 01 \\ (122) \end{array}\right\|$	flat	$\underset{(4)}{2}$	$\begin{gathered} 61 \\ (122) \end{gathered}$	$\begin{gathered} 149 \\ (298) \end{gathered}$	56	on end	1	56	137	90	flat	3	90	22
$\begin{gathered} 37 \\ (75) \end{gathered}$	flat	(2)	$\begin{gathered} 74 \\ (150) \end{gathered}$	$\begin{aligned} & 148 \\ & (3) \end{aligned}$	40	on end	1	80	16	96	flat	2	196	39

Table 3-4.-Continued


Table 3-4-Continued

Copocity of indicored ormy vehicles (Note: figures in porentheses indicote moximum lood w/in $100 \%$ overlood copobility ond/or moximum volume of corgo spoce)														
M- $1051 \frac{1}{2}$ ton troiler (Corgo 5poce: $133 \times 87$ $\times 71 \mathrm{ins})$					M-47 21 Ton Dump Truck (Corgo 5poce $108 \times 70 \times 15+i n s$ ) (Volume determines copocity)					M-51 5 Ton Dump Truck (Corgo 5poce. $125 \times 82 \times 23 \mathrm{ins}$ ) (Volume determines copocity)				
$\begin{gathered} \text { No } \\ \text { of } \\ \text { crotes } \end{gathered}$	How corried	No of tiers of crotes	Total No mines	Totol wi (tons)	No of crotes	How corried	No of tiers of crotes	Totol No mines	Totol w (tons)	No of crotes	How corried	No of tiers of crotes	Totol No mines	Totol wt (tons)
$\begin{gathered} 33 \\ (66) \end{gathered}$	flot	$\begin{gathered} 1+ \\ (3-) \end{gathered}$	$\begin{array}{r} 132 \\ (264) \end{array}$	$\begin{gathered} 148 \\ (296) \end{gathered}$	40	on end	1	160	1.79	$\begin{gathered} 48 \\ (60) \end{gathered}$	flot (ori end)	$\begin{gathered} 2 \\ (1) \end{gathered}$	$\begin{gathered} 192 \\ (240) \end{gathered}$	$\begin{gathered} 21 \\ (2.7) \end{gathered}$
$\begin{gathered} 68 \\ (136) \end{gathered}$	flot	$\begin{gathered} 3 \\ (5) \end{gathered}$	$\begin{array}{r} 6120 \\ (12,240) \end{array}$	$\begin{array}{r} 149 \\ (2.99) \end{array}$	48	on end	1	4320	1.05	72	flot	3	6480	1.5
$\begin{array}{r} 66 \\ (133) \end{array}$	flot	$\begin{gathered} 1+ \\ (2+) \end{gathered}$	$\begin{array}{r} 264 \\ (532) \end{array}$	$\begin{gathered} 148 \\ (299) \\ \hline \end{gathered}$	80	on end (or flot)	$1$ (2)	320	1.80	168	flot	3	672	3.7
$\begin{gathered} 938 \\ (1875) \end{gathered}$	upright	$\begin{gathered} 3- \\ (5) \end{gathered}$	$\begin{gathered} 938 \\ (1875) \end{gathered}$	$15+$   (3)	864	on end	2	864	138	1782	on end	3	1782	28
$\begin{gathered} 140 \\ (280) \end{gathered}$	upright	$\begin{gathered} 2 \\ (3+) \end{gathered}$	$\begin{gathered} 700 \\ (1400) \end{gathered}$	$\begin{aligned} & 1.5 \pm \\ & (3+) \end{aligned}$	96	on end	2	480	1.03	252	flot	4	1260	2.7

Table 3-4.-Continued


Table 3-4-Continued

Copocity of indicated army vehicles (Nate figures in parentheses indicate maximum lood w/in $100 \%$ averlood capobility and/ar maximum valume of cargo space)														
M-105 $1 \frac{1}{2}$ tan trailer (Carga Space. $133 \times 87$ $\times 71 \mathrm{~ms})$					M-47 $2 \frac{1}{1}$ Ton Dump Truck (Corgo Spoce: $108 \times 70 \times 15+i n s$ ) (Volume determines capacity)					M-51 5 Ton Dump Truck (Cargo 5pace. $125 \times 82 \times 23 \mathrm{ins}$ ) (Valume determines capocity)				
	Haw carried	Na af tiers of crates	Tatal No mines	$\begin{gathered} \text { Tatal } \\ \text { wi } \\ \text { (tons) } \end{gathered}$	Na . of crates	Haw corried	No. of tiers of crates	Tatal Na . mines	$\begin{aligned} & \text { Tatal } \\ & \text { wt } \\ & \text { (tons) } \end{aligned}$	Na of crotes	Haw carried	No of thers of crates	Tatal No mines	Tatal wt (tons)
$\begin{gathered} 27 \\ (54) \end{gathered}$	flat	$\underset{(3)}{2-}$	$\begin{gathered} 71 \\ (142) \end{gathered}$	$\begin{gathered} 148 \\ (297) \end{gathered}$	24	end	1	72	1.32	28	end	1	84	15
$\left\|\begin{array}{c} 2 \\ \text { pallets } \end{array}\right\|$	flat	1	96	184	2	flot	1	96	184	3	flot	1	144	27
$\begin{gathered} 370 \\ (706) \end{gathered}$	flat	$\stackrel{3-}{(5-)}$	$\begin{gathered} 1110 \\ (2118) \end{gathered}$	$\begin{aligned} & 151 \\ & (3) \end{aligned}$	600	on end	1	1800	242	864	flat	6	2592	3.5
$\begin{gathered} 43 \\ (86) \end{gathered}$	flot	$\begin{gathered} 1+ \\ (2+) \end{gathered}$	$\begin{gathered} 774 \\ (1548) \end{gathered}$	$\begin{aligned} & 15 \\ & (3) \end{aligned}$	50	$\begin{aligned} & \text { on } \\ & \text { end } \end{aligned}$	1	900	175	80	an end	1	1440	28
$\begin{gathered} 75 \\ (150) \end{gathered}$	flat	$\underset{\text { (3) }}{2}$	$\begin{gathered} 7200 \\ (14,400) \end{gathered}$	$\begin{aligned} & 15 \\ & (3) \end{aligned}$	70	flat	2	6720	1.4	86	flat	2	9216	2

Table 3-4. - Continued


NOTES
1 Loods limited to $16,000 \mathrm{lbs}$ on roods, $6,500 \mathrm{lbs}$ ( 325 tons) cross-country
2. Moximum poylood $1,024 \mathrm{lbs}(05$ ton) internol, $3,000 \mathrm{lbs}$ ( 15 tons) externol
3. Maximum poyload 4,182 lbs ( 209 tons)

Table 3-4-Continued

Copocity of indicoted ormy vehicles (Note figures in porentheses indicore moximum lood w/in $100 \%$ overlood copobility and/or moximum volume of cargo space)														
M-105 $1 \frac{1}{2}$ ton troler $\{$ Corga Space $133 \times 87$ $\times 71$ ins)					M-47 2t Ton Dump Truck (Corgo Spoce $108 \times 70 \times 15+\mathrm{ins}$ ) (Volume determines copocity)					M-51 5 Ton Dump Truck (Corgo Spoce $125 \times 82 \times 23$ ins) (Volume determines copocity)				
	How corried	No of tiers of crotes	Totol No mines	Total wt (tons)	No of crotes	How corried	No. of tiers of crotes	Totol No. mines	Total wt. (tons)	No. of crotes	How corried	No of tiers of crotes	Totol No mines	Totol wt (tons)
$\begin{gathered} 73 \\ (146) \end{gathered}$	flot	$\begin{gathered} 2+ \\ (1-) \end{gathered}$	$\begin{gathered} 292 \\ (584) \end{gathered}$	$\begin{gathered} 1.49 \\ (2.98) \end{gathered}$	70	flot	2	280	143	96	flat	2	384	2
$\begin{gathered} 66 \\ (132) \end{gathered}$	flot	$\stackrel{2}{(4-)}$	$\begin{gathered} 1056 \\ (2112) \end{gathered}$	$\begin{gathered} 14 \mathrm{~B} \\ (296) \end{gathered}$	42	on	1	672	0.94	50	fla	2	800	11
$\begin{gathered} 50 \\ (101) \end{gathered}$	flot	$\stackrel{2}{(3-)}$	$\begin{gathered} 1250 \\ (2525) \end{gathered}$	$\begin{gathered} 1.47 \\ (297) \end{gathered}$	42	on	1	1050	123	50	flat	2	1250	1.5

4 Mines ore tronsported unormed ond w/o being ossembled with firing choin components These tobles olso ore opplicoble to croted mines only

5 Sofety in tronsporting mines ond explosive items must be observed for all modes of tronsportation
(3) Siting and location. Lanes and gaps ore sited so thot the unit protecting the field and odjacent units moy carry an such activities as potrolling, attocking and counterattacking. The tactical cammander indicates to the cammonder af the loying unit the generol lacatian of lones and gaps. Skillful siting is essentiol to cancealment. Locotians of lones and gops are chonged frequently to prevent the enemy from detecting and ambushing friendly farces. Tactical cammanders ore alwoys consulted regarding changes in lacatian.
f. Lagistical Data. Materiol and manpower requirements, ond logistical and planning data are faund in tables 3-3 ond 3-4. Table 3-5 is the Stondard Pattern Minefield Requirements Computotian Form faund an the reverse side af DA Form 1355 (Minefield Record).

Table 3-5. Standard Pattern Minefield Requirements Computation Form

5. $10 \%$ of line 4 for minerejections, strip
length variances ..... a 30
b ..... 113
$c$ ..... 220
6. Add lines 4 and 5$=$ tatol minesneededa327
b 1241c 2416
7. Add $a+b+c$ of desired density. ..... 13
8. $\frac{3}{5} \times$ line $7^{*}$ ..... 8
9. $3 \times$ AT density ..... 3
10. Number of strips
(highest number of 8 and 9) ..... 8
11. Desired density $\times 3 \ldots$ a 3 ..... b 12 ..... c $\quad 24$
"In minefield calculatian, fractians will always be raunded up to the next whale number.

## 3-6. SPECIAL TECHNIQUES

a. Protective Minefields. This type af minefield is emplayed to assist a unit in its lacal, close-in protectian. They can be emplayed in both forward and rear areas of the combat zone ar in isalated lacatians such as detached outpasts, work parties, ar roadblocks. Protective minefields are sited acrass likely avenues of approach within range of the defender's organic weapons but a sufficient distance away to be autside of enemy hand grenade range af the defender's pasition. This type af minefield usually is laid on shart notice with units using mines from their basic load ar fram local stocks. The mines must be readily detectable and removable by the installing unit. Examples are metallic antitank and antipersannel mines, flores, and field expedient flame mines. Directional antipersannel mines (e.g., M18 type) are particularly well suited far employment. Claymore mines should be physically remaved, checked and relocated daily. In additian, precautionary measures should be
taken to prevent the enemy from turning the Claymore against the defender during periods of limited visibility.
b. Nuisonce Minefields. This type of minefield is employed to deloy and disorgonize the enemy and ta hinder his use of on oreo or raute. All types af antitank and antipersannel mines are used and, when authorized, chemical mines may be laid. Manually laid antitank mines are equipped with antihandling devices to the maximum extent passible.

Table 3-5-Continued

	Strip	a	b	c	Tatal   Acrass
	A	1	1	3	5
	B	0	2	3	5
	c	0	1	3	4
	D	1	1	3	5
CLUSTER	E	0	2	3	5
COMPOSITION	F	1	1	3	5
table	G	0	2	3	5
	H	0	2	3	5
	1				-
	J				
	K				
TOTAL DOWN.........		3	12	24	

Mines shauld be difficult ta detect and remove. Boobytraps and dirty trick devices may alsa be employed. Nonexplasive devices such as punii pits and whips may be improvised and employed alone or in canjunction with mines and baobytraps.
c. Stream Mining.
(1) Water aver knee-depth (deeper than 0.6 meter). The placement af mines fram upstream ta dawnstream is accamplished by teams af two or three men. One man selects the emplacement pasitian while the second brings the mine from the share to the position. The mine is placed unarmed on the water bottom. Green saplings or other nanbuoyant material may be used as outriggers to prevent the mine fram being moved by the current. One man stays with the planted mine while the ather selects and measures to the next position. A rope knotted in 1 -meter increments is used ta measure the distance. A campass azimuth and the distance fram the secand position to the first mine is reported to the recarding party on shore. The man remaining at the first position arms the first mine, staying on the downstream side of the mine. He then moves dawnstream and away from the mine (for recording see para 3-8). The teams are caardinated sa that all parties remain downstream fram mines that have been armed. Figure 3-16 shows by numbers, the sequence in which mines shauld be laid and armed in the stream. As the mines are laid, the mine laying teams will report to the recarding party the position of each mine. The underwater strips are referenced ta a permanent type stake or abject dawnstream so that they may be removed, if necessary, in reverse arder of being laid.
(2) Water under knee-depth (less than 0.6 meter). The simplest, mast reliable minefield ta recard and remove is the raw minefield where cluster spacings are uniform. Raws are parallel to one anather; and the ends af mined raws extend or slant upstream. A rape, knotted in even cluster spacings, is stretched and held in place as each row is laid. As each subsequent row is to be laid, the reference rope is ariented by compass ar measured from the ends af the priar strip. Figure 3-17 shows the reference rope in place far strip $C$. As in the prior method, mines upstream are planted first.


Figure 3-16. Mining af a fard site, woter aver knee-depth.

## Section III. Reporting and Recording

## 3-7. MINEFIELD REPORTS

A minefield repart is any officiol message ar cammunicatian, narmolly verbol, concerning either friendly or enemy mining ar demining activities. All reports on friendly minefields are clossified SECRET and should be tronsmitted by a meons cansistent with this classification.
a. Mandatory Minefield Reports.
(1) Report of intentian ta lay. This report is made by any secure means of communicatian to the next higher commander by any cammander having the outhority to install a minefield. The required information and desired format usually is described in the unit SOP.


Figure 3-17. Mining o fard site, woter under knee-depth.
(2) Report af initiotian af laying. When the commander af the loying unit begins laying the minefield, he infarms the next higher commander by secure means. This repart is forwarded ta the commonder autharizing the field.
(3) Report of completian of laying. When the minefield has been installed, the commander of the mineloying unit reports this fact ta his next higher cammonder. This report is forworded to army level in all cases except far protective minefields. A repart af completion af o pra-
tective minefield is usually forwarded na higher than division level. The repart of completion must be followed by a campleted standard minefield recard, DA Form 1355 (para 3-8).
b. Optional Reports.
(1) Progress reparts. This report is a matter of cammand standing operating pracedure (SOP).
(2) Report af transfer. This is a written repart which transfers the responsibility far a minefield fram one cammander to anather. It must be signed by both the relieved and relieving commanders and is forwarded ta the next higher cammander having autharity over both the relieved and relieving unit cammanders.
(3) Repart of change. Whenever friendly mines are remaved, a report is made immediately ta the next higher cammander and forwarded through channels to the headquarters which maintains the written mine recard. Whenever any alterations or changes are made to an existing minefield, a campletely new recard must be prepared an DA Form 1355 with the latest date time graup and marked REVISED. The ariginal minefield number remains unchanged.
c. Enemy Minefield Repart. Any knowledge ar suspician of the existence of any enemy minefield must be reported to the next higher cammand immediately. This repart, shauld be arranged to facilitate electrical transmission.

## 3-8. MINEFIELD RECORDS

a. DA Farm 1355. This farm is used ta record all minefields except the hasty protective minefield ( $b$ below). DA Farm 1355 consists af a single printed sheet. The front consists af an upper half for tabular data and a lower half far a scale sketch of the field. On the reverse side are instructions for campleting the DA Form 1355 and a form far camputing the number af mines (para 3-5f). When campleted, the DA Form 1355 is classified SECRET When used far training purpases, the ward SPECIMEN must appear in the sketch.
(1) Standard detailed minefield recard. See figure 3-18.

Figure 3-18. Standard detailed minefield record.
(Located in back of manual)
(2) Nuisance minefield record. See figure 3-19.

Figure 3-19. Recard af nuisance minefield.
(Located in back of manual)
(3) Ford minelaying recard. See figure 3-20.

Figure 3-20. Recard af mines emplaced in a ford deeper than 0.6 meter.
(Located in back of manual)
(4) Enemy minefield recard. The standard DA Farm 1355 is used when preparing o record of an enemy field. The record should include a full description of the morkings, o sketch ar averlay showing locotion and ather information. The record must be marked at the top with the wards ENEMY MINEFIELD.
b. Hasty Protective Minefield Recar̄̄, DA form 1355-1. The purpase of the Hosty Pratective Minefield Record form is to insure the praper recording of any hosty pratective minefields laid by detached or isolated units. The form is issued down to and including platoons. It does nat reploce the current minefield recard, DA Farm 1355, but serves os an interim record until the infarmation is transcribed to a DA Form 1355, or until the minefield is remaved. The Hasty Pratective Minefield Recard, DA Farm 1355-1, is unclassified as long as the minefield is temparary in nature. If the hasty protective minefield is not recovered the farm is reclassified SECRET and is retained as backup for the DA Form 1355. Figure 3-21 shaws the reverse side of the Hasty Protective Minefield Recard which cansists af full instructians ta the recorder ond on example of a recarded minefield.

## Section IV. Mine Removal

## 3-9. MINEFIELD RECONNAISSANCE

a. Types.
(1) Ground recannaissance.
(2) Aeriol recannaissonce.
(3) Reconnaissance by fire.
(o) Artillery, mortar, or rocket.
(b) Bombing.
b. Reconnaissance patral.
(1) A minefield recannoissance patral is normally camprised of an experienced officer ar NCO, faur to six troined men, and a security element armed with light autamatic weapons and grenade launchers (fig. 3-22).
(2) Depending upon the potrol's mission ond types af mines it moy encaunter, equipment may include camposses, wirecutters, probes, mine detectars, disarming implements (wires, safety pins, etc.), tape and protective bady ormor. If secrecy is not essentiol, it may include prepared demalition chorges, grapnels, light lines, and similar means for mine removal. Where toxic chemical mines may be encountered,

## HASTY PROTECTIVE MINEFIELD RECORD



Figure 3-21. Hasty Pratective Minefield Record Farm (reverse).
take such equipment os protective clothing, chemical agent detectar set, first aid supplies, and decontaminatian equipment.
(3) Where recannoissance is preliminory to breaching, the patral records informatian by a tope laid an the centerline af the path. Indicate location of tripwires ar types af mines by knots tied on the tape as follows:


Figure 3-22. Minefield reconnaissance patrol.
Type ..... No. of knots
Apers mine ..... 1
AT mine ..... 2
Tripwire ..... 3
New type mine ..... 4
Toxic chemicol mine ..... 5

## 3-10. MINE DETECTION METHODS

a. Visuol. Visual seorch is an important method of locating mines. Experience with the mine habits of an enemy is often of great help in locoting his mines.
b. Probing. In this method, the earth is penetrated with a shorp instrument such as a mıne probe, a boyonet, or a stiff wire. Probing is the best woy 10 locate buried nonmetallic mines, porticularly the small antipersonnel type similar to the M14. When probing, the soldier moves on hands and knees with sleeves rolled up to locote tripwires and pressure prongs. In oreas where electrical devices are common only, a nonmetallic probe should be used to avoid actuating the electrical firing device.
c. Electrical Detection. When used in conjunction with visual inspection and probing, mine detectors (metallic and nonmetallic) ore effective
oids on locating mines. Both types of detectors, metollic or nonmetallic, moy give a signal when items other than mines ore detected; experience in operating eoch type enobles the user to recognize the chorocteristics of the signol to be expected for eoch type of mine. For the soldier ossigned to this tosk, it is on exocting job, ond he must constontly watch for boobytrops and tripwires. Twenty minutes at a time should be the maximum period for each soldier.

## 3-11. METHODS OF BREACHING MINEFIELDS

a. Hasty ond Deliberote Methods. Breoching is the use of ony means ovaloble to open a lone through o mined.oreo for the passoge of vehicles or personnel. It is either hosty or deliberote.
(1) Hasty breaching requires speed with a minimum of planning. Leading combot units must often clear o lone of oll mines. Speciol mechanical or explosive devices, ortillery or oerial bombordment, or specially troined teoms occomplish this. See toble 3-6.
(2) Deliberate breoching requires extensive planning, ond is normolly done be engineers or other troined personnel, supported by combined arms. Deliberote breoching usuolly is mode in the following phases:
(a) Reconnaissance.
(b) Plons ond preparations.
(c) Breoching ond ottock.
(d) Possage of forces.
b. Explosive Methods. The use of explosives is the eosiest ond most desired method of removing mines. One pound of explosive, with o standard firing assembly, placed on top of o mine will detonate most mines. A detonating cord firing system moy connect a group of mines to fire them simultaneously. Severol different rigid and flexible line chorges are ovailoble for breaching foot ond vehicle lones through minefields. They range in size from the mon-carried bongolore torpedo to the tank pushed "snokes." The vorious models ovoilable ore described in TM 9-1375-200.
c. Mechonicol Methods. The term, mechonical methods, refers to use of rollers, floils, derelict vehicles, etc., pushed by armored vehicles.
d. Plataon Orgonizotion and Equipment for Manuol Breoching. Toble $3-7$ and figure $3-23$ show the orgonizotion of this plotoon ond the operation of o breoching party, respectively.

## 3-12. METHODS OF CLEARING MINEFIELDS

a. Intraduction. To cleor a minefield is to remove or destroy all mines,

Table 3-6. Minefield Average Breaching/Clearing Time and Material Requirements

Method	Width of cleared lane (in meters)	Man-hours req'd per 100 meters	Remarks
Manual			
Locotion by prabing	1 (faatpath)	16-22	See note.
Removal by rape or explasives	8 aneway (vehicle lane)	38-44	See note.
Lacation by detectar, assisted by probing	8 aneway (vehicle lone)	27-33	See note.
Removal by rope ar explasives		220-247	See note.
Explosive			
Demolition snakes, M3AI	6	40-100	
Demalition snake MI 57 (Diamand Lil)	3.5-4.5	6-8	+6-8 manhaurs to assemble
8angalare torpedo.	1 (foatpath)	3.5-4.5	See nate.

NOTE. Bosed upan average conditions of visibility and maderate enemy activity and narmal U.S. countermeosures, i.e. screening of enemy observation and counter-bottery fires against hastile ortillery or other weapons covering the field.
enemy or friendly, in the field. The methods used in mine clearance are similar ta thase in breaching, but are mare deliberate and carefully applied. Minefield records are used ta the maximum. Brush and other cover in the minefield area may be removed by burning.
b. By Probing. To cleor mines from an enemy field or a friendly field for which recards are unavailable, the pracedure described here is to

Table 3-7. Platoan Organizatian and Equipment far Manual Breoching



Figure 3-23. Minefield breaching party.
be considered as a guide only. The platoon is used as the bosic unit, ond mines are blown in place or removed by.rope.
(1) The platoon is orgonized as shown in table 3-8. The clearing parties operate os depicted in figure 3-24.
(2) The use of explosive is described in poragraph 3-11.
(3) Rope remaval is safer thon removing mines by hand. Praceed as follows:
(o) Uncover top of mine.
(b) Attach rape or wire at least 50 meiers long to mine.
(c) Moke sure oll personnel neorby hove token cover.
(d) Toke cover of leost 50 meters from mine ond pull it from hole. (Moke sure the place of cover, such os a foxhole, is checked for enemy bobbytrops prior to this action.)
(e) Wait 30 seconds before opprooching mine.
(f) Recheck hole for odditional mines.
(g) Remove fuze or cut the firing chain.
(h) Carry mine to a dump for disposal or reuse.

Table 3-8. Plataan Organizatian and Equipment for Manual Clearing

Personnel	Officer	NCO	EM	Equipment
Officer in charge	1	-.	$\cdots$	Map, Iensatic compass, partable radia, and all ovalable information on mines in area.
Na. 1 clearing party		1	10	Mine prabes, trocing tape on reels, mine markers, grapnels, rape or wire in 45 meters lengths, $45-\mathrm{cm}$ length s of 10 -and 16-gage wire, demalition equipment, shovels ar entrenching toals, ond. partable radios
No. 2 cleoring party		1	10	Some as No. 1 clearing par ty
No. 3 clearing porty	.	1	10	Same as No. 1 cleoring party
Contral party	.	1	2	Map, lensatic compass, partable radio (2 preferably, 1 for platoon and 1 far campany net)
TOTAL	1	4	32	

c. $8 y$ Use of Detectors.
(1) The plataan is organized the same as for probing, except that each clearing party has three electrical mine detectors and is increased by ane man. The duties and pracedures are basically the same as far probing.


Figure 3-24. Number 1 clearing party.
(2) Figure 3-25 shows the clearing party in action, using electrical detectors.

## 3-13. ROUTE CLEARING OPERATIONS

a. Organization. Raute clearance has same of the characteristics of both minefield breaching and area clearance depending upon the relationship af the route to the enemy and the urgency of the mission. The normal organization for route clearing is shown in figure 3-26. When ambush or command detonoted mines are suspected, route clearance should be performed in a manner shown in figure 3-27.
b. Procedure. Normally, route clearance is accomplished in twa stages.
(1) The first stage includes removal af sufficient mines and other obstacles to clear o ane-way rate, recannaissonce far bypasses or alternate routes, prompt report af mined oreos which hove been breached, cleared or bypassed, and posting af guards ar minefield markings to warn succeeding elements.


Figure 3-25. Clearing party using electrical detectors.


Figure 3-26. Raute clearing party.

*D-DISTANCE WILIVARY ACCOROING TO TERRAIN.
Figure 3-27. Organizatian of security for raute clearing porty when ambushes ar command detonated mines are suspected.
(2) The second stoge includes widening the initiolly cleored poth for double-flow troffic including shoulders, cleoring beyond the line of telephone poles or where signol wire hos been or will be loid, improving byposses, filling in croters, moving obondoned vehicles cleor of the troveled way, erecting more permonent ond eloborote mine-worning ond morking signs, complete checking of crossroods ond rood junctions, ond cleoring ond morking sofe turnouts into unit dispersed oreos.

## 3-14. SAFETY PRECAUTIONS

o. Personnel in o minefield will:
(1) Remoin dispersed.
(2) Not run.
(3) Move only in cleored oreos.
(4) Move to ossist injured personnel only when told to do so by unit officers or noncommissioned officer.
b. All oreos or focilities ore suspect ond ore corefully investigoted.
c. Cleared oreos ore distinctly morked.
d. All mines are considered to be equipped with ontihondling devices until proven otherwise. Never uncover o mine until the ground on top hos been thoroughly checked for onti-lift devices.
e. Hond removal of mines is undertoken only when no other meons of disposol is feosible.
f. All precoutions for hondling explosives ore observed when hondling mines, fuzes, ond firing devices.
g. Mines thot ore removed ore completely seporoted from fuzes ond firing devices ond seporotely stored.
h. Ropid meons of communicotion should be mointained to insure moximum control ond prompt evocuotion of any wounded personnel. Medicol aid personnel should be close of hond to occomplish ony needed first oid.

## 3-15. MINE SYMBOLS

See figure 3-28.

Typeunkown

Apers
(AT, boobytropped


AT, double or multiple

Boobytrops


Figure 3-28. Mine symbols.

## CHAPTER 4

## FIELD FORTIFICATIONS

## Section I. General Data

## 4-1. PRIORITY OF TASKS

Many of the jobs involved in preporing a defensive position are carried on concurrently, but some will be executed in priority. The commander, therefore, specifies the sequence for the preporation of the position and ony special precoutions to be taken regarding camouflage. The following is a recommended sequence.
a. Establish security.
b. Position weapons.
c. Clear fields of fire, remove objects, mask observation ond determine ranges to probable torget locations.
d. Provide for signal communicotions and observation systems.
e. Prepare weopons emplacements and individual positions to include overhead cover, and comoufloge them concurrently.
$f$. Loy minefields and prepare important demolitions.
g. Prepare obstacles (other thon minefields) and less vitol demolitions.
h. Prepore routes for movement and for supply and evocuation.
i. Prepare alternote and supplementary positions.
i. Prepare CBR protective shelters as required.
$k$. Prepare deceptive installations in occordance with plans of higher headquarters.

## 4-2. CLEARING FIELDS OF FIRE

o. Principles. There is little opportunity to clear fields of fire when a unit is in contact with the enemy. Individual riflemen and weapons crews must select the best natural positions available. Usually, there is only time to clear areas in the immediate vicinity of the position. However, in preparing defensive positions for expected contact with the enemy, suitable fields of fire are cleored in front of each position. The following principles are pertinent:
(1) Excess or careless clearing will disclose firing positions.
(2) In oreas orgonized for close defense, cleoring should start near the pasition and work forword for at least 100 meters or to the maximum effective range of the weapon if time permits.
(3) A thin natural screen af vegetatian should be left ta hide defensive pasitians.
b. Pracedure.
(1) Remave the lawer branches af large scattered trees in sparsely waaded areas.
(2) In heavy waads, fields af fire may be neither passible nar desirable within the time available. Restrict wark ta thinning the undergrawth and remaving the lawer branches af large trees. Clear narraw lanes of fire far autamatic weapans.
(3) Thin ar remave dense brush since it is never a suitable obstacle and abstructs the field of fire.
(4) Cut weeds when they abstruct the view fram firing pasitians.
(5) Remave brush, weeds, and limbs that have been cut ta areos where they cannat be used ta canceal enemy mavements ar disclase the pasitian.
(6) Da only a limited amaunt of clearing at ane time. Overestimating the capabilities af the unit in this respect may result in a field af fire impraperly cleared which wauld affard the enemy better cancealment and caver then the natural state.
(7) Cut ar burn grain, hay, and tall weeds.
c. Manhaurs Required. The manhaurs required ta clear 100 square meters are tabulated in table 4-1

Table 4-1. Manhaurs Required ta Clear 100 Square Meters

Descriptian af clearing	Taals used	Manhaurs   required*
Medium clearing:   Clearing undergrawth and   trees less than $12^{\prime \prime}$ in   diameter	Saws, axes	5
Light clearing:   Clearing small brush	Axes, brushhaaks,   machetes, and   hatchets	2.5

[^3]
## Section II. Types

## 4-3. EMPLACEMENTS

a. Requirements. Emplacements shauld be sa canstructed as ta permit each individuol ar weopans crew ta meet the fallawing requirements: (1) Permit each individuol ar each weopons crew to accomplish assigned fire missians.


Figure 4-1. Open ane-man faxhole.
(2) Be simple ond eosily constructed.
(3) Provide moximum protection with minimum time ond lobor.
(4) Be comoufloged ond conceoled.
(5) Provide protection ogoinst mechonized ottock.
(6) Provide protection ogoinst nucleor ottock.
b. Types. See figures 4-1 through 4-6 for different types.
c. Lobor Requirements for Emplocements. See tables 4-2 and 4-3.


Figure 4-2. Open two-mon foxhole.

## 4-4. REVETMENTS

o. Retoining Woll Type. This type of revetment is used in relotively unstoble soils the horizontol loyers of the walls ore tied together so that the woll acts as a structural unit without ony sliding of one port upon onother. The revetment (fig. 4-7) moy be constructed of sondbogs, sod blocks, ond vorious expedients os described below. The methods of building with these construction moterials are os follows:

Table 4-2. Time and Material Requirements far Persannel and Individual Weapans Emplacement.

Type of emplacement or shelter	Total construction time in man hours for construction with 0 -handle shovels and ordinary carpentry tools					Weight and volume of materials								
						Revetment materials for cover support only				Complete revetment				
	Revetment materials for cover support Only		Complete revetment		No revetment materials used									
			Corrugated metal construction	Suzed lumber construction		Corrugated metal construction		Sized lumber construction						
		sized constr			Corru. gated metal constr	Slized lumber constr	$\begin{gathered} \text { Werght } \\ \text { (kg.) } \end{gathered}$	Volume (cu m)	$\begin{aligned} & \text { Weight } \\ & \text { (kg.) } \end{aligned}$	Volume (cu. m.)	Weight (kg)	Volume (cu m.)	Weight ( kg )	Volume   (cu. m).
Improved crater.....	N/A	N/A	N/A	N/A		0.5	N/A							
Skirmishers trench...	N/A	N/A	N/A	N/A		0.5	N/A							
Prone emplacement	N/A	N/A	N/A	N/A	15	N/A								
Open one man foxhole	N/A	N/A	35	45	2.0	N/A	H/A	N/A	N/A	862	010	1089	0.23	
Open one man foxhole with offset ....... .	90	140	10.0	160	N/A	227	0.02	816	016	108.9	0.11	190.5	037	
One man foxhole with half cover .	25	3.0	45	5.5	N/A	45	001	907	0.02	90.7	010	117.9	023	
One man foxhole with hali cover and offset	10.0	140	12.0	180	N/A	27.2	0.02	90.7	017	113.4	011	1996	0.40	
Open two man foxhole . ........	N/A	N/A	60	8.0	30	N/A	N/A	N/A	N/A	1270	014	1352	028	
Deepened two man foxhole.......	N/A	N/A	8.0	10.0	50	N/A	N/A	N/A	N/A	1361	0.16	169.6	0.34	
Two man foxtole with half cover ....	4.0	40	80	100	N/A	72	001	145	0.03	1270	014	1588	031	
two man foxhole with half cover and two offsets	20.0	300	22.0	350	N/A	545	0.04	1804	0.34	172.4	017	317.5	062	
Two man foxhole with half cover and adjoining shelter $\qquad$	11.0	17.0	130	22.0	N/A	454	0.03	2540	0.51	208.7	0.20	399.2	079	
Open fighting trench ( 25 ' length)...............	N/A	N/A	28.0	320	21.0	N/A	N/A	N/A	N/A	2223	0.23	322.1	0.62	
Fighting trench with full cover ( 25 ' length) ...	270	29.0	350	400	N/A	1089	011	163.3	031	3311	034	4808	0.94	

Table 4-3 Time and Material af Crew-Served Infantry and Artillery Weapons Emplacements

Type of emplacement or shelter	Total constuction time in man hours for construction with 0 -handle shovels and ordinary carpentry tools					Weight and volume of materials								
						Revetment materials for cover support only				Complete revetment				
	Revetment materials for cover support only		Complete revetment		No revetment materials used									
			Corrugated metal construction	Sized lumber construction		Corrugated metal construction		Suzed lumber construction						
	$\begin{aligned} & \text { gated } \\ & \text { metal } \\ & \text { constr. } \end{aligned}$	$\begin{aligned} & \text { lumber } \\ & \text { constr } \end{aligned}$			gated metal constr	lumber constr.	Weight (kg)	Volume (cu m)	Weight (kg.)	Volume (cu. m.)	Weight (kg)	Volume (cu m)	Weight (kg.)	Volume (cu m)
Open automatic rifle emplacement	N/A	N/A	70	8.0		40	N/A	N/A	N/A	N/A	77.11	0.085	9072	0.170
Automatic rifle emplacement with 18 " of cover $\qquad$	40	5.0	6.0	7.0		N/A	20.81	0.014	31.75	0.057	9979	0.113	1225	0283
Open horseshoe type M60 machnegun emplacement.	N/A	N/A	5.0	7.0	2.0	N/A	N/A	N/A	N/A	1270	0.142	204.1	0396	
Open 2 one-man foxhole type light machnnegun emplacement	N/A	N/A	60	70	4.0	N/A	N/A	N/A	N/A	2404	0283	2903	0.566	
Horseshoe type light machunegun emplacement with full cover.	90	11.0	110	140	N/A	8618	0.113	1134	0198	326.6	0.368	403.7	0764	
2 one-man foxhole It. machnnegun type emtplacement with $\frac{1}{3}$ cover and adpoming shelter	150	220	190	280	N/A	1134	0.071	2858	0.566	2359	0212	3856	0850	
Cricular type 50 cal machnegun emplacement.	N/A	N/A	14.5	165	10.0	N/A	N/A	N/A	N/A	1361	0142	190.5	0368	
Pit type emplacement for recoilless weapons	N/A	N/A	50	6.0	3.0	N/A	N/A	N/A	N/A	49.9	0028	72.58	0142	
81-mm motar emplacement..... .	N/A	N/A	12.0	N/A	N/A	N/A	N/A	N/A	N/A	95.25	0085	N/A	N/A	
4.2-ınch mortar emplacement.	N/A	N/A	29.0	N/A	N/A	N/A	N/A	N/A	N/A	167.8	0.170	N/A	N/A	
Recoilless rifle position (mounted).	N/A	N/A	N/A	N/A	30.0	N/A								
Recoilless rifle position (dismounted). .....	N/A	N/A	N/A	N/A	170	N/A								
105-mm howitzer emplacement... . . .........	N/A	N/A	N/A	N/A	1000	N/A								
155-mm howizer emplacement....... . . ....	N/A	N/A	N/A	N/A	1700	N/A								



Figure 4-3. Two-man faxhale with half cover.
(1) Sandbags are useful for temparary revetments. Lay them os fallaws:
(a) Fill ta three-faurths of full capacity ( $13 \mathrm{~cm} \times 25 \mathrm{~cm} \times 51 \mathrm{~cm}$ ).
(b) Place a dauble raw af olternate headers ond stretchers as shown in figure 4-7.
(c) Ploce abaut 800 sandbogs per 25 square meters af revetted surface.
(d) Stabilize bags to prolong their life by filling them with 1 part cement ta 10 ports dry earth; in a sond-grovel mixture, increase rotio to 1 ta 6.
(e) Tuck in battam carner af bogs after filling.
(f) Slape the wall toward revetted face at slape of 1 ta 4.
(g) With stabilized sandbags the faundatian shauld be about 15 centimeters below floor level.
(h) Place bags perpendicular to slape.
(i) Place all bogs an battam raw as headers (fig. 4-7).
(i) Alternote intermediote raws as headers and stretchers.


Figure 4-4. Horseshae type emplacement.
(k) Hove top raw cansist of headers.
(i) Place side seams and chaked ends an inside.
(2) Sad blocks af thick sad with gaod roats pravide sotisfactory revetting materiol. Cut sad blocks into $20-$ by 45 -cientimeter sectians and lay them flat. using alternate stretcher-method os with sandbogs (1) above. Loy sod gross-to-gross and soil-ta-sail except far the top layer which is ploced with grass upward far camauflage purposes. Drive twa wooden pegs thraugh each sectian of every layer as it is campleted. Lay this sad revetment at a slope of 1 ta 3.

ROCKET LAUNCHER EMPLACEMENT WITH CONNECTING TRENCH

OIMENSIONS AS FOR STANDARO HALF COVEREO TWO MAN FOXHOLE


Figure 4-5. Rocket launcher emplacement.


Figure 4-6. Two ane-man foxhale type mochine gun emplacement.


ELEVATION
JOINTS BROKEN
Figure 4-7. Retaining wall type af revetment.
(3) Expedients may be used, such as ice blocks in cold weather. They are stocked the same as sondbags or sod. Woter is run over them to bind by freezing. Another expedient is eorth-filled packing cases or ammunition boxes, which ore ploced in position and nailed to the layer below. The boxes ore then filled with eorth or rock. In wooded areas, small timber may be used as revetting moterial.
b. Facing Type. This type of revetment serves mainly to protect revetted surfaces from weather ond damoge caused by occupation. It consists of facing (revetting) material ond support which holds the material in place. The top of the facing is set below ground level so that the revetting moteriol is not damoged by tanks crossing the emplacement.
(1) Materials used in facing may be brushwood hurdles, continuous brush, pole and dimensional timbers, corrugated metol, or burlap and chicken wire. Construction methods of each type ore described in (3) below.
(2) Methods of support.
(a) Timber fromes of dimensioned timber are built to fit the bottom and sides of the position ond hold the facing material aport. This insures that the excavated width remoins stable.
(b) Pickets are driven into the ground on the position side of the focing material and held tightly against the focing by brocing the pickets aport or fastening their tops to stakes or holdfasts (fig. 4-8).
(3) Methods of constructing facing type revetments.
(a) The size of pickets depends upon the soil type and the kind of focing material, but timber pickets should not be smoller than 7.6 centimeters in diameter. Maximum spacing between pickets should be 1.8 meters. Steel wire fence $U$-shaped pickets are excellent for revetting. Pickets are driven at least 0.46 meters into the floor of the position. Where the pickets are anchored at the top, proceed os shown in figure 4-8.
(b) A brushwood hurdle is a woven revetment unit usually 1.8 meters long and of required height.
(c) The pole revetment is similar to the continuous brush revetment, except that a layer of small horizontal round poles cut to wall length is used. If available, boord or planks are used.
(d) Corrugoted metal sheets or pierced steel planks ore strong, durable, and rapidly installed. They may be used for any height or length of revetment. Smear metal surfaces with mud to eliminate possible reflection of thermal rodiation and to aid camouflage.


Figure 4-8. Methad of onchoring pickets.

## 4-5. TRENCHES

Trenches ore excovoted os fighting pasitians ond ta connect individual foxholes, weapons emplocements and shelters in the progressive development of a defensive areo. They provide protection and canceolment for personnel moving between fighting positions ar in ond aut of the areo (figs. 4-9 and 4-10).


Figure 4-9. Standard trenches.

## 4-6. BUNKERS

a. Table 4-4 indicates minimum thickness af pratective material required under given canditians. TB 5-15-1 has been published ta pravide detailed infarmation on prefabricated concrete and steel bunkers, shelters and fighting hale cavers. A discussian af precast techniques is also included.

(1) OCTAGONAL TRACE

(2) ZIGZAG TRACE

Figure 4-10. Standard trench troces.
b. The protective caver ond at least the raof of the supparting structure af on emplacement should be a design unity that freely moves in unison. That is, the averoll cover and roof must be rigid enough to displace as a unit, yet the constructian must be able ta absarb or dampen the shack of on exploding shell.
c. Practical fulfillment af this design unity is a sondwich canstruction in which the twa outer loyers, burster course, and roaf structure, possess

Table 4-4. Minimum Thickness of Protective Moteriol Required to Resist Penetration
No Stondoff
Material in Inches

Types af ammunitian	Sail		Sand		Clay		Sail cement bituminaus cancrete	Concrete	Timber	Alumi-num	Steel
	Wet	Dry	Wet	Dry	Wet	Dry					
.30 cal. ball (AP).	36	24	36	24	44	30	18	9	60	2.6	1.3
50 cal ball (AP)..	54	36	45	30	80	54	18	9	120	4.4	2.2
$57-\mathrm{mm}$ recailless rifle	18	12	18	12	36	24	20	10	20	90	50
$82-\mathrm{mm}$ recailless rifle.	40	27	41	27	80	54	42	22	48	21.0	12.5
$90-\mathrm{mm}$ recailless rifle.	60	40	63	42	120	80	66	33	75	320	19.5
$107-\mathrm{mm}$ recoilless rifle.	72	48	70	48	144	96	84	42	88	40.0	22.5
$60-\mathrm{mm}$ martar.	72	48	45	30	100	64	20	10	20	2.8	1.0
$81-\mathrm{mm}$ martar..	90	60	63	42	136	90	26	13	27	3.7	1.3
$120-\mathrm{mm}$ mortar..	103	70	70	48	180	120	32	16	36	4.7	1.7

$\frac{d}{4}$-Inch Steel or $\frac{1}{2}$-Inch Timber Standoff

. 30 cal ball (AP).	18	12	18	12	22	15	9	6	30	13	0.6
. 50 col . boll (AP).	27	18	26	15	40	27	9	6	60	2.2	1.1
$57-\mathrm{mm}$ recoilless rifle.	9	6	. 9	6	18	12	10	6	10	4.5	2.5
$82-\mathrm{mm}$ recoilless rifle.	20	13	21	13	40	27	21	11	24	10.5	6.3
$90-\mathrm{mm}$ recailless rifle.	30	20	30	21	59	40	33	17	38	16.0	98
$107-\mathrm{mm}$ recailless rifle.	36	24	35	24	71	48	42	21	44	200	11.3
$60-\mathrm{mm}$ mortor.	36	24	22	15	50	32	10	5	10	1.4	. 5
81 -mm mortar.	45	30	31	21	66	45	13	7	14	1.9	. 6
$120-\mathrm{mm}$ mortor..	52	35	35	24	90	60	16	8	18	2.4	. 8



Figure 4-11. 8unker.

- certoin omount of rigidity ond resiliency, ond the middle loyer is a cushion of porous consistency.
d. The most effective test exomple of the design unity for resistonce to direct hits of $155-\mathrm{mm}$, deloyed fuze shells is shown in figure 4-11.
e. In obtoining protection from direct hits of delayed-fuze shells, it is importont that the burster course be thick ond rigid enough to effect detonotion befare the shell hos possed through it. A l-foot ( 30 cm ) thickness of 6 -inch ( 15 cm )-to 8 -inch ( 20 cm ) stone seems to be optimum for ommunition up through 155 mm .
f. The comoufloge layer of soil over the burster course should be no more thon 2 inches ( 5 cm ) thick.
g. In timber construction, notching or grooving should be avoided.
h. Timber field fortificotions with solid wolls ore undoubtedly stronger thon the post, cop, ond stringer type but require considerobly more timber.
i. It is preferable thot a field fortificotion structure be bosed on the excovotion floor, instead of the ground-up type. If based on the groundup type, columns (posts) should extend down into the ground ot the four corners for the purpose of onchoring ond supporting the structure.
i. A bunker capoble of withstanding a hit from $81-\mathrm{mm}$ shells is shown in figure 4-12.


Figure 4-11-Continued.


## PLAN VIEW

Figure 4-11-Continued.


ITEM	DESCRIPTION	NO. PCS
ROOF	$\begin{aligned} & 5 \mathrm{~cm} \times 30 \mathrm{~cm} \times 2.11 \mathrm{~m} \text { Long } \\ & 5 \mathrm{~cm} \times 30 \mathrm{~cm} \times 4.54 \mathrm{~m} \text { Long } \end{aligned}$	48prs
SIDE WALLS	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 2.42 \mathrm{~m}$ Long - Wood	26pes
ENTRANCE WALL	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 1.21 \mathrm{mLong}-$ Wood	26pcs
FIRING PORT AND		
ENTRANCE DOOR	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 30 \mathrm{~cm}$ Long - Wood	26pes
FRONT AND REAR		
WALLS	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 1.51 \mathrm{mLong}-$ Wood	13pes
FIRING PORT AND		
RETAINING WAll	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 1.00 \mathrm{mLong}$ - Wood	8 pes
SIDE POST	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 2.85 \mathrm{~m}$ Long - Wood	6pci
SIDE POST	$15 \mathrm{~cm} \times 15 \mathrm{~cm} \times 1.95 \mathrm{~m}$ Long - Wood	2pcs

Figure 4-11-Cantinued.

## 4-7. SHELTERS

The mast effective shelters are deliberate, undergraund, cut and caver with as deep averheod cover as passible. They should be dispersed and have a maximum copacity of 20 ta 25 men. Typicol shelters, including 0 modular (sectional) type ore illustrated in figures 4-13, 4-14, and toble 4-5. Heavy overhead caver suitoble far either shelters ar bunkers which will pravide protectian against $155-\mathrm{mm}$ shells is shawn in figure 4-15.


Figure 4-12. Fighting bunker with overheod cover.

(1) Typical connection of three sections

(2) framing details

Figure 4-13. Sectional Shelter.


Figure 4-13-Continued.

(5) SHEATHING DETAILS

Figure 4-13-Continued.


OUT-AND-COVER SHELTER IN A HILLSIDE (BAFFLE WALL OF fNTRANCE CAMOUFLAGE OMITTED) SHADED AREA AND BROKEN LINES SHOW CUT-AND-FILL SECTION.


CUT-AND-COVER SHELTER IN A CUT BANK SHOWING SAND-BAGGED OUTER WALL. SHADED AREA AND BROKEN LINES SHOW AREA OF CUT-AND-FILL.

Figure 4-14. Cut and cover shelter.


Figure 4-15. Heavy averhead cover.

Table 4-5. Bill of Moteriols for One 6' $\times 8^{\prime}$ Sectional Shelter With Post, Cop ond Stringer Construction - Dimensionol Lumber

Moteriol List			
No.	Nomencloture	- Rough size	Quontities
1	Cop or sill........	$6^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime} 0^{\prime \prime}$.	4
2	Post.	$6^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime \prime} 10^{\prime \prime}$	6
3	Stringer**.	$6^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime} 0^{\prime \prime}$	16
4	Spreoder.	$3^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime \prime} 0^{\prime \prime}$	3
5	Post, door..	$3^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 6^{\prime \prime}$	1
6.	Brace..	${ }^{*} 3^{\prime \prime} \times 6^{\prime \prime} \times 7^{\prime \prime} 0^{\prime \prime}$	1
7	Brace.	${ }^{\prime \prime} 3^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 10^{\prime \prime}$	3
8	Brace.	${ }^{\prime \prime} 3^{\prime \prime} \times 6^{\prime \prime} \times 8^{\prime} 0^{\prime \prime}$	2
9	Spreoder..	$2^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} 3^{\prime \prime}$	3
10	Spreoder..	$2^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime} 9^{\prime \prime}$	2
11	Spreoder..	$2^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime} 0^{\prime \prime}$	2
12	Scab..	$3^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime} 0^{\prime \prime}$	2
13	Sıding...	$3^{\prime \prime} \times \mathrm{RW} \times 8^{\prime \prime} 0^{\prime \prime}$	$41 \frac{1}{3} \mathrm{SF}$
14	Siding..	$3^{\prime \prime} \times \mathrm{RW} \times 6^{\prime \prime} 0^{\prime \prime}$	36 SF
15	Siding.	$3^{\prime \prime} \times \mathrm{RW} \times 4^{\prime} 0^{\prime \prime}$	24 SF
16	Siding.	$3^{\prime \prime} \times R W \times 3^{\prime \prime} 6^{\prime \prime}$	21 SF
17	Roll roofing.	100 Sq ft roll	6
18	Driftpin..	$\frac{1}{2}^{\prime \prime} \times 14^{\prime \prime}$	44
19	Nails.	60d	32 lb

*Allowonce for double cut ends of braces is included in overall length os shown under rough size.
**Lominoted wood roof (fig. 4-15) moy be substituted if desired.

## Section III. Obstacles

## 4-8. PRINCIPLES OF EMPLOYMENT

Ta be effective, abstacles shauld be sited and laid aut ta meet the fallawing requirements:
a. Under friendly abservatian, cavered by fire, and where practicable, protected by antipersannel mines, flame mines, trip flares and warning devices.
b. Cancealed fram enemy abservation as far as practicable by incarparating terrain features such as reverse slapes, hedges, waads, paths and fence lines.
c. Erected in irregular and nangeametrical traces.
d. Emplayed in depth ar zanes whenever practicable.
e. Caardinated with ather elements af the defense.
$f$. Tie in with ather abstacles.
g. Pravide lanes and gaps.
$h$. Affard na advantage ta the enemy.

## 4-9. TYPES

a. Antipersannel. Obstacles in this categary include:
(1) Wire abstacles canstructed with barbed wire and tape as discussed and illustrated later in this sectian.
(2) Expedient abstacles canstructed fram lacally available material as illustrated herein.
b. Antivehicular. Bath deliberate and-expedient types af abstacles designed ta delay ar stap the pragress af all types af vehicles are illustrated in this sectian.

## 4-10. CLASŚIFICATION OF BARBED WIRE

a. Depth.
(1) Belt - an entanglement ane fence in depth.
(2) Band-twa ar mare belts in depth, with na interval between them. The belts may be fences af the same type, ar the band may be compased af twa ar mare fences af different types, in which case it wauld be called a cambinatian band.
(3) Zane - twa ar mare bands ar belts in depth with intervals between them.
b. Use. See figure 4-16.

$X \times \times \times \times X X X X$ TACTICALWIRE
$x-x-x-x-x$ PROTECTIVE WIRE

- $X=X=X=X$ SUPPLEMENTARYWIRE

Figure 4-16. Classification of wire by use.

## 4-11. ESTIMATING BARBED WIRE REQUIREMENTS

a. Conventianal Deployment. In estimating borbed wire requirements for conventianal deplayment as shawn in figure 4-16, use the fallawing rules af thumb:
(1) Tactical wire; front $\times 1.25 \times$ number of belts
(2) Pratective wire; frant $\times 5 \times$ number af belts.
(3) Supplementary wire.
(a) Farward of FEBA; front $\times 1.25 \times$ number af belts.
(b) Rear of FEBA; frant $\times 2.5 \times$ unit depth $\times$ number af belts.
b. Base Camp Defense. In estimating borbed wire requirements far base camp defense as shawn in figure 4-17, use the follawing rules af thumb:
(1) Tacticol wire; sum af the mean perimeter of each toctical wire belt $\times 1.25$.
(2) Protective wire; perimeter of the pratective wire $\times 1.10$
(3) Supplementory wire; sum af the mean perimeter ar eoch supplementary wire belt $\times 1.25$.


Figure 4-17. Perimeter defense wire.
c. Supply and Labar. Far canstruction estimates of manhaurs and materials, see tables 4-6 and 4-7.

Table 4-6. Wire and Tape Entanglement Materials

Material	Approx weight, kg	Approx length, m	Na . carried by one man	Apprax weight of man-load kg
Barbed wire reel..	415	400	$\frac{1}{2}$	21
Bobbin.	3.5-4.0	30	4-6	14.5-24 5
Borbed tape dispenser.............	0.77	0.45	20	155
8 arbed tope carrying cose........	14.5	300	1	14.5
Stondard borbed tape concertino	14	152	1	14
Standard barbed-wire concertina.	25.4	152	1	25
Expedient barbed-wire concertina. $\qquad$	13.5	61	1	135
Screw pickets:				
Long............................	4	16	4	163
Medium.	27	0.81	6	16.3
Shart........... ..................	1.8	0.53	8	145
U-shoped pickets:				
Extro long.......................	7.25	2.4	3-4	21.8-29.0
Lang..............................	4.5	1.5	4	18.1
Medium.	2.7	0.81	6	16.3
Shart............. . ..............	1.8	0.61	8	145
Wooden pickets:				
Extra long.......................	77-105	2.13	2	15.4-20.8
Long..............................	5.4-7 25	1.5	3	163-21.7
Short.............................	1.4-2.7	0.75	8	110-217

Table 4-7. Material and Labar Requirements far 300-Meter Sectians af Variaus Barbed Wire Entanglements

Type of entanglement	Pickets				Barbed wire no of 400 m , 41.5 kg reels ${ }^{\prime}$	No. of cancertinos ${ }^{4}$	Staples	Kgs of materials per lin $m$ af entonglement ${ }^{2}$	Manhaurs to erect 300 m of entanglement ${ }^{3}$
	Extra lang	Long	Medium	5hort					
Dauble-apron, 4and 2-poce...		100		200	:14-15[19]			${ }^{6} 4.6$ [3.5]	59
Dauble-apran, 6. and 3-pace.		66		132	${ }^{3} 13-15[18]$			${ }^{6} 3.6$ [2.6]	49
High wire (less guy wires). $\qquad$		198			: 17-19[24]			${ }^{6} 5.3$ [4.0]	79
Law wire, 4 - and 2 pace.			100	200	$\therefore 11[15]$			${ }^{6} 3.6[2.8]$	49
4 - strand fence.....		100		2	${ }^{3} 5$-6[7]			${ }^{6} 2.2$ [1.8]	20
Double expedient concertino .. .		101		4	3	100	295	6.9	40
Triple expedient cancertino ...	51	101		7	3	148	295	104	99
Triple stondord cancertina...		160		4	$5_{3}$ [4]	59	317	${ }^{5} 7.9$ [5.4]	30

' Lower numaer of reels opplies when screw pickets ore used, higher number when U-shaped pickets are used. Add difference between the twa ta the higher number when waad pickers are used.
${ }^{2}$ Average weight when any issue metal pickets are used.
${ }^{3}$ Manhaurs are based an the use af screw pickets With the exception af the triple-standard cancertinas, add 20 percent to the manhours when driven pickets are used With experienced traaps, reduce manhours by ane third Increase manhaurs by 50 percent far nught wark.
${ }^{4}$ Based an cancertinas being made up in rear areas and ready far issue. One expedient cancertina apens ta 6 - meter length, as carnpared with 15 meters far a standard concertinc, it requires 92 meters of standard barbed wire, alsa small quantities af Na 16 smaath wire for thes.

S Number af $300 \mathrm{~m}, 145 \mathrm{~kg}$ barbed tape carrying cases required if barbed tape is used in place af barbed wire.
${ }^{6} \mathrm{Kgs}$ of materials required per linear meter of entanglement if barbed tape is used in place af barbed wire and barbed tape can. certina is used in place af standard barbed wire cancertina

## 4-12. BARBED WIRE TIES

See figure 4-18.


Figure 4-18. Barbed wire ties.

## 4-13. BARBED STEEL TAPE

Barbed steel tape (fig. 4-19) and barbed tape concertina can be used in the same manner as standard barbed wire and concertina for the


Figure 4-19 Barbed steel tape.
construction of borbed wire entonglements. Stondord ties ore used with borbed steel tope. A speciol dispenser is used to import o twist to the tape when constructing fences. Recovery of the barbed steel tope usuolly is nat proctical.


NOTE:
AS YOU FACE ENEMY, EYES OF PICKETS fACE TO RIGHT.


Figure 4-20. Double opron fence.

## 4-14. FOUR AND TWO PACE DOUBLE APRON FENCE

a. Erect from right ta left (as you face the enemy).
b. Spacing of pickets.
(1) Long pickets are faur paces aport.
(2) Anchor pickets ore placed two paces fram the line of center pickets ond opposite the midpoint of the space between the center pickets.
(3) Anchor pickets are alsa placed on ends of fence, four paces fram the first and last long pickets.
c. See figure 4-20.

## 4-15. SIX AND THREE PACE DOUBLE APRON FENCE

a. Erect from right to left (as you foce the enemy).
b. Spacing of pickets.
(1) Lang pickets are six poces apart.
(2) Anchor pickets are placed three paces from the line of center pickets and apposite the midpoint af the space between the center pickets.
(3) Anchor pickets are also placed an ends of fence, six paces from the first and lost long pickets.

## 4-16. CONSTRUCTION PROCEDURE FOR DOUBLE APRON FENCES

a. First Operation - Layout and Installation of Pickets (3 Crews).
(1) First crew lays aut lang pickets.
(2) Second crew lays aut shart pickets.
(3) Third crew installs all pickets.
b. Secand Operatian-Layout ond Installatian af Wire. Men ore divided inta 2-4 man crews ta instoll wire.
(1) First wire, enemy diagonol.
(2) Secand wire, enemy trip wire (5-10 cm aff graund).
(3) Third and faurth wire, enemy apron.
(4) Fifth, sixth, seventh, eighth, center fence (install fram battam up).
(5) Ninth wire, friendly diaganal.
(6) Tenth and eleventh wire, friendly apran
(7) Twelfth wire, friendly trip wire.

## 4-17. TRIPLE STANDARD CONCERTINA

o. Erect from right to left (os you foce the enemy).
b. Spoce pickets os follows:
(1) Long pickets ore five poces oport.
(2) Anchor pickets ore ploced two poces from end of long pickets.
(3) Enemy ond friendly rows of pickets ore 3 feet ( 0.9 m ) oport.
(4) Friendly picket row is offset from enemy row.
c. See figure 4-21.
d. Concertino fences ore constructed of either borbed wire concertino or borbed tope concertino. There is no difference in construction methods.


Figure 4-21. Instolling concertinas.

## 4-18. CONSTRUCTION PROCEDURE - TRIPLE STANDARD CONCERTINA

o. First Operotion (3 Crews).
(1) First crew loys out oll pickets.
(2) Second crew instolls oll pickets.
(3) Third crew loys out concertinos.
(o) One concertino in front of third picket on enemy side.
(b) Two concertinos to reor of third picket on friendly side.
(c) Remove binding wire ond ploce on hondles.
(d) Repeot some performonce every fourth picket thereafter.
b. Second Operotion (All Personnel).
(1) Instoll front row concertino and horizontal wire.
(o) Drop concertinos over pickets.
(b) Method of joining (fig. 4-22).


Figure 4-22. Jaining cancertinas.

1. Bottom of ald cancertina an jaining picket.
2. Bottom and tap af new concertina on jaining picket.
3. Tap of ald cancertıno on joining picket.
(2) Install rear row cancertina and harizantal wire.
(3) Install top row cancertina and rack ta the rear harizontal wire.

## 4-19. LOW WIRE FENCE

This is like a 4-and 2-pace dauble apran fence, except that medium pickets instead af lang pickets are used in the centerline. The Na. 5, 6, and 7 wires are not used, which results in all apron and diagonal wires being much claser to the graund. Being law ta the graund, this obstacle is easily hidden in tall grass ar shallow water. For best results, it should be used in depth.

## 4-20. FOUR-STRAND CATTLE FENCE

This is the faur-strand center section of a double-apron fence. In farm cauntry, such an obstacle blends in with the landscape. Woaden pickets at 2- to 4 -pace intervals are set up. If guy wires are used, they should be added separately when estimating because this material is not included in the amaunts listed in table 4-7.
a. Use eight men on short sections of this fence. On 300-meter sections, use up to 17 men.
b. In the first operation the working party is divided into two approximotely equal groups. The first group lays out long pickets at 3-meter intervals. It begins ond ends the section with an anchor picket, including anchor pickets for guys, if needed. The second group installs the pickets
c. As each man completes the first operotion, he moves to the fence. These teams of two or faur men are organized to install wires In four-man teams, two men corry the reel, ond two make ties and tighten the wire. In two-man teams, the wire is unrolled for 50 to 100 meters, then the men make the ties. The first team installs the bottom wire, and succeeding teams install the next wires in order.

## 4-21. COMBINATION BANDS

Many types of fence may be combined in bands to form obstacles more difficult to breach than single belts. Other variations may be readily developed.

## 4-22. PORTABLE BARBED-WIRE OBSTACLES

Standard concertinas ore in this category because they ore readily moved. Other portable barbed-wire obstacles are listed below.
a. Spirals of loose wire are used to fill open spaces in and between wire entonglements. Prepare them by driving four 1 -meter posts into the ground to form a diamond 1 meter by 0.5 meters. Wind 75 meters of wire around them from bottom to top. Remove wire from the frame, tie it at the quarter points, then carry the spirols to site where they are opened and used.
b. The knife rest (fig. 4-23) is a portable wooden or metal frame strung with barbed wire. It is about 4.5 meters long and 1.2 meters high. It must be securely fixed in position.


Figure 4-23. Knife rest.
c. Right atper range (abaut 40 meters). Stretch the placed just autside of grenade the graund and stretch an pickets at wires abaut 25 centimet grenade them in depth in an ire side of a path ar ater infervals. Canceal them
d. Tanglefaat is usegular pattern. ar at the edge af a field. Place Use it in a minimum deped where cancealment is 9 af fram 0.75 to 0.75 meters. Site meters. Height af Place pickets af ired (fig. 4-24). far part of the wite this wire in scrub if barbed wire varialar intervals part of the wire and shart pickets if passible. Use bushes fram 0.25 apen graund.


Figure 4-24. Tanglefaat.
e. The trestle apran fence (fig. 4-25) has inclined crass-pieces spaced at 5- to 6 -meter intervals ta carry wires an the enemy side.


Figure 4-25. Trestle apron fence.


Figure 4-26. Belt of imbedded sharpened stakes.


Figure 4-27. Punii jungle trap.

(1) TRIANGULAR DITCH

(2) SIDEHILL CUT


Figure 4-28. Trapezaidal ditch.

figure 4-29. Log hurdles.


DIMENSIONS

SPACING: IRREGULAR WIDTH: 3.5 TO 6.5 FEET BETWEEN POSTS HEIGHT: 25 TO 4.0 FEET ABOVE GROUND AND APPROXIMATELY 5 FEET BELOW GROUND.

MINIMUM DENSITY 200 POSTSPER 100 METERS OF FRONT.

DIAMETEROFLOGS 16 INCHES
Figure 4-30. Post obstocles.


Figure 4-31. Log cribs.


Figure 4-32. Abatis used os raadblock.


Figure 4-33. Tetrahedrons.

## CHAPTER 5

## MARKING OF BRIDGES AND VEHICLES

## Section I. Bridge and Vehicle Classification System

## 5-1. PURPOSE OF THE SYSTEM

The standard system af bridge and vehicle classification permits the utilizatian of bridges at their moximum safe militory capacities. It provides a practical means af reloting bridge copacity ta the overall loading effect of o vehicle on the bridge. The bridge and vehicle classification system will-
a. Assist the cammander in raute selection far both toctical ond lagistical mavements.
b. Assist the commander in planning bridge reinfarcement and new bridge construction.
c. Pratect the existing bridge fram averload and subsequent damage ar failure.
d. Protect the vehicle, payload and driver fram bridge fallure
e. Prevent costly ond time-consuming delays due ta bridge failure.

## 5-2. APPLICATION OF THE SYSTEM

a. The bridge and vehicle classification system has been established thraugh a series af stondardization agreements appraved far use by member nations of the Narth Atlantic Treaty Orgonization (NATO), the Sautheost Asio Treoty Organization (SEATO), and the United States, United Kingdam, Canadion, and Austrolian Armies Nanmaterial Standardization Program. The applicable agreements are: Standard NATO Agreement (STANAG), SEATO Standardization Agreement (SEASTAG), and Standordization of Operamons and Logistics (SOLOG)
b. The clossification system, as it pertains ta traffic cantrols and the bridge and vehicle marking systems is opplicoble ta all echelans, to include vehicle and equipment aperotors.
c. The classificotion system as it pertoins ta expedient bridge clossification and expedient vehicle classification, is applicable to oll organizotians of the Army thot rely on the mavement of vehicles and equipment.
d. The classification system, to include complete analytical bridge and vehicle classification, is applicable ta all engineer arganizatians down ta battalion level.

## 5-3. VEHICLE CLASSIFICATION MARKINGS

Vehicles are divided into two cotegories for classification and marking purpases: single and combination vehicles.
o. Single Vehicles. A single vehicle hos only ane frame ar chassis, such as a tank or a $2 \frac{1}{2}$-tan truck. Single vehicles are assigned a class number rounded up ta the closest integer. The classification number for single vehicles is marked an a circular sign with black numerals on a yellow bockgraund. This sign is installed or painted an the front of the vehicle and below the driver's line af vision (fig. 5-1). Signs in front are 9 inches in diameter and signs on the side are 6 inches in diameter.


WHEELED VEHICLES


TRACKED VEHICLES


TRAILERS
figure 5-1. Classification markings af single vehicles.
b. Combination Vehicles. A combinotion vehicle is a vehicle consisting of two or more single vehicles which aperate as one unit, such os prime mavers pulling semitrailers. If one vehicle is tawing another and the distance between them is less thon 30 yards, they must be considered a combination vehicle. The sign on the frant of the towing vehicle hos the letter " C " in red above the classification number af the combination. In additian, each companent vehicle af the combination carries a sign on the right side which gives the classificatian number of the companent (fig. 5-2).


Figure 5-2. Classificatian marking of typical cambination vehicles.

## Section II. Vehicle Classification

## 5-4. PRINCIPLES

o. Classificatian Numbers. Classificatian numbers represent the laading effect of the vehicle an a bridge. This effect depends an the grass weight of the vehicle, the spacing of axles, the weight distribution to the axles, and the speed at which the vehicle crasses the bridge. The classificatian number does nat represent the actual weight of the vehicle. All standard army vehicles and special equipment that are active in the theater of aperatians and utilize bridges of military impartance are narmally given a vehicle class number. Exceptians are trailers with o rated paylaad af $1 \frac{1}{2}$ tans ar less, and ather types of vehicles with a grass weight af less than 3 tans.
b. Clossification af Standard Vehicles. Standord U.S. Military vehicles are classified by the Cammanding General, U.S. Army Materiel Cammand (Mabılity Equipment Research and Develapment Center). FM 5-36 lists classification numbers far most standard U.S. military vehicles. The vehicle classificotian list is not camplete, but future changes ta FM 5-36 will include data on new items af equipment as this infarmation becames available. Far any vehicle not listed ar far ony nonstandard vehicle, a classificatian number can be abtoined by submitting laod and dimensional infarmatian ta U.S. Army Cambot Developments Cammand in accardance with instructians cantained in FM 5-36.
c. Vehicle Data. The analytical methad of vehicle clossification is beyond the scape at this manual. It is discussed in TM 5-312. Ta accurately classify a vehicle by this methad, the dimensions af the vehicle and weight distribution data must be abtained. FM 5-36 furnishes a guide ta the specific infarmatian required. It is impartant that the weight data is abtained when the vehicle is empty and again when it is laaded with its full rated paylaod. Weight distributian ta each axle shauld be abtained with scales, unless such infarmation is available in technical publicotians or from vehıcle data plates.

## 5-5. EXPEDIENT VEHICLE CLASSIFICATION

In an emergency, temparary vehicle classificatian can be accamplished by using expedient classificotion methads. The vehicle shauld be re-
classified by the analytical method (paro 5-4c) as soan as practicable ta abtain a permanent classification number.
a. Wheeled Vehicles. Expedient clossification for wheeled vehicles may be accomplished as follaws:
(1) Campare the wheel and axle loadings and spacings af the unclassified vehicle with those of a classified vehicle af similar design shown in FM 5-36, ond assign a temparary class number.
(2) Assign a temporary class number equal ta 85 percent of the grass weight of the vehicle in tons as fallaws:

TEMPORARY CLASS (wheeled vehicles) $=0.85 W_{T}$
where $W_{T}=$ Gross weight of vehicle in tans.
The grass weight of the vehicle may be estimated from the tire pressure and tire contact orea, if no ather means ore availoble:
$W_{T}=\frac{A_{T} P_{T} N_{T}}{2000}$
where, $W_{T}=$ Gross weight of vehicle in tans
$A_{T}=$ Average tire contact area in square inches (tire in cantoct with hord surface)
$P_{T}=$ Tire pressure in psi
$N_{T}=$ Number af tires
Note. The tire pressure may be ossumed to be 75 psi for $2 \frac{1}{2}$-ton vehicles or lorger if no tire gage is avoilable. Far vehicles having unusual laad choracteristics or add axle spacings, a more deliberate vehicle classification procedure, as outlines in STANAG 2021 is required.
b. Tracked Vehicles. Expedient classification far tracked vehicles may be accamplished as fallows:
(1) Compare the ground cantact area of the unclossified tracked vehicle with thot af a previously classified vehicle ta abtain a temparary class number.
(2) Assign a temporary closs number equal to the grass weight of the tracked vehicle in tans.

TEMPORARY CLASS (Tracked vehicles) $=W_{T}$
where, $W_{T}=$ Gross weight in tons
Tracked vehicles con be assumed ta be designed for opproximately 2,000 paunds (ane ton) per square foot of their beoring orea (most heavy vehicles are slightly less thon this). Thus, the gross weight of the tracked vehicle $\left(W_{T}\right)$ con be estimated
by measuring the total ground contact areo of the tracks (square feet) ond equating this to the gross weight in tons.
Example: An unclassified tracked vehicle hos a ground contact area of 5,500 square inches. Therefore, the area is obout 38.2 square feet, and the closs of the vehicle is 38.2 or 39 , since ground contact area in square feet equals approximate weight of o tracked vehicle in tons, which in turn is approximately equal to closs number.
c. Nonstandord Combinotions. The class number (fig. 5-3) of nonstandord combinations of vehicles may be obtaned expeditiously as follows:

Combination class $=0.9(A+B)$ if $A+B \leqslant 60$
Combination class $=A+B$ if $A+B>60$
$A=$ Class of first vehicle
$B=$ Class of second vehicle


Figure 5-3. Classification morking of nonstondard combination vehicle.
d. Adjustment for Other Than Rated Load. An expedient closs may be given to overloaded or unloaded vehicles by odding to or subtracting the difference in looding in tons, from the normally assigned vehicle class. The expedient clossificotion number is marked with a stondard vehicle class sign to indicote temporary classification as shown in figure 5-4.

## SINGLE VEHICLE

Expedient class overlood.


Normol closs +overlood = temporarycloss

$$
20+3=23
$$

Figure 5-4. Example classificatian af an averlaaded vehıcle.

## Section III. Bridge Classification and Marking

## 5-6. CLASSIFICATION NUMBER

The result af bridge classificatian is the determinatian af the bridge class number. The bridge class number is the number which represents the safe military laad-carrying capacity of the bridge, cansidering width restrictians and averhead clearance. Bridges may be given a dual classificatian when the capacity is greater than class 30 . This classificatian cansists af bath a wheeled vehicle class number and a tracked vehicle class number. General methads far calculating the actual safe military laad-carrying capacity of different types af bridges are discussed in TM 5-312. Width restrictians and averhead clearances as they apply ta bridge classificatian are discussed in paragraph 5-7 and TM 5-312.

## 5-7. WIDTH AND HEIGHT RESTRICTIONS

a. Minimum Roadway Width. Roadwoy widths as indicated in toble 5-1 have been prescribed as minimum. If a bridge of a specific classification meets these width requirements, then it can be assumed that all standord militory vehicles bearing the same classification number or lower can cross the bridge without width limitations. No posting is required. If a one-lane bridge meets oll the requirements except minimum width for a certan classification, the classification is not downgraded, but the width is posted as outlined in paragroph 5-8, and appropriate travel restrictions are imposed. A two-lane bridge must meet the minimum lane widths prescribed in table 5-1 If it does not, it must be downgraded to a class within the limits of its actual width. Usually only the two-way class will have to be lowered until the width requirement is met.
b. Overhead Clearance. Overhead clearances, as indicated in table $5-2$, have been prescribed as minimum. When the overhead clearance is less than the minimum prescribed, the clearance should be indicated by the use of o telliale (fig. 5-5).

figure 5-5. Typical telltale indicating overhead clearance of o bridge.
c. Special Handling. Turnouts for parking and unloading vehicles are provided near the bridge. Vehicles requiring special handling, such as those making a one-way crossing of a two-lane bridge, will be directed to the turnout. The marking arrangement is shown in figure 5-11.

Table 5-1. Minimum Lane Widths far Bridges

Bridge class	Minimum width between curbs	
	One lane	Two lane,
$4-12$	$9^{\prime}-0^{\prime \prime}$	$18^{\prime}-0^{\prime \prime}$
$13-30$	$11^{\prime}-0^{\prime \prime}$	$18^{\prime}-0^{\prime \prime}$
$31-60$	$13^{\prime}-2^{\prime \prime}$	$24^{\prime}-0^{\prime \prime}$
$61-100$	$14^{\prime}-9^{\prime \prime}$	$27^{\prime}-0^{\prime \prime}$

Table 5-2. Minimum Overhead Clearances far Bridges

Bridge class	Minimum averhead clearance
$4-70$	$14^{\prime}-0^{\prime \prime}$
71 -aver	$15^{\prime}-6^{\prime \prime}$

## 5-8. BRIDGE CLASSIFICATION SIGNS

Standardization agreements establish the fallawing system af pasting bridge classificatians. In addition, special arrangements may be made by theater cammanders to indicate vehicles af exceptianal width or ta indicate law averhead abstructians. There are two general types af standard mulitary bridge signs. These are circular and rectangular in shape.
a. Circulor Signs. Bath military and civil bridges in the theater af aperatians which have been classified are marked with circular signs indicating the military laad classification. These signs have a yellaw backgraund with black inscriptions. The inscription is as large as the diameter af the sign allows. Circular signs are of two types: normol circular signs and special circular signs.
(1) Normal circular signs.
(0) Signs for ane-lane bridges are a minimum of 16 inches in diameter (fig. 5-6).

figure 5-6. Typical single-lone bridge classificatian sign.
(b) Signs far twa-lane bridges are a minimum of 20 inches in diameter and are divided inta right and left sections by a vertical line. The classification for two-way traffic is shawn in the left half with two parallel vertical arrows beneath the number, and the clossificatian far single flaw traffic is shawn in the right half of the signs with one vertical arrow beneath the number (fig. 5-7).


Figure 5-7. Typical twa-lane bridge classificotian sign.
(2) Special circular signs.
(a) If a bridge has separate classifications for wheeled and tracked vehicles, as a result of dual classificotian, a special circulor sign which indicates bath classificatians is used (fig. 5-8). The sign is o minimum of 20 inches in diameter and is divided inta two sectians by a harizantol line. On the tap half, the wheeled classificatian is shown olong with a symbal representing a wheeled vehicle. On the battom half, the tracked classificatian is shawn alang with a symbal representing a tracked vehicle.
(b) Where similor canditians pertain to a twa-lane bridge, the narmol and the speciol signs for wheeled and tracked traffic may be cambined (fig. 5-8).
(c) Bridges which have been classified by the expedient methads discussed in chapter 5 are morked with standard circular signs.
b. Rectongular Signs. Additional instructians and technicol infarmation are inscribed an rectangular signs. Rectangular signs are a minımum af 16 inches in height ar width and have a yellaw backgraund upon which the apprapriate letters, figures, ar symbals are inscribed in black. The inscription is as large as the sign permits. Separate rectangular signs are used if necessary ta shaw width limitatians, height limitatians (fig. 5-9, or technical infarmation. Width and height signs ore not required an bridges where existing civilian signs are already in place and are sufficiently clear. In thase cauntries which canfarm to the Geneva Canvention of 1949, internotianal height and width signs may be used in lieu af rectongular military signs.
c. Multilane 8 ridges. Bridges af three ar mare lanes are special cases which require individual cansideratian in posting. Ta determine the number of lanes, minimum widths far the respective laad classification (table 5-1) are used. Often, heavier loads can be corried an a restricted lane(s) than on other lanes. For example: a bridge lane may be damaged, thereby reducing capacity; or, canversely, lanes may be structurally designed to accammadate significantly heavier laods (fig. 5-10). Under such circumstances, standard bridge classificatian signs are posted for each lone, and the restricted lanes are marked by barricades. painted lines, or studs.


SINGLE LANE


## DUAL LANE

Figure 5-8. Tvpical dual classification bridge signs.


## HEIGHT SIGN

YELLOW BACKGROUND LETTERS, FIGURES AND SYMBOLS INBLACK


WIDTH SIGN


WIDTH LIMITATION POSTED ON A SINGLE LANE BRIDGE
Figure 5-9. Width and height signs.


Figure 5-10. Typical multilane bridge applications of bridge classification signs and regulotary signs.
d. Positioning of Bridge Signs. Bridge signs are pasitianed sa as ta help maintain an uninterrupted flow of troffic ocrass the bridge (fig. 5-11). The lacatians af circular and rectangular signs, speciol militory load clossificotian numbers, and apprapriate warning signs are as fallaws:
(1) Circulor bridge clossificotian signs are placed at bath ends af the bridge in such a position as ta be clearly visible ta all oncoming troffic.
(2) Rectangular signs ather than thase indicating height restrictians are placed immediately belaw the bridge classification (circulor) signs.
(3) Signs which indicate height restrictions are placed centrally on the overhead obstruction.
(4) Speciol clossificatian numbers are never posted an standard bridge morking signs.
(5) Appropriate odvance worning signs are placed on the appraaches ta bridges os required.


Figure 5-11. Standard bridge signs ond typicol supplementory signs.

## Section IV. Traffic Controls

## 5-9. NORMAL CROSSINGS

Normal crossings may be made whenever the vehicle class number is equal to or less than the bridge closs number. Normal convoy discipline must be imposed on the vehicles making a normol crossing, thot is, a minimum spacing of 100 feet and o maximum speed of 25 miles per hour. There ore two types of normal crossings, normol one-woy and normol two way.
o. Narmal One-Way. This type of crossing is possible when the vehicle closs number is less than the number posted on a single-lone bridge. If
a one-woy crossing is made on a two-lane bridge, the vehicle shauld be driven dawn the middle of the roodway.
b. Norma/ Two-Way. This type of crassing is possible when the vehicle closs number is less than the two-woy class number of a multilane bridge. Two-way traffic may be maintoined with this type af crossing.

## 5-10. SPECIAL CROSSINGS

Under exceptianal operating canditians in the field, the theoter cammander may autharize vehicles to crass bridges when the bridges class number is less thon the vehicle class number. These crossings are known os speciol crossings, ond a special closs number moy be obtained which represents the load-carrying capocity of o bridge under prescribed crossing conditions (table 5-3). Special closs numbers are never posted on stondard bridge signs. Special crossings, when autharized, are limited to twa types: cautian and risk.
a. Caution Crassings. On nanstandard fixed bridges, a cautian class number moy be abtained by multiplying the narmol ane-woy closs number by 1.25 . Far standard prefabricated fixed ond flooting bridges, the caution class number is abtained fram published dato. Caution crossings require that vehicles remain on the bridge centerline, maintoin a 50 -yard clear spocing, do nat exceed a speed of 8 mph , and do not stap, accelerate, opply brakes, or shift gears on the bridge.
b. Risk Crossings. Risk crossings may be mode only an stondard prefabricated fixed of flaating bridges. The risk class number is obtained from published data pertaining ta the bridge. Risk crassings moy be mode only in emergencies when excessive lasses would atherwise result. Risk crassings require that vehicles remoin an the bridge centerline, da nat exceed speed of 3 mph , maintoin a spacing such that only one vehicle is on the bridge at a time, and do not stop, accelerate, opply brokes, or shift geors on the bridge. Tanks must steer using clutches only. An engineer afficer must inspect the bridge for signs of failure after each risk crossing, ond damoged ports must be replaced ar repaired before troffic can be resumed.

Table 5-3. Types of Crossings

Crossing	Closs	Spocing	Speed	Locotion	Other restrictions
Normol	As posted	100 teet	25 mph	In lone	Nane
Coution	Stondord Bridges. As published   Nonstondard Bridges.   $1.25 \times$ normal   1-woy closs	150 feet	8 mph	Bridge centerline	No stopping, occelerotion, braking.
Risk	Standard Bridges: As published   Nonstondord Bridges:   No crossing	1 vehicle an bridge at o time	3 mph	Bridge centerline	No stopping, occelerotion, braking lnspection by Engineer Off. ofter each vehicle.

## CHAPTER 6

## FLOATING EQUIPAGE

## Section I. Anchorage Systems

## 6-1. TYPES

o. Basic Considerations. Anchorage must be provided on float bridges to secure the bridge and keep it alined. Tihe selection of anchorage system is influenced by the width of the river, its current, stage variation, debris flow, the river bed, embankments and resources available. The anchoroge system is designed to withstand the worst conditions onticipated. The bosic anchorage systems used are: shore guys, kedge anchors, a combinotion of shore guys and kedge anchors, and overhead coble-bridle line systems. The strongest stondord method of anchoring a floating bridge is the overhead cable-bridle line system supplemented by shore guys. The approach guys ore used on each end of the bridge. They are attached at a $45^{\circ}$ angle on each side of the bridge to prevent longitudinal and lateral movement. Approach guys ore used on all stondard bridges regardless of the type of anchorage system employed. Although combinations of the basic anchoroge systems moy be used during assembly and for reinforcement, the load cannot be properly divided between two systems; one system must supplement the other.
b. Shore Guys. Shore guys are used as primory anchorage when the maximum current does not exceed 3 feet per second (fps). They are used downstream when tidal conditions or severe eddies of 3 fps or less exist. See figure 6-1 for o typical shore guy anchorage system.
c. Kedge Anchors. Kedge anchors for heavy floating bridges may be used os primory anchorage in low debris currents up to 3 fps . They are useful anly in river beds composed of sand, silt or loose rock or other material into which the fluke con take hold. To be effective the horizontal distance from the ponton or float to the anchors must be at leost 10 times the depth of water and a 20 to 1 rotio is preferred. Kedge anchors are attached to every ponton upstream and every second ponton downstream. They may be used os primary anchorage in reversol currents up to ond including 3 fps When employed in reversal current, they should be attached to every ponton upstream and downstream.
d. Combination of Shore Guys and Kedge Anchors. A combination of kedge anchors ond shore guys may be used in streom velocities of


Figure 6-1. Normal location of shore guys.
5 fps ar less. In additian to the appraach guys, shore guys shauld be attoched to every sixth boy on the upstreom side and every tenth bay an the downstreom side of the bridge. Kedge onchars should be attached to every panton an the upstream side and ta every secand panton an the dawnstreom side of the bridge.
e. Overhead Coble-Bridle Line System. The overhead cable-bridle line system should be used when the stream velacity is 5 fps but nat aver 5 fps. Overheod coble systems cansist of ane ar more towersupported cables spanning the river parallel to the bridge an the upstream side. They are also used downstreom af the bridge in tidal streoms af severe current. Bridle lines are used to make the bridge secure to the cable.

## 6-2. ANCHORAGE DESIGN STEPS

a. Symbols far Ancharage Design Farmulas. See figure 6-2.

(1) Anchorcoble-Elevetionlayeut

## EETTOSTMBOIS.

BE MEAN BANK HENGMT C = DISTANCE TOWER TO DEADMAN ON CENTERLINE D= DEPTH OF DEADMAN $G=$ IENGTH OF BLIDGE H = ANCHOR TOW ER HELGHT
$I$ = DISTANCE BETWE ENANCHOR TOWER $Q_{2}=$ OFFSEI BRIDGE CENTERLDNE TO ANGHOR TOWEM GENTE RLINE OFOFFSET ANGHOE TOWER CENTERLINE TO DEADMAN S= UNSTRESSED SAG DN ANCHOR CABLE C = GROUNDAE A HING STRENGTH IN POUNDS PER SQUARE FOOT T= CABLE TENSHON IN POUNDS


12 Anchor coble-bidiebnelogeutplon

Figure 6-2. Anchar cable-bridle line ancharage systems.
b．Cables．
（1）Determine size and number af ancharage cables that are needed（table 6－1）．
（a）Raund up ta next higher value far bridge span（G）shawn in table 6－1．
（b）Select cable size far minimum number af cables．
Table 6－1．Anchar Cable Requirements．

BRIOET SPAM （ f ．）	ER106E   TYPE ASSY．		SIZE（IN ）AND NUMBER OF CABLES FOR SPECIFIED STREAM VELOCITIES											
			5 FPS			7 FPS			9 FPS			11 FPS		
			SIMCLE	OUAL	TRIPLE	SIncte	DUAL	TR1PLE	SIMELE	DUAL	triple	SIMELE	OUAL	TRIPLI
200	M4	N	\％$/ 8$	7／10	3／3	76	1\％	\％	1／2	3	$3 / 1$	1／2	1／2	1／2
		R	1／3	\％	\％	1／2	76	$3 / 9$	96	$1 / 2$	\％	嗗	$1 / 2$	1／2
	M4T6	N	1／2	\％ 10	\％ $1 / 8$	\％	1／2	1／2	1／4	96	1／2	7／9	3／4	相
	8．CL 60	R	5／9	1／2	\％	$3 / 4$	\％／6	1／2	7／8	7／4	5	$11 / 0$	\％	1／4
400	M4	N	1／2	1／6	7／4	1／2	$1 / 2$	1／8	5／8	$1 / 2$	H	1／4		1／2
		R	598	V	4	3／8	$1 / 2$	$1 / 2$	3／4	5	$1 / 2$	1／19	1／4	5／8
	M4T6	N	5／8	1／2	$1 / 2$	74	5／8	1／2	1	\％	$3 / 1$	11／4	1	1／4
	e CL 60	R	1／4	9／6	$1 / 2$	1	3／4	咟	11／4	1	$3 / 4$	11／2	$11 / 4$	7／8
600	M4	N	5／6	1／2	1／8	\％	1／2	3／3	1／4	59	1／2	7／4	$3 / 4$	3／1
		R	3／4	1／2	1／2	3／4	1／6	1／2	7／8	3	\％	1	\％／4	1／4
	M4T6	N	$7 / 4$	5／6	1／2	1	1／4	5／8	$11 / 4$	1	$3 / 4$	11／2	11／4	7／6
	g CL 60	R	1	1／4	Y／2	11／8	1	3／4	11／2	11／4	\％		11／2	11／0
800	M4	N	S／6	$1 / 2$	1／6	3／4	5／8	$1 / 2$	\％	3／4	9	1	\％	1／4
		R	1／4	5／8	1／2	7／4	$1 / 4$	5	1	\％	$3 / 4$	11／8	1	1／8
	M4T6	N	7／6	$3 / 4$	5／8	11／0	7／6	$3 / 4$	1\％	11／0	\％		11／2	11／0
	8．CL 60	R	11／0	7／6	3／4	17／3	11／6	\％		1314	1			11／4
1000	M4	N	1／4	5／6	1／2	7／0	5／8	1／2	1	3／4	格	11／8	\％／0	1／4
		R	7／6	1／4	3／8	1	1／4	F／6	11／r	7／6	$3 / 4$	$11 / 4$	11／3	1／8
	M4T6	N	1	1／0	$1 / 4$	11／4	1	1／8	11／2	1\％	1			11／4
	g CL 60	R	11／4	1	1／4	$11 / 2$	11／4	1			11／8			11／3

（2）Determine cable sag in feet．（Rule af thumb，$S=0.02 L$ ）．The cable shauld be adjusted ta give the initial unladen sag（fig．6－3）．If the cable sag causes the cable ta enter the stream，a flaating suppart may be used at the midspan（fig．6－4）．
c．Tawers．
（1）Determine distance between tawers．Place tawers appraximately the same distance fram each bank．（Rule of thumb，$L=(1.1 \times$ gap $)$ +100 feet）．
（2）Determine required height of tawer（ $H$ ）（Rule of thumb， $H=3 f t+S-B)$ ．This rule af thumb gives the minimum permissible value of $H$ ．Actual value of $H$ will be the next height af tawer abave


Figure 6-3. Cable sag.


Figure 6-4. Float supported cable.
the required tower height. The possible tower heights are given in table 6-2. Use octual tower height selected for subsequent steps.
(3) Determine distance from bridge centerline to onchor tower centerline ( $0_{1}$ ). (Rule of thumb, if mean bank height ( 8 ) is less than $15 \mathrm{ft}, \mathrm{O}_{1}=\mathrm{H}+50 \mathrm{ft}$ or if B is greater than $\left.15 \mathrm{ft}, \mathrm{O}_{1}=\mathrm{H}+8+35 \mathrm{ft}\right)$. d. Deadmen.
(1) Depth of deadman (D). (Rule of thumb, $D=7 \mathrm{ft}$ or D is one foot less than the depth of ground water-minimum depth $=3$ feet. Select the smaller of the two values.

Table 6-2. Possible Anchor Tower Heights

Number of Tawer Sections	Height of Tower
	$3 \mathrm{ft} 8 \frac{1}{4} \mathrm{in}$
2	$14 \mathrm{ft} 6 \frac{1}{4} \mathrm{in}$
$25 \mathrm{ft} 4 \frac{1}{4} \mathrm{in}$	
4	$36 \mathrm{ft} 2 \frac{1}{4} \mathrm{in}$
5	$47 \mathrm{ft} \frac{1}{4} \mathrm{in}$
6	$68 \mathrm{ft} 10 \frac{1}{4} \mathrm{in}$

(2) Determine tower to deadman distance on centerline (C) and deadman offset distance from tower centerline $0_{2}$. The process of selecting deadmon positions is in fact a series of approximations leading to a correct position. Whotever position is selected, it is essentiol that the carrect $O_{2}$ distance is used far the tower to deadman distance (C) selected.
(a) From site conditions select approximate position for deadmon.
(b) Aim ta let $C=4(H+D)$. Minimum permissible value for $C$ is $H+D$.
(c) Read required value of $\mathrm{O}_{2}$ for C selected from table 6-3.
(3) To determine deodman size choose available lumber and check length ( $l$ ), thickness ( $t$ ), depth ( $d$ ) or diameter $\left(d_{1}\right.$ ) of deadman timber (fig. 6-5). Determine 1, $t, d$, or $d_{1}$ from figure 6-6. Enter Nomograph " A " (fig. 6-6) at calumn A with D and slope ratio ( $1 / \mathrm{h}$ ). Plot coble diameter and type on column B. Connect these points and extend to graph.

Toble 6-3. Volues of $\mathrm{O}_{2}$ Per Hundred Feet of C

Current velocities		Offset   in feet per hundred feet   of $C$
Normol   ossembly	Reinforced   ossembly	
	-	9
5 fps	3 fps	
7 fps	5 fps	
9 fps	7 fps	11
11 fps	9 fps	14
-	11 fps	17

Go horizontolly to desired depth ond reod down for length ond thickness ond up for $\log$ diometer. For further detoils see log deodmen in TM 5-210.
e. Design Beoring Plote (fig. 6-7).
(1) To design o flot beoring plote, enter Nomogroph " $\mathrm{B}^{\prime}$ (fig. 6-8) ot type ond size of coble on left ond go horizontolly ocross groph to intersect the line indicoting the size of timber deodmon being used which olso shows the required width of the plote. Drop verticolly to determine the length of the plote ond go to the top of the groph to reod the required thickness of the plote.
(2) To design o formed beoring plote, enter Nomogroph "C" (fig. 6-9) on left os for o flot beoring plote ond proceed os described in (1) obove.
f. Use of More Thon One Overheod Coble (toble 6-1). A downstreom onchor coble moy be needed if o tidol oction exists in o river. The colculotions for o double or triple overheod coble system ore the some os for o single coble system. A double overheod system is illustroted grophicolly in figure 6-10.
g. Work Crew. The orgonizotion of on onchoroge work crew is illustroted in toble 6-4.


KEY:
$D=$ meandepth of deadman
l= length of deadman
$d=$ depth af deadman (timber); $d_{1}=$ diameter of log deadman
$t=$ thickness of deadman
i= width af cable slat(narmally l'-0")
$C=$ distance of deadman behind tawer
$H=$ actual tower height
Figure 6-5. Deadman dimensions.

Figure 6-6. Nomograph " $A$ "
(Lacated in back of manual)

(1) FLAT BEARING PLATE

12; FORMED BEARING PLATE
KEY: $X=$ Bearing plate thickness
$Z=$ Height al flat bearing plate
$Y=$ Length of beoring plate
$D_{1}=$ Diameter af round deadman
$D=$ Depth of dressed deodman
(a) For llat bearing plate, see Nomagroph B.
(b) Forlarmed bearing plate, see Namagroph C.

Figure 6-7. Bearing plote dimensions.

DESIGN OF FLAT GEARING PLATES FOR RECTANGULAR DEADMEN


Figure 6-8. Nomograph " $B$ ".


Figure 6-9. Namograph " C ".


Figure 6-10. Floot bridge with multiple overhead cable system.

Table 6-4. Organizatian of Ancharage Wark Crew far Bridge 300 Feet Lang ar Langer

	Task	Man-haurs needed	Passible wark (men)	Tatal time (hrs)	Remarks
FAR SHORE	Preparing deadman.........	12	4	3	7' hale in saft laamy sail.
	Erecting cable tawer.........	12	12	1	Crew task.
	Adjusting cable ta tawer and deadman.	1	2	30 min	
	Installing share guys...	2	2	1	
NEAR SHORE	Transpart cable ta far share	3	3	1	
	Preparing deadman.......	12	4	3	7' hale in saft laamy sail.
	Erect cable tower............	12	12	1	Crew task.
	Attach bridle lines ta cable...	10 min per line	2	5 min per line	

## Section II. Light River Crossing Equipment

## 6-3. RECONNAISSANCE AND ASSAULT BOATS

o. Plastic assoult boot-repair at depot level.
b. Pneumatic ossoult boot- 10 individual air comportments; $\frac{1}{2}$ may be punctured and full copacity retained. Repoir of unit level.

## 6-4. ALUMINUM FLOATING FOOTBRIDGE

a. One set allocated to Corps/Army Floot Bridge Company.
b. One set $=472 \frac{1}{2}$ feet of bridge, or 100 feet of light vehiculor bridge, or 3 expedient rafts. Bridge or roft capacity: $\frac{1}{4}$-ton vehicle with trailer.
c. One bay $=11$ feet 3 inches effective length; consists of one ponton, one treadway, four handrail posts.
d. Copacity and doto-see tobles 6-6 and 6-7.

## 6-5. LIGHT TACTICAL RAFT/BRIDGE (LTR)

a. Allocation.
(1) Div Engr $\mathrm{Bn}-2$ sets
(2) Carps/Army Float Bridge Companies -6 sets
b. Roff. One set is sufficient for one 4 -ponton normal or reinforced roft or 44 feet of light vehicular bridge.
c. Component Ports per Set. Eight half pontons, eight deck treod panels, eight long filler ponels, six short filler panels, eight long curbs, twelve short curbs, two male ramps, two femole ramps, four fluke anchors, necessary erection equipment, ferry conversion kit. See SM 5-4-5420-SO5.
d. Iranspartation. Normally two $2 \frac{1}{2}$-ton cargo trucks are required for the super-structure, ond one $2 \frac{1}{2}$-ton pole type troiler is required for pontons. Five-ton dump trucks, or military bridge trucks moy be used as expedient tronsportotion.
e. Construction Iime for Light Tocticol Raft (toble 6-8).
f. LTR Personnel Requirements. Personnel required to construct and operote the LTR are shown in tables 69 through $6-11$. Raft capacities are shown in toble 6-12.

Table 6-5. Recannaissance and Assault Baat Data

Item	Use	Descriptian	Capacity	Remarks
Three-man recannaissance baat	Recan-naissance	Canvas w/5 campartments, issued with tawline and 3 paddles; tatal weight 30 lbs.	3 men in current speeds up to 4 fps .	Baat is breath-inflated ar hand pumped; easily carried by ane man when deflated and packed in case
Plastic assault	Assault crassing	Plastic, hand paddled, weight 300 paunds, length $16^{\prime} 5^{\prime \prime}$, width $5^{\prime} 4^{\prime \prime}$	12 infantrymen w/full equipment ar equivalent in current speeds up to 4 fps.	Narmal crew, three engineers; maximum capacity w/na current is 3300 paunds; can be propelled by one $25-\mathrm{hp}$ autbaard matar or speed of 12 fps w/a a laad reduction.
Assault Boor pneumatic	Assoult crassing.	Neoprene coared nylan, pneumatic; weight 250 lbs; length 17 feet, wieth $5^{\prime} 8^{\prime \prime}$	12 fully equipped infantrymen, and a crew of three engineer saldiers	18 in Div. Engr Bn con be poddled or powered by o 25-hp matar at 12 fps in current at 64 fps .70 at Corps/Army Flaot Bridge Ca.


Table 6-6. Aluminum Footbridge Capocity			
Aluminum   flaating   foatbridge	Canditian	Current and capacity	
		0 ta 8 fps	9 ta 11 fps
	Daylight, doubletime	$75 \mathrm{men} / \mathrm{min}$	$60 \mathrm{men} / \mathrm{min}$
	Moonlight, quicktime	$40 \mathrm{men} / \mathrm{min}$	$32 \mathrm{men} / \mathrm{min}$
	Blackaut, quicktime	$25 \mathrm{men} / \mathrm{min}$	$20 \mathrm{men} / \mathrm{min}$

## g. Light Tactical Bridge.

(1) Erection rate: $3 \frac{1}{2}$ feet per minute.
(2) Each bay pravides 11 feet of effective bridge length.
(3) Assembly af light tactical bridge by successive pantons (table 6-13).
(4) Light toctical bridge capocities (table 6-14).
(5) Bridge assembly.
(a) Successive rafts (narmally used an streams aver 300').
(b) Successive bays (narmally used an streams under $300^{\prime}$ ).
(c) Site layaut (fig. 6-11).

Table 6-7. Aluminum Footbridge Doto


Toble 6-8. Assembly of Light Toctical Roft

Type of ossembly	NCO	EM	Time required, minutes
4-ponton, 3-boy.	3	23	20 to 30
5 -ponton, 5-boy.	3	23	20 to 30
6-ponton, 4-boy.	3	23	30 to 45

Toble 6-9. Crew Requirements

Crew	NCO	EM
Corrying.	1	10
Ponton connecting.	1	6
Ponton delivery.....		2
Deck ponel unlooding.	1	5

Toble 6-10. Construction Duties

Step	Crew
(1) Pontons corried to woter.	Corrying.
(2) Guylines ottoched.	Ponton Delivery.
(3) Holf pontons connected.	Ponton Connecting.
(4) Deck ponels positioned over pontons.	Ponton Connecting.
(5) Articuloting ossembly connected.	Ponton Connecting.
(6) Romps connected.	Ponton Connecting.

Table 6-11. Operoting Duties - LTR

Crew	No. of men	Duties
Raft...	8	4 men operate outboord mators; 4 men place and remave chacks from wheels of vehicles.
Near share....	1	1 man guides vehicles anta rafts and instructs drivers in praper aperation of vehicles while being laaded and unloaded.
Far shore......	1	1 man guides vehicle off raft
Guy line.........	4	Handle guy lines.



Figure 6-11. LTR site layaut.

Toble 6-12. (LTR) Copocities

Type of roft	Number of pontons of floats	Overoll length of roft	Stream velocities in feet per second for specified crossing									
			Normol crossing					Risk crossing				
			5	7	8	9	11	5	7	8	9	11
Light toctical roft with orticulotors	4 Pontons   3 Boys	$58^{\prime}$	12	12	12	8	0	14	14	14	12	4
	$\begin{aligned} & 5 \text { Pontons } \\ & 5 \text { Boys } \end{aligned}$	$80^{\prime}$	9	9	9	8	3	11	11	11	11	6
	6 Pontons   4 Bays	$69^{\circ}$	13	13	13	13	6	15	15	15	15	10

Note When operating withaut articulatars, the ratt classification is raised by 4

Table 6-13. Organization for Assembly of LIR by Successive Pontons

Details	NCO	EM	Summary of tasks
Pontan.................	1	10	Unload, launch, ond join half pontons.
Deck...................	1		Unload and place deck panels, curbs and filler panels on pontons.
Ponton delivery.		2	Deliver complete bays to bridge-cannecting site.
Bridge connecting.....	1	4	Cannect assembled bays ta the bridge.
Near-shore abutment.	1	8	Construct near-shore abutment, connect articulator and ramps, and maintain bridge alinement.
Far-shore abutment...	1	8	Construct far-shore abutment, install end section articulator and ramps.
Anchorage .............	2	12	Install anchar cable, bridle lines, and shore guys (see TM 5-210).

Table 6-14. Classes of Floating 8ridge Canstruction from LTR Set

Type of   bridge	Type of   crossing	Streom velocities in feet per second   for specified assembly					
		3	5	7	8	9	11
		Normol					
Light   tactical   raft   floating   bridge	Normol	16	16	13	11	8	2
	Caution	18	18	15	12	9	3
		Risk	21	21	17	14	11

Toble 6-15. Construction ond Transpartation Dota af M4

Bridge set	Standard B stack basis of issue	Suggested working porty		
	Class IV	Detoil	NCO	EM
Flooting bridge: $6-8 \mathrm{ft} 4$ in	Vehicles required far transpartatian of bridge set:	Near-share abutment   Pontan outfitting   (2 crews).   Ponton delivery   (2 crews).	1 4 2	8 36 10
Fixed bridges:		Anchorage.................	2	12
$2-23 \mathrm{ft}$	$2 \frac{1}{2}$-ton cargo truck.	Bolk carrying.	2	88
$2-30 \mathrm{ft}$	$2 \frac{1}{2}$-ton corgo truck.	Bolk loying..................	1	8
2-38 ft	$2 \frac{1}{2}$-ton truck, bolster.	For-shore obutment.........	1	16
2-45 ft	$2 \frac{1}{2}$-tan balster trailer.   $2 \frac{1}{2}$-ton pole type trailer.	Pin checking.................	1	3
Rofts:	5 -tan dump truck.	Total.................	14	181
4-4 ponton 4-6 ponton	Transported by arganic vehicles of the using unit.			
4-7 ponton				

## Section III. Heavy Floating Bridge Equipment

## 6-6. M4 FLOATING BRIDGE EQUIPMENT

a. Description. The M4 bridge bay consists of twa M4 aluminum half pontons jained stern-ta-stern with o flush deck af hollow aluminum balk. The deck balk pottern is sa designed that a "cantinuous beam" action results which distributes the lood aver more than ane ponton. Far design specifics an the deck pattern, see paragraph 6-8. With 18 bolk ocross the deck, the roadway width is 166 inches. The effective length af ane boy is 15 feet.
b. Category. The M4 bridge is currently stacked as a standard B item ond is nat issued to United States units as arganic equipment. It nay be requisitioned against existing needs by length of bridging needed rather thon by sets.


Figure 6-12. Flaating bridge, M4.

Table 6-16 Classified ' of Flooling Bridges

Stream velocities in feet per second for specified assembly													
Iype of bridge	Type of crossing	Normol						Reinforced:					
		3	5	7	8	9	11	3	5	7	8	9	11
	NORMAI	60	60	$450$	$45 / 45$	$30 / 35$	$18$	95	95	$750$	$80 / 65$	$45$	$24 / 27$
M4 ${ }^{1}$	CAUTION	68	65	$58 / 59$	$52 / 53$	$4 / 46$	$29$	100	$10 \%$	B8/	$75$	62	$35 / 37$
	RISK	72	68	$61 / 62$	$58 / 59$	$53 / 84$	$37 / 39$	$105$	$105 / 100$	$101 /$	$88$	$74 / 3$	$45 / 40$
$\begin{array}{r} \text { CLASS } \\ 60^{\prime} \end{array}$	NORMAL	$69$	$55 / 65$	$45 / 5$	$49$	$35 / 45$	${ }^{22} / 25$	85	65	85	65	85	39
	CAUTION	$65$	$62 / 8$	$50$	$52 / 50$	$45 / 49$	$34 / 37$	75	75	75	75	75	47/51
	RISK	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$72 / 7$	$67 / 72$	$62$	$57 / 02$	46o	85	85	85	85	85	$79$
Mal6 ${ }^{\text {' }}$	NORMAL	$50 / 55$	$45 / 55$	${ }^{4} 90$	$35 / 45$	$30 / 40$	$25$	75	75	$7 \%$	65/	$5 \%$	27/30
	CAUTION	$80 /$	$58$	$54 / 55$	$49$	$45 / 47$	$35 / 37$	80	80	79	7.3	$167$	$13 / 45$
	RISK	$68 / 69$	$60 / 6$	$62$	$59 / 60$	$54 / 50$	$43 / 45$	90	90	90	87	B1	59\%

'Bosed on obuiment deck level within $10^{\prime \prime}$ of floaling bidge deck level escept for hinged al alher speciol end spons where timio homs are eiceeded copocities musi be ieduced
: Reinfarced by placing 3 footing supports under 2 boys of dechung is0 'hi, iemfaiced)
${ }^{\prime}$ Copociles based on roodwoy widih of 18 bolk ond deck widih ai 22 balk Reinforced onembly iequires o $38^{\prime} 4^{\prime}$ supelimposed end upon
*Reinfarsed bridge copocities up to 7 fpi ore contralied by end ipon limiolagni
c. Assembly ond Copocity. Loyout, construction, and tronsportotion doto ore shown in figure 6-12 and toble 6-15. Copocities moy be found in toble 6-16. For more specific informotion of the M4 flooting bridge, refer to TM 5-210.
d. M4 Roft.
(1) The M4 roft con be ossembled from the components of the M4 flooting bridge set. The bosic 4 -ponton roft con be converted to o reinforced roft with greoter lood copocity by odding reinforcing pontons. The other recommended types of rofts ossembled ore the six-ponton ond seven-ponton reinforced rofts. The rofts ore shown in figure 6-13.

(1) 4 PONTON
(NORMAL CONSTRUCTION)
NOTE: PONTONS ON $15^{\prime}$ CENTERS

(2) 6 PONTON
(REINFORCED CONSTRUCTION)
NOTE: PONTONS ON $7^{\prime}-6^{\prime \prime}$ CENTERS


REINFORCED CONSTRUCTION
NOTE: PONTONS ON 7'-6 CENTERS
Figure 6-13. M4 raft.
(2) The omaunt of time and the number of trained men required for assembly of M4 rofts are given in table 6-17. Raft classifications are given in toble 6-18. Mare specific informatian concerning M4 rafts can be faund in TM 5-210.

Toble 6-17. Time and Labor to Assemble M4 Roft

Type of ossembly ${ }^{1}$	Time, hr. ${ }^{2}$
4-ponton roft, 15-ft spocing.	2
4 -ponton roft, short deck.	2
Reinforced rofts:	
5-ponton.	$2 \frac{1}{2}$
6-ponton....	3
7-ponton..	31
5-ponton roft, short deck	$2 \frac{1}{2}$

' One plataan is required far each type af assembly.
${ }^{2}$ Far night assembly, increase time 50 percent

The İorger rofts (5-, 6-, or 7 -ponton) ore ossembled by odding one, or more, pontons to this 4 -ponton roft. The reinforcing ponton(s) is centered between the center pontons ond fostened to them by four reinforcing ponton spacers. From five to seven bolster-body trucks, depending upon the number of odded pontons, óre required for transportotion.

## 6-7. CLASS 60 FLOATING BRIDGE EQUIPMENT

o. Bridge Boy. The Closs 60 bridge boy consists of two deck-treod ponels, two curbs, one filler ponel, one 24 -ton pneumotic floot with soddle ponels ond soddle beoms with on effective bridging length of 15 feet. The flooting support for one boy consists of two penumotic holf floots joined stern-to-stern ond, when properly soddled with the equipment provided, it is roted ot 24 tons copocity. The bridge requires crones ond oir compressors, 30 inches of woter for floots ond 40 inches of woter for power boots.
b. Assembly. A bridge is normolly ossembled with 15 -foot deck treod ponels ond filler ponels centered on floots with o reinforced end section on eoch end. The reinforced ond section consists of two boys of superstructure centered on three flooting supports. Construction and tronsportotion and ollocotion doto are listed in toble 6-19.

Iable 6-18 Closses' of Rofts

Type of roft	Number of pontons or floots	Overall length of roft	Stream velocities in feet per second for specified crossing									
			Normal erosaring					Risk crosaing				
			5	7	8	9	11	5	7	8	9	11
Light Tocticol Roll with Articulotors	4 Pontons 3 Boys	58	12	12	12	8	0	14	14	14	12	4
	$\begin{aligned} & 5 \text { Pontons } \\ & 5 \text { Boys } \end{aligned}$	80	9	9	9	8	3	11	11	11	11	6
	6 Pontons   4 Boys	69	13	13	13	13	6	15	15	15	15	10
$M 4^{2}$	4 Normal	87'1*	$50$	$59$	$\mathrm{s}_{55}$	$5 \%$	$4 \%$	$55 / 60$	$55 / 60$	$55$	$55 / 60$	$450$
	Portiolly Reinforced	87'1"	$7 / 75$	$7 \%$	${ }^{65}$	$657$	$59$	$75$	$75$	$75$	$75$	$55 / 80$
	$7 \begin{aligned} & \text { Fully } \\ & \text { Reinforeed } \end{aligned}$	87'1"	$85$	$\begin{aligned} & 85 \\ & 60 \end{aligned}$	$8 \%$	$8$	$55 / 6$	$90$	$96$	$90$	$\phi Q_{5}$	$65$
Closs 60	4 Normol	$92^{\prime} 5^{\circ}$	$40 / 45$	$49$	$35 / 40$	$35 / 40$	$25 / 30$	${ }^{5} q_{5}$	$5 \%$	450	$450$	$35 / 40$
	5 Normol	107'5*	$59$	$50 / 5$	$1 / 50$	$40 / 45$	$39^{\prime}$	$69$	$60$	$55 /$	$50 / 5$	$49$
	$5 \begin{aligned} & \text { Portiolly } \\ & \text { Reinforced } \end{aligned}$	$92^{\prime \prime} 5^{\prime \prime}$	$55 / 80$	$50$	$5 \%$	$150$	$35 / 40$	$69$	$60 / 6$	$69$	$55 / 80$	${ }^{45} / 50$
	5   With 1 shor 1 deck bay renf	$83^{17}$	$69 / 65$	$5 / 80$	$58 / 80$	$50 / 55$	$450$	$65$	$65 / 70$	$65$	$\Delta 0 / 6$	$55 / 80$
	Fully   ${ }^{6}$ Remintorced	92'5"	$65 / 75$	$64$	$89$	$60 / 6$	$5$	$80$	${ }^{89}$	$75$	$780$	$69$
Mat6 ${ }^{2}$	4 Normol	B7'	$50 / 55$	$150$	$40 / 45$	$35 / 40$	$3 \%$	$69$	$55 / 60$	${ }_{5}^{59}$	$15 / 50$	$35 / 40$
	4 Reinforced	86	59	$5 \%$	$150$	$40 / 45$	$35 / 40$	$69$	$69 / 85$	$55 / 80$	$\begin{aligned} & 50 \\ & \hline 55 \end{aligned}$	$150$
	5 Normol	101	$55$	$59$	$45 / 50$	$49$	$35 / 40$	$65 / 70$	$60 / 8$	$55$	$50 / 5$	450
	5 Reinforced	68'9"	$60$	$69$	$55$	$450$	$45$	$7 \%$	$79 / 75$	$65$	$85$	550

[^4]Bridge capacities are found in table 6-16. Articulation of 33 inches above and below the bridge harizontol is abtained by the use af connectar beoms an the femole end and short deck tread sections and cannectar beams an the male end. The bridge narmally is constructed with the mole end towards the far share.
c. Class 60 Rafts. The number af rafts which con be assembled fram the set is limited ta ane becouse the raft requires the use af two ramp bays in the set. Raft lengths and classes are found in table 6-18. Figure 6-14 shaws the floot and panel assembly far the five floot narmal and six flaat reinforced rafts. Mare specific informatian and different raft configuratians are faund in TM 5-210.

Table 6-19. Canstructian and Transpartatian Data of Closs 60 Bridges

Bridge set	8 sosis of issue*	5uggested warking party		
		Detal	NCO	EM
Flaoting bridge $135 \mathrm{ft}$	Closs IV	Supervisary   Crane crew. .   Soddle assembly2 crews   Flact inflation.   Deck ponel.   Flaat handling .   5ingle bay, cannecting.   Baot crew   Bridge assembly   Ancharage.......   Trestle.	2	$\cdots 1$
Fixed bridges:   1. 30 ft   1. 45 ft   1, 60 ft   1, 75 ft   1 multispan fram 85 to 92 fI	Vehicles required for transpartation of bridge set		1	9
	9 ea 5 -tan $6 \times 6$ military bridging trucks carry ane complete bay each 3 ea carry accessories		1	6
				4
			1	8
			1	10
			1	8
Rafts   1 ea, 4, 5, or 6 flact.	Allacation same os M4T6	Tatal	10	80

*May be partial issue af MATO bridge sets
d. Fixed Spans from Closs 60 Campanents. Components af the Class 60 superstructure con be used ta assemble fixed spans. Because of its weight, it is not commonly used in this farm. Two trestle sets ore furnished with eoch Class 60 bridge set. These must be used as sets af two ond crass braced ta each ather ta attain the proper classification. Toble 6-20 and figure 6-15 list the classifications for variaus spans for Closs 60 equipment. Figure 6-16 illustrates the utilizatian af trestles. Table 6-23 lists appraximate heavy bridge erectian times.


REINFORCED 6-FLOAT RAFT WITH FOUR NORMAL DECK BAYS

Figure 6-14. Class 60 raft.

figure 6-15. Class 60 fixed spans.

figure 6-16. Trestle Assembly and Capacity

Toble 6-20. Classes af Fixed-Span Assemblies

Clear span (feet)	Type of assembly	Classes		
		Narmal	Cautian	Risk
24	ABCDE.	(120*)100	(120*) 100 *	(120*) $100{ }^{*}$
26	A8CD.	(120*)95	(120*) 100	(120*)100*
	E.	(120*) 100	(120*) 100	(120*) $100{ }^{*}$
28	ABCD	(115)80	(120*)87	(120*), 00
	E.	(120)85	(120*)92	(120*)100*
30	ABCD.	(105)65	(110)65	(120*)90
	E.	(110)70	(120)80	(120*)95
32	8CDE.	(95)60	(105)70	(120)85
34	BCDE.	(85)55	(90)63	(110)75
36	BCDE.	(75)50	(81)58	(100)68
38	CDE.	(65)45	(75)53	(90)65
40	CDE.	(60)40	(68)50	(83)60
50	CDE.	(30)30	(36)36	(50)45
60	CDE.	(20)22	(22)25	(28)30

${ }^{*}$ Limited by raadway widths.
Nates 1. Figures in parentheses represent wheeled vehicle class and ather figures represent tracked vehicle class
2 These capacities are for most critical position at abutments
3 Far symmetrical erection af type $B$, with respect to abutments, the stated copacities may be increased 10 tons
4 Number af narmal deck ponels utilized depends an span length desired.

## 6-8. M4T6 FLOATING BRIDGE EQUIPMENT

a. 8ridge Bay. The M4T6 bay cansists of 22 narmal balk (stoggered), 4 curb adapters and ane 24 -ton pneumatic flaot with saddle adapters and balk cannecting stiffeners. This is the same floot that is used with the Closs 60 bridge equipment. One bay hos an effective length af 15 feet. The M4T6 bridge con be totally erected by hand and requires on air campressor for assembly. The deck forms o continuous beam action over the pantons with o roadway width of 166 inches.
b. Assembly. A bridge normally is ossembled with the flaats 15 feet an centers and the deck built with o standord balk pattern. The standard balk pattern is shawn in, figure 6-17. The bridge hos rein-
forced end sections consisting of one boy of deck supported by two flooting supports os seen in figure 6-18.


Figure 6-17. Bolk pottern, M4T6 flooting bridge.


## OFFSET SADDLE ADAPTER REINFORCED END SPAN ASSEMBLY

figure 6-18. Bridge, flaating, aluminum deck-balk superstructure (M4T6).
c. Capacity and Assembly. Canstruction and transpartation dato are listed in table 6-21. Bridge capacities are faund in table 6-18. Table 6-22 lists appraximate assembly times far heavy bridges. Additional infarmatian pertaining ta this bridge including expedient cannections with ather floating bridges in contained in TM 5-210.
d. M4T6 Rafts. The limiting factors in raft construction are number of flaats and amaunt of normal balk. Fram ane set a five-flaat reinfarced raft and a faur-float reinfarced raft can be constructed. When langer or heavier loads than normal divisian laads must cross the river, a six-flaat reinfarced raft may be canstructed. Rafts may have either a 15 faot, 16 faot 7 inches, 21 foot 8 inches, or 23 foot 4 inches overhang for raft approaches. The four-float reinforced raft and five-float reinforced raft are shawn in figures 6-19 and 6-20. The balk pattern is shawn in figure 6-17. Far ather rafts, see TM 5-210. Raft classifications are listed in table 6-18.

Table 6-21. Construction and Transpartation Data of M4T6

Bridge set	Basis of issue*	Suggested warking party		
		Detail	NCO	EM per crew
Narmal flaating bridge, 141 ft 8 in One 4-float and ane 5 -flaot reinfarced raft,   2 flaating bridges, 75 ft , ane withaut remfarcing balk an end flaot,   338 ft 4 in	Divisianal Engr. 4 sets Abn. Div Engr nane Engineer flaat bridge campany (5 bridge sets of 141 ft 8 in each for a flaot bridge campany ot full strength, and 3 . sets far a campany at reduced strength)	Flaat inflation   Saddle Assembly ... ..   Assembled flaot delivery   Balk-carrying fram share   Balk-laying   Ancharage   Near-share obutment.   Far-shore abutment	1 2 2 2 1 2 1 1	8 20 4 40 12 12 8 8

*May be partial issue af Class 60 steel treadway bridge transpartation same as Class 60 bridge set See table 6-19

Toble 6-22. Approximote Erection Times for Heovy Bridge (excluding onchoroge system)

Length   (Normol)	Recommended   constr unit	FLT BRG PLT   REQ FOR SUP	Number   of ossy   sites(s)	Time   hours
150	1 compony	2 bridge plts	2	4
200	1 compony	2 bridge plts	2	5
250	1 compony	3 bridge plts	2	6
300	2 componies	3 bridge plts	3	4
350	2 componies	4 bridge plts	3	5
400	2 componies	5 bridge plts	4	5
500	2 componies	5 bridge plts	5	6
600	1 engr bn	5 bridge plts	6	4
700	1 engr bn	6 bridge plts	6	$5-7$
800	1 engr bn	6 bridge plts	6	$6-8$
1000	1 engr bn	8 bridge plts	6	$7-10$
1200	1 engr bn	10 bridge plts	6	$8-12$

[^5]

Figure 6-19. M416 reinforced raft.


Figure 6-20. Five-floaf reinfarced raft.
e. M4T6 Fixed Spons. Campanents af the superstructure af the M4T6 bridge can be used in an unsupported or supparted fixed span. Common lengths af M4T6 fixed spons are 23 feet 4 inches, 30 feet, 38 feet 4 inches ond 45 feet. The mast common is the 38 -faat 4 inch span. The 45 foot fixed span is shawn in figure 6-21. Other fixed spons are canstructed by shortening the standard bolk pottern of the 45 -foot fixed spon. The load classes af fixed spans are shown in table 6-23. Twa trestle sets are issued with the bridge set The use af trestles is illustrated in figure 6-16.

## 6-9. RAFT OPERATION

a. Pawer. Rafts built fram standard bridge sets may be powered by praperly rigged 19 -faot ar 27 -faat bridge erectian pawer boats. One 19-foot baat may be used in currents af nat aver 5 fps. In currents over 5 fps, normally twa 19 -foat baats may be substituted for one 27 -faat baat. Rafts built fram the light tactical raft set narmally are powered by faur autbaard motors. Three of the matars are used ta aperate the roft and the fourth is kept in reserve. When stream velacities are such as ta preclude pushing the raft straight across the stream with availoble pawer boats, the unlaading paint must be dawnstream from the laading point. Use steel pickets in hard soil and waad pickets in safter saild to farm holdfasts ta secure rafts far loading and unlaading.
b. Persannel. Stondard rafts require appraximotely ane squad for operation in additian ta power baat operators.

## Section IV. Amphibious River Crossing Equipment

## 6-10. FRENCH EQUIPMENT

a. Descriptian. This omphibiaus river crassing equipment cansists of twa majar items: the amphibious bridge vehicle, Class 60 ( $\mathrm{A} 8 \mathrm{~V}-60$ ); the amphibious ramp vehicle, Class 60 (ARV-60). The basic unit of each amphibiaus vehicle is a welded steel plate watertight hull maunted in o faur-wheel drive chassis. To insure stability and buayoncy during navigatian, each vehicle is equipped with two pneumatic floats obaut 36 feet in length and $4 \frac{1}{2}$ feet in diameter attached to the sides. A compressor is kept in aperation during water travel to maintain a constont pressure an the flaats. An integral port of each ABV 60 is 26 feet 3 inches af decking, folded far raad transpart, and pivoted and widened for bridge canstruction. After entering the woter, the deck sectian is ratoted $90^{\circ}$, widened ta 13 feet 2 inches, ond deck filler panels are added The effective length af the ramp of the ARV-60 is 26 feet 3 inches. It is 13 feet 2 inches wide.

(1) Layout

(2) H. FRAME FOR BALK FIXED SPAN

Figure 6-21. Layout of deck-balk fixed bridge.

Table 6-23. Classes of Aluminum Deck Balk Fixed Spans

Type of crossing	Capacity for specified span length (ft) and ratia of deck/roadway widths														
	$23^{\prime \prime} 4^{\prime \prime}$	$30^{\prime \prime}{ }^{\prime \prime}$			$38^{\prime} 4^{\prime \prime}$				$45^{\prime \prime} 0^{\prime \prime}$						
	$\frac{22}{18}$	$\frac{22}{18}$	$\frac{22}{16}$	$\frac{24}{18}$	$\frac{22}{18}$	$\frac{22}{16}$	$\frac{24}{18}$	$\frac{26}{18}$	$\frac{20}{16}$	$\frac{22}{18}$	$\frac{22}{16}$	$\frac{24}{18}$	$\frac{24}{16}$	$\frac{26}{18}$	$\frac{26}{16}$
NORMAI	$120 * / 100$	$\therefore 5$	$9 \%$	$9 \%$	$45 / 35$	$50 / 40$	$55 / 45$	$65 / 50$	$24 / 2$	$24 / 25$	$\begin{aligned} & 30 \\ & 130 \end{aligned}$	$39$	${ }^{4} / 35$	${ }_{45}^{49}$	$45 / 40$
CAUTION	$120 \%$	$100$	$100$	$105$	$7 \%$	$\begin{gathered} 70 \\ 71 \end{gathered}$	$75$	$\begin{aligned} & 82 / 50 \\ & 10 \end{aligned}$	$49$	$49$	$46 / 40$	$51 / 43$	$51 / 43$	$56 / 46$	$56 / 46$
RISK	$120 * / 100$	$119$	$1190$	$115 / 9$	$78$	$78$	$85 / 82$	$997$	$47 / 40$	$54 / 45$	$54 / 45$	$69$	$6 \%$	$66$	$66$

1. Deck Width (Number of Balk)

* Limited by Roodwoy Width
$\frac{22}{18}$ Roadway Widih (Number of Balk)
b. Copocity. The French ARCE is clossified as a Closs 60 bridge in currents up to 9 feet per secand.
c. Operation. A four-mon crew, considting af o driver, pilot, ond two crewmen, is required to aperate the vehicle on lond, in the water, ond during bridge constructian. The ABV-60 enters the woter, ready for incorporotian into o bridge or roft, os o 26 foot 3 inch flooting section. All movement of the decking during constructian is hydroulically cantrolled. As successive units enter the woter, they are joined until the required length af bridge hos been built. The end ramp is tronsported by the ARV-60. The corrier unit pasitions the romp for connection to the bridge ond is disengoged when the connectian has been made. All movement af the romp during canstruction ond aperotion is dane by the hydraulic system of the corrier ond bridge vehicle to which it is cannected.
d. Rofting. The constructian procedure far 2, 3, 4, ond 5 unit rofts is similar to thot used far the bridge. The time required varies from 15 minutes ( 2 unit) to 25 minutes ( 5 unit). In such cose, obout 10 minutes is required far connectian of the romps. See toble 6-24 for roft canstruc. tian ond clossificatian.

Toble 6-24. ARCE Raft Copocities

Roft canstruction	$\begin{aligned} & \text { Current } \\ & 0-4.9 \end{aligned}$	Velacity $5.0-6.6$	$\begin{gathered} \text { FPS } \\ 6.7-8.2 \end{gathered}$
2 Unit	55	49.5	4.4
3 Unit	88	80.3	71.5
4 Unit.	121	110	99

## 6-11. MOBILE ASSAULT BRIDGE/EQUIPMENT (MAB)

o Description. This omphibious river crassing equipment consists of o bosic hull af oluminum slate with either on intermediote superstructure or on orticuloting romp end section mounted an top af it. The hull olane provides all the buayoncy-for the vehicle ond the bridge lood. The faur wheels which prapel the MAB unit on lond retract in the woter and the wheel 'wells' con be air pressurized far odded buayancy. Similor to the ARCE, the MAB hos a superstructure which is rototed $90^{\circ}$ ta form one boy of bridge decking. The effective length of the romp is 36 feet ond the interior bay is 26 feet.
b. Copocity. The MAB is clossified as o Closs 60 bridge.
c. Operatian. A three-man crew operates the bridge unit on land and in the woter, ratating the superstructure and maneuvering to connect the unit ta anather interior bay or ramp unit. The romp daes not disconnect from the ramp vehicle os with the ARCE.
d. Allocatian. The MAB is allocated ta the Divisional Engineer Battalion. One MAB campany cansists af 16 interiar bays and 8 end bays. The effective length of ane bridge is 488 feet.
e. Rafting. The canstruction pracedure far MAB rofts is similar to that used far bridging. A faur unit raft consisting af twa end bays and two interior boys capable af carrying a Class 60 load at 8 mph , can be assembled by its crew of three men per unit in about 8 minutes. Table 6-25 shaws clossification af MAB rofts. Table 6-26 cantains specificotians far MAB equipment.

Table 6-25. MAB Raft Capacities


Table 6-26. Mobile Assault Bridge Vehicles

Specificatian	U.S.	French
Vehicle length.	$42^{\prime} 3^{\prime \prime}$	39'11"
Vehicle width - lond travel.	$12^{\prime}$	$10^{\prime \prime} 6^{\prime \prime}$
intermediate.		$13^{\prime}$
water trovel.	12'	$19^{\prime} 8^{\prime \prime}$
Vehicle height - interıor boy	$10^{\prime} 6^{\prime \prime}$	12'10"
end bay...	$11^{\prime} 9^{\prime \prime}$	12'10"
Droft - unlaaded		
Wheel wells at atmospheric pressure....	2'7'	
Wheel wells pressurized..... . ..............	2'0'	$2^{\prime} 0^{\prime \prime}$
Weight tan - interior bay.... ........... ......	23.25	29.70
end bay.	25.80	30.20
Turning radius......................................	$40^{\prime}$	$57^{\prime} 5^{\prime \prime}$
Vehicle speed - land travel.....................	42 mph	45 mph
Fuel tank capacity - U.S. gallans..............	100	132
Engine horsepawer...............................	335	222
Superstructure dimensians		
Length - interior bay.	$26^{\prime}$	$26^{\prime} 3^{\prime \prime}$
end bay	$36^{\prime}$	26'3"
Width.................. . ................... ...	$13^{\prime \prime}{ }^{\prime \prime}$	$13^{\prime} 2^{\prime \prime}$
Ramp articulatian		
Abave harizontal.	Any angle	$5^{\prime} 6^{\prime \prime}$
Below harizontal.	$6^{\prime} 3^{\prime \prime}$	$5^{\prime} 6^{\prime \prime}$

## CHAPTER 7

## FIXED BRIDGES

## Section I. Highway Bridge Classification

## 7-1. NOMENCLATURE

o. Superstructure. A timber trestle bridge (fig. 7-1) is one of the simpest types of bridges built in o theater of operations. Steel or timber stringers rest on near- and for-shore abutments and intermediate supports. The lood carrying component of the superstructure is the stringer system, which may be rectongulor timber, round timber, or steel beams. Steel stringers ore either l-beoms, wide-flonge beams, channel beams, or built-up beams. Maximum span will depend on the size beam and copocity required.

[NUMBERS REFER TO TABLE 7.1]
Figure 7-1. Timber trestle bridge.

Table 7-1. 8 ridge Components of Timber Trestle 8ridge

No.	Bridge components	Common sizes of references
1	Tread.	$2^{\prime \prime} \times 10^{\prime \prime} \times$ Random length.
2	Open-laminated deck.	Voriable Size.
3	Curb.	$6^{\prime \prime} \times 6^{\prime \prime} \times$ Rondom length.
4	Curb riser block	$6^{\prime \prime} \times 10^{\prime \prime} \times$ Rondom Length.
5	Handrail.	$2^{\prime \prime} \times 4^{\prime \prime} \times$ Random length.
6	Handrail post.	$4^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime}-0^{\prime \prime}$.
7	Handrail kneebrace.	$2^{\prime \prime} \times 4^{\prime \prime} \times$ Length to SSuit.
8	End dam.	Use tread material (1).
9	Timber stringers.	See pora 7-5a.
10	Steel stringers.	See pora 7-5c.
11	Cap.	See pora 7-6f.
12	Posts.	See pora 7-6i.
13	Traverse bracing.	$2^{\prime \prime} \times 10^{\prime \prime}$ or $3^{\prime \prime} \times 8^{\prime \prime}$.
14	Longitudinal bracing.	$4^{\prime \prime} \times 6^{\prime \prime}$ or $3^{\prime \prime} \times 8^{\prime \prime}$.
15	Scabs.	Use tread moterial (1).
16	Sill.	Same size as cap (11).
17	Footings.	See para 7-6a.
18	Abutment sill.	Same size as cap (11).
19	Abutment footings.	Same size as footings (17).

b. Substructure. Intermediate supparts for the superstructure may be timber bents (fig. 7-2), tımber piers (fig. 7-3), pile bents (fig. 7-4), or a combination of these supports. Deep water, swift current, or adverse footing conditions require the use of piles.

## 7-2. HIGHWAY STRINGER BRIDGE CLASSIFICATION

a. Procedure. Bridge classification as discussed herein is based on the class of the superstructure only, since this is considered to be the controlling feature in bridge classification. The theoretical substructure design far the given superstructure can be determined using the bridge design card (para 7-6) and then comporing the result with the substructure in place as a basis of determining whether or not the bridge classification should be lowered. The condition of both superstructure and substructure camponents should be examined closely for domage or deterioration and the probable effect on the bridge capacity.


Figure 7-2. Timber trestle bent.


Figure 7-3. Timber trestle pier.


Figure 7-4. Pile bent.
b. Timber Stringers. Classify the weakest spon to obtoin the classificatian af the bridge. If the weakest spon is unknown, use the following procedure for each span.
(1) Meosure width and depth of stringers (measure diameter of stringer if circular), span length, and width of roodwoy. Caunt total number of stringers in the spon. If overhead obstruction exists determine the amount of averhead clearonce to the roodway.
(2) Obtain maximum allowable bending mament per stringer (m) from toble 7-2. Use the formula in figure 7-5 to abtain (m) for a concrete T-beam bridge.
(3) Reod dead load per foat of bridge ( $W_{D L}$ ) from figure 7-6, then divide by the total number af stringers to obtoin wDL.
(4) Knowing $w_{D L}$. ond the span length determine the moment per stringer ( $m_{D L}$ ) due to the dead laad, fram figure 7-7.
(5) Calculote the allawable live moment per stringer ( $m_{L L}$ ) due ta live load: $m_{L L}=m-m_{D L}$.

Note. Check moximum spon length $\left(L_{m}\right)$ af stringer. If $L_{m}$ obtained from table 7-2 is greater thon span length ( $L$ ) praceed ta step 6 . If the moximum span length ( $L_{m}$ ) of the stringer is less thon the spon length $(L)$ reduce $m_{L L}$ by the ratio $L_{m} / L$ and proceed to step 6 .

Toble 7-2. Properties of Timber Stringers

Actual size (b $\times d$ ) (in)	(o)   Moment copacity m (kip.ft)	(b)   Sheor capocity $v$ (kips)	(c)   Maximum spon Length ( $L_{m}$ ) (ft)	Actuol size ( $b \times d$ ) (in)	(o)   Moment capocity m (kip.ft)	(b)   Sheor copacity $\vee$ (kips)	(c)   Moximum span Length ( $L_{m}$ ) (ft)
$4 \times 8$	8.53	3.2	95	$12 \times 20$	1600	24.0	23.8
* $4 \times 10$	13.33	4.0	11.9	$12 \times 22$	193.6	264	26.2
* $4 \times 12$	19.20	48	14.3	$12 \times 24$	230	28.8	28.6
$6 \times 8$	12.80	4.8	9.5	$14 \times 14$	91.5	19.6	16.7
$6 \times 10$	20.0	60	11.9	$14 \times 16$	119.5	22.4	19.1
$6 \times 12$	28.8	7.2	143	$14 \times 18$	151.2	25.2	21.5
* $6 \times 14$	39.2	8.4	16.7	$14 \times 20$	186.7	28.0	238
*6×16	51.2	9.6	19.1	$14 \times 22$	226	30.8	26.2
* $6 \times 18$	64.8	10.8	21.5	$14 \times 24$	269	33.6	286
$8 \times 8$	17.07	6.4	9.5	$16 \times 16$	136.5	256	191
$8 \times 10$	26.7	80	11.9	$16 \times 18$	172.8	28.8	21.5
$8 \times 12$	38.4	96	14.3	$16 \times 20$	213	32.0	23.8
$8 \times 14$	52.3	11.2	16.7	$16 \times 22$	258	352	262
$8 \times 16$	68.3	128	19.1	$16 \times 24$	307	38.4	28.6
* $8 \times 18$	86.4	14.4	21.5	$18 \times 18$	194.4	32.4	21.5
* $8 \times 20$	106.7	16.4	23.8	$18 \times 20$	240	36.0	23.8
* $8 \times 22$	129.1	176	262	$18 \times 22$	290	39.6	262
* $8 \times 24$	153.6	192	286	$18 \times 24$	346	43.2	286
$10 \times 10$	33.3	10.0	11.9	$8 \phi$	10.05	5.7	9.5
$10 \times 12$	48.0	12.0	143	9 ${ }^{\text {¢ }}$	14.31	72	10.7
$10 \times 14$	653	14.0	16.7	10¢	19.63	88	11.9
$10 \times 16$	85.3	16.0	19.1	$11 \phi$	26.1	10.6	13.1
$10 \times 18$	108.0	180	21.5	12\%	33.9	127	143
$10 \times 20$	133.3	200	23.8	13¢	431	15.0	15.5
* $10 \times 22$	161.3	22.0	26.2	14 ${ }^{\text {d }}$	53.9	17.4	16.7
* $10 \times 24$	192.0	24.0	28.6	$16 \phi$	80.4	226	19.1
$12 \times 12$	576	14.4	14.3	$18 \phi$	114.5	28.6	21.5
$12 \times 24$	78.4	168	16.7	20¢	1571	35.4	23.8
$12 \times 16$	102.4	1.9 .2	19.1	22 $\phi$	209	42.7	26.2
$12 \times 18$	129.6	216	21.5	$24 \phi$	271	50.8	28.6

Key to symbols:
$\phi$ Diameter

* Laterol bracing required at mid-paint and ends af span.
(a) For rectangular stringer not listed, $m=\frac{b d^{2}}{30}$

For 0 round stringer not listed, $m=02 d^{2}$
(b) Far rectongulor stringer not listed, $v=\frac{b d}{10}$

For o round stringer not listed, $v=.09 d^{2}$
(c) For stringer nat listed, $L_{m}=1.19 \mathrm{~d}$


Figure 7-5. Concrete $\boldsymbol{T}$-beom section.
(6) Compute stringer spocing ( $S_{S}$ ).

$$
\mathrm{S}_{S}=\frac{\mathrm{W}_{R}}{N_{S}-1}
$$

Reod the effective number of stringers $\left(N_{1}\right)$ for one-woy troffic from figure 7-8. Compute effective number of stringers for two-woy troffic $\left(N_{2}\right)$.

$$
N_{2}=\frac{3}{8} N_{s}
$$

where $N_{s}$ equols the totol number of stringers in the spon. Compore $N_{1}$ ond $N_{2}$. If $N_{2}$ is greoter thon $N_{1}$ the one- ond two-woy closs will be the some ond the volue of $N_{1}$ is used to determine the closs. If $N_{2}$ is less thon $N_{1}, N_{2}$ will be used to determine the two-woy closs ond $N_{1}$ will be used to determine the one-woy closs.
(7) Determine the live lood moment per lone ( $M_{L, l}$ ) by entering figure 7-9. with the volue of $m_{L L}$ obtoined from step 5 ond either $N_{1}$ or $N_{2}$ as obtóined in step 6.


Dood load/th of spon for various types of Bridgen in kips /f

Figure 7-6. Dead load namograph.


Figure 7-7. Dead load mament and shear.


Figure 7-8. Stringer spacing graph.
(8) Determine the clossification of the bridge based on bending moment by entering figure 7-10 (moment groph) with $M_{L L L}$ as obtoined from step 7 ond the span length as meosured.


Figure 7-9. Live lood moment//one ( $M_{L L}$ )


Figure 7-10. Mament graph.
(9) Obtain maximum allawable shear per stringer (v) fram table 7-2. (See figure 7-5 far cancrete T-beam sectian.)
(10) Knawing wis, fram step 3 and the span length, determine dead laad shear per stringer ( $v \mathrm{v}_{\mathrm{m}}$.) fram figure 7-7.
(11) Knawing the maximum allawable shear per stringer (v) fram step 9 and the dead laad shear per stringer ( $v i, L$ ) fram step 10, calculate

(12) Determine the live laad shear per lane ( $V_{L L}$ ) by entering figure 7-11 with $v_{l l}$, and either $N_{1}$ ar $N_{2}$ as determined in step 6.
(13) Determine the bridge classificatian bosed on shear by entering the shear graph (fig. 7-12) with the value for vil. obtained in step 12 and the measured spon length.
(14) Campare the classifications obtained in step 8 for bending mament and in step 13 far sheor. The lawer of the two classificatians obtained will gavern.


Figure 7-11. Live load shear per lane $\left(V_{l L}\right)$.
(15) Check the width and clearance restrictians (tables 5-1 and 5-2) and downgrade the twa-way class or post a width restriction sign far ane-way class.
(16) Check decking chart (fig. 7-13) based on deck thickness ond stringer spacing. Dawngrade the classificatian if the deck thickness cantrals.
(17) Check lateral bracing. Lateral braces are required as indicated in toble 7-2. If necessory add brocing as required before posting bridge clossification.


Figure 7-12. Shear groph.


Figure 7-13. Decking chart.
c. Example (J), Clossificotian of Timber Stringer Bridge. Classify o two-lane timber stringer bridge hoving na overhead obstructions; spon 20 feet, 10 stringers, each $10^{\prime \prime} \times 18^{\prime \prime}$ actual dimensions; raadway width $\left(W_{H}\right) 24$ feet; timber deckıng 5 inches thick; no laterol braces.
(1) Make fiield measurements to. determine obave infarmation.
(2) $\mathrm{m}=108.0 \mathrm{kip}-\mathrm{ft}$.
(3) $w_{b L}=\frac{1.12 \mathrm{kips}}{10}=0.112$ kips per foat af span.
(4) $\mathrm{mm}=6.0 \mathrm{kip}-\mathrm{ft}$.
(5) $\mathrm{m}_{l . L}=108.0-6.0=102 \mathrm{kip}-\mathrm{ft}$.
$L_{3}$ for $10 \times 18=21.5 \mathrm{ft}>20 \mathrm{ft} \therefore$ OK.
(6) Stringer spacing $\left(S_{S}\right)=\frac{W_{R}}{N_{S}-1}=\frac{24}{10-1}=2.67 \mathrm{ft}$.
$N_{1}=2.9 ; N_{2}=\frac{3}{\theta}(10)=3.75$
$N_{2}$ is greoter than $N_{1}$, therefore ane- and twa-way class will be the same. Use $N_{1}$ ta determine both ane- and twa-way class.
(7) $M_{I, I}=290$ kip-feet.
(8) Class based on mament from figure 7-10 is:

Wheel-60
Track-40
(9) $v=18$ kips (from table 7-2).
(10) $v .1 .=1.1$ kips (from fig. 7-7).
(11) $\mathrm{v}_{\text {vII. }}=18.0-1.1=16.9$ kips.
(12) $v_{L L L}=63 \mathrm{kips}$ fram figure $7-11$.
(13) Class based on shear from figure 7-12 is:

Wheel-60
Track-48
(14) Comparing classificatians abtained from moment and shear (steps 8 and 13) ane- and twa-woy classification is:

Wheel-60
Track-40
(15) There ore no width or height (clearance) restrictions.
(16) Deck thickness is 5 inches with stringer spocing of 32 inches yields closs 40 from figure 7-13, sa deck thickness controls and classificotion is:

> Wheel-40

Track - 40
(17) Na loterol bracing is required.
d. Steel Stringers. Classify the weokest span ta abtain the classification of the bridge. If the weakest spon is unknown use the fallawing procedure for each span.
(1) Meosure stringer dimensians to obtain information required by table $7-3$, ond measure span length ond width af raadway. Count tatal number af stringers in one span. If averhead obstruction is present, measure the averhead cleorance.
(2) Same as step b(2) for timber bridges except use toble 7-3.

Table 7-3. Properties of Steel Stringers

Naminal size	Actual depth   (d)   (In)	Actual width (b) (ın)	Flange thick. ness ( $\mathrm{t}_{\mathrm{t}}$ ) (in)	Web thick. ness ( $\mathbf{t}_{\mathbf{w}}$ ) (in)	Mament copacily m (kıp-ft)	Shear capacity $\checkmark$ (kıps)	Max   span length ( $\mathrm{L}_{\mathrm{m}}$ ) (ft)	Max bracing spacing ( $S_{b}$ ) ( H )
518 U 278	$51 \frac{1}{1}$	14	15	3	3067	594	133	15
*39WF211	$39 \frac{1}{4}$	113	$1 \frac{7}{6}$	3	1770	450	100	15
*37WF206	371	113	$1{ }^{7} 1$	1	1656	425	95	15
$36 W F 300$	367	107		13	2486	520	94	255
36 WF 194	$36 \frac{1}{1}$	121	$1 \frac{18}{17}$	${ }_{4}$	1492	431	93	14
36 WF 182	365	1218	$1 \frac{5}{16}$	3	1397	406	93	13
36 WF170	361	12	11	$1 \frac{7}{6}$	1302	381	92	12
36WF 160	36	12	1	+	1217	365	92	115
36WF230	357	161	11	d	1879	421	91	195
36WF\$50	357	12	15	8	1131	350	91	105
*36WF201	353	113	$1 \frac{7}{10}$	1	1545	402	90	16
33WF196	331	113	$1 \frac{7}{6}$	1	1433	377	85	17
33WF220	334	$15 \%$	14	13	1681	392	85	20
33WFI41	33t	111	$\frac{15}{6}$	8	1005	313	85	11
33WF130	331	111	$\frac{7}{1}$	\% ${ }^{1}$	911	300	85	10
33WF200	33	154	11	$\frac{3}{4}$	1506	362	84	18.5
-31WF180	314	112	$1 \frac{5}{6}$	H	1327	327	80	165
30WF124	30.	$10 \frac{1}{2}$	15	5	797	273	77	$11$
30WF116	30	$10 \frac{1}{2}$	7	$\frac{9}{10}$	738	263	76	10
30WF108	297	$10 \frac{1}{2}$	3	$\frac{1}{16}$	672	255	76	9
*30WFI 75	$29 \frac{1}{1}$	113	$1 \frac{5}{16}$	$\frac{118}{6}$	1156	304	75	175
* 27WF171	27)	117	$1 \frac{5}{16}$	H	1059	282	70	185
27WF102	271	10	18	$\frac{1}{2}$	599	217	69	10
27WF94	267	10	$\pm$	$\frac{1}{2}$	546	205	68	9
*26WF157	251	113	$1 \frac{1}{4}$	5	915	237	65	19
24WF94	$24 \frac{1}{4}$	9	7	$\frac{1}{2}$	497	191	62	11
24WF84	24t	9	3	$\frac{1}{1}$	442	174	61	95
24WF100	24	12	4	$\frac{1}{2}$	560	173	61	13
241120	24	8	11	$1 \frac{3}{16}$	564	286	61	125
241106	24	71	11	$\frac{8}{8}$	527	224	61	12
24180	24	7	7	$\frac{1}{1}$	391	183	61	8.5
24WF76	23\%	9	H	$\frac{7}{16}$	394	163	61	8.5
- 24WF153	23.	113	$1 \frac{1}{4}$	8	828	217	60	20.5
*241134	23.	8)	$1 \frac{1}{4}$	13	634	283	60	$15$
-22175	22	7	17	$\frac{1}{2}$	308	168	56	85

Toble 7-3. Properties of Steel Stringers - Continued

Naminal size	Actual depth (d) (in)	Actual width (b) (in)	Flange thick. ness ( $\mathrm{i}_{1}$ ) (in)	Web thickness ( $\mathrm{t}_{\mathrm{u}}$ ) (in)	Mament copacity m (kıp-ft)	```chear```	Max span length ( $L_{m}$ )   (f)	Max bracing spacing ( $\mathrm{S}_{\mathrm{b}}$ ) (f1)
*21WFI39	21娄	117	$1 \frac{3}{16}$	1	699	198	55	245
*211112	211	77	$1 \frac{3}{16}$	7	495	238	55	14.5
21 WF73	211	81	1	$\frac{1}{2}$	338	148	54	95
21 WF68		$8 \frac{1}{4}$	+	$\frac{1}{16}$	315	140	54	9
21 WF62	21	$8 \frac{1}{4}$	1	1	284	130	53	8
20185	20	716	$\frac{18}{4}$	1 l	337	195	51	11
* 20165	20	$6 \frac{1}{1}$	12	$\frac{1}{6}$	245	132	51	9
*20WF134	193	117	$1 \frac{1}{16}$	1	621	177	50	23.5
18WF60	$18 \frac{1}{4}$	71	H	$\frac{1}{16}$	243	115	46	9.5
+18186	181	7	1	11	326	184	46	13
18WF55	181	7)	1	1	220	108	46	85
+18180	18	8	14	$\frac{1}{2}$	292	133	46	$14$
18WF50	18	71	$\frac{1}{16}$	1	200	99	46	8
18155	18	6	H	$\frac{1}{3}$	199	126	46	7.5
-18WF122	173	113	11/6	16	648	145	45	235
* 18162	174	67	4	1	238	100	45	95
* 18177	173	68	15	1	281	163	45	115
16WF112	164	117	1	$\frac{9}{16}$	450	136	42	23.5
- 16170	167	61	15	1	238	146	42	12
16WF50	162	71	1	3	181	94	41	9
16WF45	$16 \frac{1}{1}$	7	$\frac{1}{16}$	1	163	85	41	8
16WF64	16	81	${ }_{1}$	$\frac{7}{16}$	234	106	40	125
16WF40	16	7	$\frac{1}{2}$	年	145	75	40	75
* 16150	16	6	+18	$\frac{18}{16}$	155	105	40	85
16WF36	157	7	$\frac{18}{16}$	$\frac{1}{16}$	127	74	40	65
* 16WF 110	159	113	1	T\%	345	127	40	25
* 16162	154	61	$\frac{1}{1}$	$\frac{9}{16}$	200	129	40	$11.5$
* 16145	157	51	\%	$\frac{7}{18}$	150	104	40	75
* 15WF 103	15	117	$\frac{18}{3}$	$\frac{1}{16}$	369	121	38	24.5
15156	15	57	+ ${ }_{6}$	$\frac{1}{2}$	173	110	38	105
15143	15	512	1	$\frac{7}{8}$	132	93	38	7.5
- 14 WF 101	$14 \frac{1}{4}$	117	$\frac{18}{18}$	+	344	114	36	26
* 14140	$14 \frac{1}{4}$	57	1	1	119	83	36	8
14151	$14 \frac{1}{1}$	51	3	$\frac{1}{2}$	150	104	36	10
14170	14	8	18	78	204	87	35	18

Toble 7-3. Properties of Steel Stringers - Continued

Naminal size	Actual depth (d) (in)	Actual width   (b) (in)	Flange thickness ( $t_{0}$ ) (In)	Web thick. ness ( $t_{\mu}$ ) (in)	Moment copocity m (kıp-fi)	$\begin{array}{\|c\|} \text { Shear } \\ \text { copocity } \\ v \\ \text { (kips) } \end{array}$	Max span length ( $L_{m}$ ) ( ft )	Max bracing spacing ( 5 b) (ft)
*14157	14	6	1	$\frac{1}{2}$	153	101	35	12.5
*14140	14	51	1		121	78	35	8
14WF34	14	$6{ }^{3}$	$\frac{7}{16}$	${ }_{5}^{5}$	109	6	35	7.5
14 WF 30	136	67	1	$\frac{1}{2}$	94	58	35	6
*14WF92	$13{ }^{\text {d }}$	114	$\frac{1}{6}$	$\frac{1}{2}$	297	96	34	255
*14146	136	53	H	$\frac{1}{2}$	126	99	34	9
*13135	13	5		1	85	72	33	8
*13141	12音	54	H	$\frac{5}{1}$	108	104	32	95
12WF36	121	6it	$\stackrel{9}{\text { P }}$	$\frac{5}{5}$	103	56	31	95
*12165	12	8	$\frac{15}{8}$	76	182	73	30	21
1 2WF27	12	61			76	44	30	7
12150	12	51	It	H	113	120	30	10
12132	12	5	$\stackrel{5}{15}$		81	62	30	75
*12134	111	4	\%	$\frac{7}{16}$	81	72	28	8.5
-11w6F76	11	11	H	d	202	77	28	27
*10129				5	67	48	27	85
10WF25	104	54	$\frac{7}{8}$	1	59	38	25	8
* 10140	10	6	H	1	92	53	25	14
10135	10	5	$\frac{1}{2}$	8	65	88	25	8
10125	10	4	$\frac{1}{2}$	${ }_{5}$	55	46	25	75
10WF21	91.	53	$\stackrel{3}{40}$	$\frac{1}{4}$	48	36	25	65
*10WF59	91	9	H	$\frac{1}{6}$	132	56	23	23
*9125	9	4	$\frac{1}{2}$	${ }^{5}$	51	43	24	8
*9150	9	7	${ }_{3}^{3}$	1	103	45	23	21
*8135	8	6	s	$\frac{5}{16}$	65	34	20	155
*8128	8	5	웅	$1{ }^{16}$	49	35	20	115
8wF31	8	8	$\frac{7}{16}$	${ }^{5}$	61	33	20	145
*8WF44	76	76	8	1	81	40	20	21
*7WF35	71	71	$\frac{9}{16}$	1	58	37	18	185
*6WF31	$6 \frac{1}{4}$	6	\%	,	45	31	16	185

*These naminal sizes have na US equivalent
For stringers nat listed:

$$
\begin{aligned}
m & =2.25 d_{1}\left(b_{t}+d_{i} t_{u} / b\right) \\
v & =16.5\left(d_{i} \times t_{u r}\right)
\end{aligned}
$$

(3) Same as step b(3) far timber bridges.
(4) Same as step b(4) for timber bridges.
(5) Calculate the total live lood mament per stringer ( $m_{L L}$ ) knowing $m$ from step (2) and $m_{D L}$ fram step (4).

$$
m_{I L L}=\frac{m-m_{D L}}{1.15}
$$

Nate. Check $L_{M}$ as in step (5) for timber stringers.
(6) Same as step $b(6)$ far timber bridges.
(7) Same as step $b(7)$ for timber bridges.
(8) Same as step $b(8)$ for timber bridges.
(9) Some os step $b(9)$ far timber bridges except use toble 7-3.
(10) Same as step b (10) for timber bridges.
(11) Same as step b (11) far timber bridges.
(12) Determine live laad shear per lane, $\left(V_{L L I}\right): V_{L L L}=\frac{2 v_{L L}}{1.15}$
(13) Same as b (13) far timber bridges.
(14) Same as b (14) far timber bridges.
(15) Same as b (15) for timber bridges.
(16) Same as b (16) far timber bridges.
(17) Some as b (17) far timber bridges except use $N_{b}=\frac{L}{S_{b}}+1$ to calculate number of loteral braces. $S_{D}$ is the maximum bracing spocing far a given steel stringer and is faund in table 7-3.
e. Example (2), Clossificatian of Steel Stringer Bridge. Classify a bridge with 10-10WF25 stringers, 5 -inch timber deck, span length 20 feet, $W_{R}=24$ feet. There are no overhead abstructians and no laterol broces.
(1) The given data shawn is usually abtained by field measurements.
(2) $m=59$ kip-ft far 10WF25 beam fram table 7-3.
(3) $w_{D L}=1.05 \mathrm{kips}$, figure $7-6$ far a 20 -faat span

$$
w_{D L}=\frac{W_{D L}}{N_{S}}=\frac{1.05}{10}=0.105 \mathrm{kips} / \mathrm{ft} .
$$

(4) $\mathrm{m}_{\text {DI }}=5.3 \mathrm{kip}-\mathrm{ft}$ from figure 7-7.
(5) $m_{L L}=\frac{m-m_{\rho L}}{1.15}=\frac{59-5.3}{1.15}=46.7 \mathrm{kip} \cdot \mathrm{ft}$.

$$
L_{M}=25(\text { fram iable } 7-3)>20 \therefore O K
$$

(6) $S_{S}=\frac{W_{R}}{N_{S}-1}=\frac{24}{10-1}=2.67 \mathrm{ft}$.
$N_{1}=2.9$ feet fram figure 7-8.
$N_{2}=\frac{3}{8} N_{s}=\frac{3}{6} \times 10=3.75$
Since $N_{2}$ is larger than $N_{1}$ one- and two-way class will be the same. Use $N_{1}$ ta abtain bath one- ond twa-woy closs.
(7) $M_{L L}=140 \mathrm{kip}-\mathrm{ft}$.
(8) Class based on mament from figure 7-10 is:

Class 18 far bath wheel and track vehicles.
(9) $v=38$ kips fram table 7-3 far 10WF25 beam.
(10) $v_{D L}=1.1$ kips.
(11) $v_{L L}=v-v_{D L}=38-1.1=36.9 \mathrm{kips}$.
(12) $V_{L I}=\frac{2 v . L}{1.15}=\frac{(2)(36.9)}{1.15}=64.2 \mathrm{kips}$.
(13) Class based on shear fram figure 7-12 is: Wheel-60 Track-46.
(14) Class 18 abtained fram bending moment (step (8)) will gavern.
(15) No width ar clearance restrictions.
(16) Deck thickness of 5 inches with stringer spacing of 32 inches yields class 40 from figure 7-13.
(17) Class af bridge must be bosed an class af the weokest spon. Therefore, the mament class af the steel stringer span gaverns and the bridge classificatian is: 18.
(18) Number af braces, $N_{b}=\frac{L}{S_{b}}+1=\frac{20}{8}+1=3.5$
$\therefore 4$ braces must be added.

## 7-3. REINFORCED CONCRETE BRIDGES

Due to wide variatians in design criteria, it is nat possible ta calculate the exact capacity of a reinfarced cancrete bridge based anly an the measurable external dimensians. Therefore, when infarmatian is ovalable pertoining ta the design laading ar civil laad rating for the bridge (fram o locol agency ar from intelligence reparts), the class will be obtained by correlotian if chorts ore avoilable relating civilian design laad ta the military class far variaus span lengths. Such charts are avalable in TM 5-312 far many United States and foreign civilion design
laads, ar they may be develaped within certain army areas. When the necessary infarmation is nat available far classificatian by carrelatian, the expedient methads shawn belaw may be used.
a. Slab Bridges. Measure the span length fram center-ta-center af supparts in feet, the raadway width $\left(W_{R}\right)$ in feet, the slab width ( $W_{S}$ ) in feet, and the depth ( $D$ ) af the cancrete slab (fig. 7-14) in inches exclusive af any wearing surface ar fill. Enter figure 7-15 with the span length, drawing a vertical line until it intersects the curve representing the depth ( $D$ ) of the slab, estimating when necessary where this paint shauld be. Fram this intersectian draw a harizantal line ta read the value af $m_{L L}$ an the left hand axis. Depending an ane-ar twa-way classificatian, use ane ar bath af the fallawing farmulas ta determine the effective raadway width:

$$
\text { One-way, } W_{1}=\frac{L}{\frac{3}{4}+\frac{L}{W_{S}}} \quad \text { Twa-way, } W_{2}=\frac{L}{\frac{1}{4}+\frac{2 L}{W_{S}}}
$$

Find $M$ far ane-way ar twa-way traffic using $W_{1}$ ar $W_{2}$ respectively:

$$
M_{1,2}=W_{1,2} m_{L I}
$$

Enter figure 7-10 with this value af $M_{1,2}$ and the span length ta abtain the class af the bridge. Check width and height restrictians far the class bridge abtained.


Figure 7-14. Cancrete slab bridge.


Figure 7-15. Live load mament graph for a 12-inch strip of reinforced concrete.
b. Example (3), Classification af a Slab Bridge. Classify a two-lane concrete slab bridge; span length $=20$ feet; $D=14$ inches; raadway width $\left(W_{R}\right)=28$ feet, slab width ( $W_{S}$ ) $=3$ feet. To find the bridge class, enter figure 7-15 with the span length an the harizantol scole and move vertically until it intersects curve for $D=14$ inches and read across to $20 \mathrm{kip}-\mathrm{ft}$ on the verticol scale.
(1) One-way closs: $W_{2}=\frac{L}{\frac{3}{4}+\frac{L}{W_{S}}}=\frac{20}{\frac{3}{4}+\frac{20}{31}}=14.3$
(2) Twa-woy closs: $W_{2}=\frac{L}{\frac{1}{4}+\frac{2 L}{W_{S}}}=\frac{20}{\frac{1}{4}+\frac{40}{31}}=13.0$
(3) $M_{1}=20$ (14.3) $=286$ kip-ft yields class 60 wheel, 40 track from moment graph (fig. 7-10).
(4) $M_{2}=20(13.0)=260$ kip-ft yields class 52 wheel, 34 track.
(5) Bridge class is: One-way Two-woy
a. wheel $60 \quad 52$
b. track $40 \quad 34$
c. T-Beam Bridges. Make the necessory measurements os shawn in figure 7-16, ond find $L$, the span length from center-to-center of supports. All dimensians are in inches except $L$ and $W$, which are in feet. Calculote " $M$ " by the formula:

$$
M=N\left[(158+D(1.07 T+0.34 L+0027 S+0.77 b-24.1)]+0.08 L^{2}\right.
$$

Enter the graph, figure 7-10 with this value of " $M$ " and the span length to obtain the class of the bridge.
d. Exomple (4), Classificatian af o T-Beam Bridge. Classify o twa-lone cancrete T-8eam bridge; $32^{\prime}$ spon length; 7 T-Beams, $S=48^{\prime \prime}, D=30^{\prime \prime}$, $b=12^{\prime \prime}, T=6^{\prime \prime} ; 24^{\prime}$ roadway (see fig. $7-16$ ). To find bridge closs: Raodwoy width limits twa-way closses 4 ta 60 . Number of stringers per lane $=3.5$.

$$
\begin{aligned}
& M=3.5[158+30(1.07(6)+0.34(32)+0.027(48)+0.77(12) \\
& -24.1]+0.08(32)^{2} \\
& M=3.5[158+30(6.42+10.88+1.30+9.24-24.1)]+82 \\
& M=3.5[158+30(3.74)]+82=3.5(158+1122)+82=1028
\end{aligned}
$$

With this value of " $M$ " and the span length, abtain the class fram the mament graph (fig. 7-10).
Twa-way Class: Bridge is class 60 wheeled as limited by raadway width and class 50 tracked. One-way Class:

Effective Na. af Str. $=\frac{15}{\text { raadway width in feet }} \times$ Na. of Str.
$=\frac{15}{24} \times 7=4.375$
$M=4.375[158+112.2]+82=1264$
Bridge is class 95 wheeled and class 63 tracked.


Figure 7-16. Cancrete T-beam bridge.

## 7-4. MASONRY ARCH BRIDGE

Ta abtain the bridge classification far a masanry arch bridge, a pravisianal class number based an the crawn thickness and span length is determined, this pravisianal class number is then adjusted by applying factars based an the materials and the canditian af the bridge.
a. Pravisianal Class Number. Mark span length (S in fig. 7-17) an calumn A af figure 7-18. Mark tatal crawn thickness ( $t+D$ in fig. 7-17) an calumn $B$ af figure 7-18. Draw a straight line thraugh the paints marked in steps 1 and 2 and where this line intersects calumn $C$, read the pravisianal class number.


Figure 7-17. Masonry arch bridge.
b. Prafile Foctor. Divide spon length ( $S$ in fig. 7-17) by the rise ( $R$ in fig. 7-17) ond mark the result ot the bottom af figure 7-19. If the result is 4 ar less, profile foctar is 1 . Otherwise, drow o vertical line from the mork mode in step 4 and mork the point where it intersects the curved line. Drow o horizantol line from the mork made in step 5 to the left edge of figure 7-19 and reod the prafile factor of this point.
c. Other Foctars (toble 7-4). Select the material, jaint, deformatian, crock, obutment size, ond obutment foult foctars from the toble. Use only those foctors which apply.
d. Actuol Class Number. Multiply the pravisianol closs number by each of the variaus foctors faund obove. The result is the bridge clossificotion number.
e. Exomple (5), Clossificotian af O Mosonry Arch Bridge. Classify o mosanry orch bridge; span (S) 40 feet; rise $(R) 8$ feet, orch ring thickness ( $t$ ) 18 inches; depth af fill ot crown (D) 12 inches; roodwoy width 15 feet; moteriol-limestane in good conditian; joints - mortor, some deteriorotion, smoll voids, close jaints; crocks - lorge longitudinol crock in orch under ane poropet woll; abutments - one oppraach up o narraw embonkment.
(1) Find bridge class. Salution: Roodway width limits bridge ta ane lone. Totol crawn thickness ( $t+D$, see fig. $7-17$ ) $=18$ in +12 in $=2.5 \mathrm{ft}$. Using figure 7-18 line up stroight edge of spon af 40 feet (col. A) and totol crawn thickness of 2.5 feet (cal. B). At the intersection af stroight edge ond column $C$, reod provisionol class number, 34.
(2) Determine the prafile foctor. Spon/rise ratio $=S / R=40 / 8=5$. Enter the battam of figure 7-19 with the spon/rise ratio ond draw o vertical line. At the intesectian of this vertical line ond the curved line an the chort, pivot (going harizantolly) to the left edge af the chort. Reod the profile foctar os 0.86 .


Figure 7-18. Chart for determining pravisional raad class of arch bridges.


Figure 7-19. Profile factors for orch bridges.
(3) Joint factor. Material factor for limestane in gaad conditian is 1.0. Joint factar is between 0.80 ond 0.70 , soy 0.75 . Crack factor far ane crock of the edge af the ring is 0.90 . Abutment foctor far one unsatisfactory abutment is 0.95 .
(4) Determine class number. Determine actual closs number by multiplying pravisianal closs number by foctars found above. Actual Class Number $=34 \times 0.86 \times 1.0 \times 0.75 \times 0.90 \times 0.95=$ Class 19 .

## Table 7-4. Arch Factors

MATERIAL FACTOR

1. Granite, whitstone and built-in-course masonry ..... 15
2. Concrete or blue engineering bricks ..... 1.2
3. Good limestone mosonry and building bricks ..... 1.0
4. Poor masonry ar brickwaod (of any kind). ..... 0.7 to 0.5
JOINT FACTORS
5. Thin joints, $1 / 10^{\prime \prime}$ or less in width ..... 1.25
6. Narmal ןoints, with width up to $1 / 4^{\prime \prime}$ ..... 1.00
7. Ditto, but with mortar unpainted. ..... 0.90
8. Joint aver $1 / 4^{\prime \prime}$ wide, irregular good mortor. ..... 0.80
9. Ditto, but with mortar contarning voids deeper than one-tenth of the ring thickness ..... 0.70
10. Joints $1 / 2^{\prime \prime}$ or more wide, poor mortar. ..... 0.50
DEFORMATION FACTORS
11. The rise over the offected - Apply span-rise ratio of affected portion is always positive. portion to the whole arch.
12. Flat section of profile. -Maximum: ..... 12
13. A portion of the ring is-Maximum class: 5; if fill at crownsagging.exceeds $18^{\prime \prime}$
CRACK FACTORS
14. Small tronsverse crocks within 2 ft . of the edge ..... 1.0
15. Large tronsverse cracks within 2 ft . of the edge. ..... 1.0
16. Longitudinal cracks in center third of bridge. ..... 0.9 to 07
One smoll crack ..... 1.0
One lorge crack or several narrow cracks. ..... 0.5
17. Small lateral and diagonal cracks. ..... 1.0
18. Large lateral and diogonal crocks-Maximum Class: 12; orthe figure derived by using the other factors.6. Cracks between the arch ring and parapet wall due to lateralspread of the fill.0.9
19. Cracks between the ring and spandrel, due to a droppedring-Reclossify from the nomograph, on the assumptionthat the crown thickness is that of the ring alone.

Toble 7-4.-Continued
ABUTMENT SIZE FACTORS

1. Both obutments satisfoctory ..... 1.00
2. One unsotisfoctory obutment ..... 0.95
3. Both abutments unsotisfactory ..... 0.90
4. Both obutments mossive, cloy fill suspected. ..... 0.70
5. Arch supported on one obutment ond one pier ..... 0.90
6. Arch supported on two piers. ..... 0.80
ABUTMENT FAULT FACTORS
7. Inward movement of one obutment ..... 0.75 to 0.50
8. Outword spreod of obutments ..... 1.00 to 0.50
9. Vertical settlement of one obutment ..... 0.90 to 0.50

## Section II, Highway Bridge Design

## 7-5. SUPERSTRUCTURE

Bridge design as discussed herein is limited to ropid field design of temporary or semi-permonent type highwoy bridges. For more detoiled design procedures including the design of roilrood bridges see TM 5-312.

## NOTATIONS

A =Area (in ${ }^{2}$ )
$A_{p}=$ Beoring area of post or pile (in ${ }^{2}$ )
$8=$ Width of stringer (in)
$b_{c}=$ Width of corbel
$b_{\text {cap }}=$ Width of cap
$B_{H_{0}}=$ Width af beoring plote (in)
d $=$ Totol depth of stringer (in)
$\mathrm{d}_{c}=$ Depth of carbel
$\mathrm{d}_{\text {cap }}=$ Depth of cap (in)
$D_{p}=$ Diometer of pile (in)
H = Height of timber bent post
$H_{p}=$ Distonce from streom bed to top of pile
$H_{m}=$ Mox height of post
kip $=1000 \mathrm{lbs}$
L Spon length ( ft )
$L_{c} \quad=$ Effective corbel length ( ft )
$L_{e}=$ Effective span length ( ft )
$L_{\text {rks }}=$ Length of footing (in)
$L_{m}=$ Max span length ( $\mathrm{f} \mathbf{t}$ )
$L_{H}$. $=$ Length of bearing plate (in)
$M_{D L}=$ Dead load bending moment for entire bridge (kip ft)
$M_{l, f}=$ Live load bending moment per lane (kip ft)
$\mathrm{m}=$ Total bending moment per stringer (kip ft )
$\mathrm{m}_{m}=$ Dead load bending moment per stringer (kip ft)
$\mathrm{m}_{l, l}=$ Live load bending moment per stringer (kip ft)
$\mathrm{N}_{c}=$ Number of corbels
$N_{1}=$ Number of lones
$N_{\nu}=$ Number of posts or piles
$N_{S}=$ Number of stringers
$N_{1}=$ Effective number of stringers
$P_{T}=$ Total design load on substructure (kips)
$S_{b}=$ Maximum spacing of brocing ( ft )
$S_{S}=$ Center to center spocing of stringers ( ft )
$t_{H}$. $=$ Thickness of bearing plate (in)
$V_{i m}$ = Dead lood shear for entire span (kips)
$V_{h, l}=$ Live load shear per lane (kips)
$v \quad=$ Total shear per stringer (kips)
$v_{m}$. $=$ Dead load shear per stringer (kips)
$v_{l, l,}$, Live load shear per stringer (kips)
$W_{R}=$ Width of roadway from inside curb to inside curb (ft)
a. Timber Stringers.
(1) Determine the number of required stringers, $\boldsymbol{N}_{S}$.

$$
N_{S}=\frac{W_{H}}{6}+1 \text { (minimum number of stringers 4). }
$$

Round $N_{S}$ down to the nearest stringer if the decimol is .09 or less, otherwise round up. Do not round off where asterisk oppears. Determine the center to center spacing ( $\$_{s}$ ).

$$
{ }^{*} S_{S}=\frac{W_{R}}{N-1}
$$

(2) Determine the effective number of stringers, $N_{1}$.

$$
{ }^{*} N_{1}=\frac{5}{S_{S}}+1
$$

(3) Determine $M_{\text {I.I. }}$ from figure $7-10$. Determine $m_{I . I}$ from figure 7-20.
(4) Determine $M_{D I}$, from figure $7-21$. Calculate $\mathrm{m}_{\text {Ill }}$.

$$
m_{D H}=\frac{M_{D L}}{N_{S}} .
$$

(5) Colculate $m, m=m_{I I}+m_{B L}$. Choose o stringer from table 7-2 which hos on $m$ value equal to or greater than $m$ just calculated. (For a stringer not listed in table $7-2, m=\frac{b d^{2}}{30}$.)
(6) Determine $V_{L L}$ from figure 7-12. Determine $v_{L L}$ from figure 7-22.

$$
\left(\frac{3 V_{1 L}}{16}\right)\left(\frac{N_{1}+1}{N_{1}}\right)
$$

(7) Determine $V_{D I .}$ from figure 7-21. Calculate $v_{m I} \cdot v_{m L}=\frac{V_{m L}}{N_{s}}$.
(B) Colculate $v, v=v_{L L}+v_{D L}$ Check to see if $v$ of stringer selected in step (5) is equal to or greater thon $v$ just calculated. If not, increase the size of the stringer until this requirement is satisfied keeping in mind the $m$ requirement. (For a stringer not listed in table $7-2 \mathrm{v}=\frac{\mathrm{bd}}{10}$.)
(9) Determine $L_{m}$ of stringer selected. Verticol deflection will not be a problem if the span is less thon the value of $L_{m}$ in table $7-2$. If vertical deflection is critical, increase the size of the stringer until the $L_{m}$ requirement is sotisfied, keeping in mind the requirements for $m$ and $v$. (For a stringer not listed in toble $7-2 L_{m}=1$.19d.)
(10) For lateral bracing see table 7-2.
(11) Determine the minimum decking thickness required from figure 7-13. Use at least $2^{\prime \prime}$ of material for treod.
b. Exomple (1)-Design of Timber Stringer Bridges. Design the superstructure of o class 30,20 -foot span, two-lone bridge, $W_{n}=24$ feet with timber deck ond timber stringers.


Figure 7-20. Moment nomograph.
(1) $N_{S}=\frac{W_{H}}{6}+1=\frac{24}{6}+1=5$
$S_{s}=\frac{W_{R}}{N_{s}-1}=\frac{24}{5-1}=6 \mathrm{ft}$
(2) $N_{1}=\frac{5}{S_{S}}+1=\frac{5}{6}+1=1.83$
(3) $M_{L L}=210 \mathrm{kip} \mathrm{ft}$
$m_{L L}=115 \mathrm{kip} \mathrm{ft}$
(4) $M_{D L}=56 \mathrm{kip} \mathrm{ft}$
$m_{D L}=\frac{M_{D L}}{N_{S}}=\frac{56}{5}=11.2 \mathrm{kip} \mathrm{ft}$


Figure 7-21. Dead load mament and shear for various types af bridges.


Figure 7-22. Sheor nomogroph.
(5) $m=m_{L L}+m_{D L}=115+11.2=126.2 \mathrm{klp} \mathrm{ft}$ Use $12^{\prime \prime} \times 18^{\prime \prime}$ stringer ( $m=129.6 \mathrm{kip} \mathrm{ft}$ )
(6) $V_{L L}=43 \mathrm{kips}$
$v_{L L}=12.4 \mathrm{kips}$
(7) $V_{D L}=11.2 \mathrm{kips}$
$v_{D I}=\frac{v_{D I}}{N_{S}}=\frac{11.2}{5}=2.25 \mathrm{klps}$
(8) $v=v_{L L}+v_{D L}=12.4+2.25=14.65 \mathrm{kips}$
$v$ for $012^{\prime \prime} \times 18^{\prime \prime}$ stringer $=21.6 \mathrm{kips}>1465 \mathrm{kips} \therefore$ OK
(9) $L_{m}=21.5 \mathrm{ft}>20 \mathrm{ft} \therefore \mathrm{OK}$
(10) No loteral broces required.
(11) Minimum deck thickness $=6+^{\prime \prime}$, say $7^{\prime \prime}$; use $2^{\prime \prime}$ material for tread.
c. Steel Stringers.
(1) through (4). Same as a above (tımber stringers).
(5) Same as $0(5)$ above except use table 7-3. (For a stringer not listed in toble $7-3, m=d_{1}\left(b t_{f}+\frac{d_{j} t_{w}}{6}\right)$
(6) Determine $V_{I, I .}$ from figure $7-12$. Determine $V_{I I .} \cdot v_{I . I .}=\frac{1.15 V_{I I I}}{2}$.
(7) Some as a(7) above.
(B) Same os a(8) above except use table 7-3 (For a stringer not listed in toble $7-3, v=16.5\left(d_{i} \times t_{u}\right)$.)
(9) Same as $a(9)$ above except use table 7-3. (For o stringer not listed in toble $7-3, L_{m}=2.56$ d.)
(10) The number of lateral braces ( $N_{b}$ ) between odjacent stringers is computed by $N_{b}=\frac{l}{s_{b}}+1$. Space braces evenly along spon length always plocing a brace of each end. $S_{5}$ is found in toble 7-3. (For a stringer not listed in table 7-3, $\mathrm{S}_{b}=\frac{33 b_{f}}{d}$ ).
(11) Bearing plate design will be made far oll steel stringers.

$$
\begin{aligned}
& L_{4}-\min L_{4}=6 " ; \max L_{\text {H. }}=b_{\text {cap }}
\end{aligned}
$$

$$
\begin{aligned}
& f_{H_{4}}-t_{H_{7}}=\frac{B_{H}-2.5}{8} \text { (Round up to nearest } \frac{1}{1}^{\prime \prime} \text { ) }
\end{aligned}
$$

(12) Same os a(11) above.
d. Exomple (2) Design of Steel Stringer Bridge. Design the superstructure for o class 60,30 -foot span, fwo-lane bridge, $W_{H}=24$ feet with steel stringers and timber deck.

$$
\begin{align*}
& N_{S}=\frac{W_{H}}{6}+1=\frac{24}{6}+1=5  \tag{1}\\
& * S_{S}=\frac{W_{H}}{N_{S S}-1}=\frac{24}{5-1}=6 \mathrm{ft}
\end{align*}
$$

(Da not round off where osterisks oppear.)
(2) ${ }^{*} N_{1}=\frac{5}{S_{s}}+1=\frac{5}{6}+1=1.83$
(3) $M_{l, L}=675 \mathrm{kip} \mathrm{ft}$ $m_{I, t}=450 \mathrm{kip} \mathrm{ft}$
(4) $M_{D .}=140.63 \mathrm{kip} \mathrm{ft}$

$$
m_{D I L}=\frac{M_{D L}}{N_{S}}=\frac{140.63}{5}=28.13 \mathrm{kip} \mathrm{ft}
$$

(5) $m=m_{l . I}+m_{m .}=450+28.13=478.13 \mathrm{kip} \mathrm{ft}$

Use a 24WF94 stringer ( $m=497$ kip ft ).
(6) $V_{l, t}=92 \mathrm{kips}$

$$
v_{I I I}=\frac{1.15 \mathrm{~V}_{I . l}}{2}=\frac{1.15(92)}{2}=53.0 \mathrm{kips}
$$

(7) $V_{D I}=18.75 \mathrm{kips}$

$$
v_{m I}=\frac{V_{m t}}{N_{S}}=\frac{18.75}{5}=3.75 \mathrm{kips}
$$

(8) $\quad v=v_{1 . L}+v_{m .}=53.0+3.75=56.75 \mathrm{kips}$
$v$ far a 24WF94 stringer $=191 \mathrm{kips}>56.75 \therefore$ OK
(9) $L_{m}=62 \mathrm{ft}>30 \mathrm{ft} \therefore O K$
(10) $N_{b}=\frac{L}{S_{b}}+1=\frac{30}{11}+1=2.73+1=373$, say 4

Use 4 braces, 1 at each end and twa spaced evenly between.
(II) $L_{e}=6^{\prime \prime}$

$$
\begin{aligned}
B_{H} & =\frac{2 v}{L_{\text {R. }}} \frac{2 \times 56.75}{6}=18.9>9^{\prime \prime}(b \text { of } 24 \text { WF94 }) \therefore O K \\
t_{H} & =\frac{8_{\text {R. }}-2.5}{8}
\end{aligned}
$$

$$
\begin{aligned}
& t_{Q .}=\frac{18.9-2.5}{8} \\
& t_{Q_{1}}=2.05
\end{aligned}
$$

(12) Minımum deck thickness $=8+$, say $9^{\prime \prime}$. Use $2^{\prime \prime}$ material far tread.

## 7-6. SUBSTRUCTURE

a. Single Trestle Bent.
(1) Use harizantal braces at midpoint when past height exceeds that listed in table 7-5.

Table 7-5. Past Criteria

Size of post   ar pile   Rect (in)	Capacity per   past   (Kips)	Max height   of past   (ft)
$6 \times 6$	18	15
$6 \times 8$	24	15
$8 \times 8$	32	20
$8 \times 10$	40	20
$10 \times 10$	50	25
$10 \times 12$	60	25
$12 \times 12$	72	30

RND (IN)

89	25	18
90	32	20
10	40	22
119	47	25
129	56	27
139	66	29
140	76	31

(2) For o bent under odjocent spans, add $L_{1}$ to $L_{2}$ to find effective span length, $L_{e}$ (fig. 7-23). Using $L_{e}$ determine the live load sheor ( $V_{1,1}$ ). Determine the dead lood shear ( $V_{1 m}$.) as the sum of the dead load shear for spans $L_{1}$ and $L_{2} . P_{T}=V_{1, I}\left(N_{1 .}\right)+V_{m)}$.


Figure 7-23. Adjacent spans.
(3) Determine the copocity per post from table 7-5. (For posts not listed, capacity per post $=\frac{A_{D}}{2}$ in kips.)
(4) Determine the number of posts required, $N_{\nu} \cdot N_{\rho}=$ $P_{T}$
capacity per post
(5) Determine length of footing, $L_{f t L} \cdot L_{f t L}=k+b_{s_{1 I I}} \cdot L_{f t L}$ may be rounded down but never up. Obtain $k$ from figure 7-24.
(6) Determine copacity per footıng.
*capocity per footing = (Area per footing) (SBC)
(Do not round off where asterisk appears.)
Area/ftg (actual orea in contact with ground $=L \times W(s q f t)$ )
SBC $=$ soil bearing copacity ( $\mathbf{k} \mid \mathrm{ps} / \mathrm{sq} \mathbf{t t}$ ) see table 7-6 for SBC.
(7) Determine the number of footings ( $\mathrm{N}_{f t y}$ ).

$$
N_{f t g}=\frac{P_{T}}{\text { capacity per ftg }}
$$

$N_{f t g}$ must be equal to or greater than $N_{P}$.

$$
{ }^{*} S p f t g=\frac{W_{R} \times 12}{N_{f t g}-1}
$$



Figure 7-24. Footing chort.
b. Example (1). Substructure Design With o Single Trestle Bent. Design the substructure for a closs 50 bridge, $W_{R}=24$ feet, $L_{1}=20$ feet, $L_{2}=30$ feet, $6^{\prime \prime} \times 8^{\prime \prime}$ pasts, $6^{\prime \prime} \times 10^{\prime \prime}$ cap and sill, $3^{\prime \prime} \times 12^{\prime \prime} \times R L$ faotings, $H=6$ feet, compoct sand clay, $6^{\prime \prime}$ timber deck, 7 steel stringers, $N_{L}=2$ lones.
(1) $H_{m}=15^{\prime}>6$ ', $\therefore$ na horizantol braces required
(2) $L_{e}=L_{1}+L_{2}=20+30=50^{\prime}$
$V_{L 1}=86 \mathrm{kips}$
$V_{D L}=V_{D L 1}+V_{D L 2}=18.75+11.00=29.75$ kips
$P_{T}=V_{L I}\left(N_{L}\right)+V_{D L}=86(2)+29.75=201.75 \mathrm{kips}$
(3) Copacity per past $=24$ kips
(4) $N_{P}=\frac{P_{T}}{\text { capacity per post }}=\frac{201.75}{24}=8.36$, say 9

Toble 7-6. Soil Beoring Copocity

Soil descriptıon

> Beoring volues
> in kips per squore foot
Hordpon overloying rock ..... 24
Very compoct sondy grovel. ..... 20
Loose grovel ond sondy grovel, compoct sond ond grovelly sond; very compoct sond-ın-orgonic silt soils ..... 12
Hord dry consolidoted cloy ..... 10
Loose coorse to medium sond, medium compact fine sond. ..... 8
Compoct sond cloy. ..... 6
Loose fine sond, medium compoct sond-inorgonic silt soils ..... 4
Firm of stiff cloy ..... 3
Loose soturoted sond-cloy soils, medium soft cloy ..... 2
(5) $L_{\text {ftg }}=k+b_{s t \prime \prime}=21+6=27^{\prime \prime}$
(6) Copocity per $\mathrm{ftg}=$ (oreo per ftg ) (SBC)
oreo per $\mathrm{ftg}=\mathrm{L} \times \mathrm{W}(\mathrm{sq} \mathrm{ft}$ per ftg$)=\frac{12 \times 27}{144}=2.25 \mathrm{sqft}$ per ftg
$S B C=6$ kips per sq ft
cop per $\mathrm{ftg}=(2.25)(6)=13.5 \mathrm{kips}$
(7)

$$
\begin{aligned}
N_{f t g} & =\frac{P_{r}}{\operatorname{cop} / \mathrm{ftg}}=\frac{201.75}{13.5}=14.4, \text { soy } 15 \\
S_{p f t g} & =\frac{W_{R} \times 12}{N_{f t g}-1} \frac{24 \times 12}{14-1}=22.1^{\prime \prime} \mathrm{C}-\mathrm{C}
\end{aligned}
$$

c. Two Trestle Bents. (Timber trestle pier.) A timber trestle pier is designed exoctly the some os o trestle bent except thot eoch bent is designed for one-holf the totol lood. A timber trestle pier will be used for the following conditions:
(1) Laads are taa great ta be carried by a single bent.
(2) Span lengths are greater than 25 feet, making bracing cumbersame. Cap and carbel system design is described in $f$ belaw.
d. Pile Bent ar Pier.
(1) Use lateral braces dawn ta flaad level in all cases. Far piers langitudinal bracing must alsa be used. The distance $\left(H_{P}\right)$ fram the streambed ta the tap af the pile may nat exceed $H_{m}$ values given in table 7-5.
(2), (3) Same as a abave.
(4) Determine allawable laad ( $P$ ) far a skin frictian pile by ane af the fallawing farmulas:

Timber

$$
P=\frac{2 W_{d} h}{(S+1)}
$$

$$
P=\frac{2 W_{r} H}{(S+0.1)}
$$

$$
P=\frac{2 E}{(S+0.1)}
$$

Steel

$$
P=\frac{3 W_{d} h}{(S+1)}
$$

$$
P=\frac{3 W_{r} H}{(S+0.1)}
$$

$$
P=\frac{3 E}{(S+0.1)}
$$

where:
$P$ = estimated safe capacity of pile (Kips)
$W_{d}=$ weight of drap hammer (Kips)
$W_{r}=$ weight af ram af steam ar pneumatic hammer (Kips)
$h$ =average height of fall af drap hammer far last 6 blaws ( ft )
$H=$ strake of ram (ft)
$S=$ average pile penetratian in inches per blaw far last 6 blaws af a drap hammer ar last 20 blaws af steam ar pneumatic hammer
$E=$ wark energy in $\mathrm{ft} / \mathrm{kip}$ of hammer
(5) Determine the number of piles $\left(N_{P r}\right)$ required.

$$
{ }^{*} N_{P r}=\frac{P_{T}}{\text { allawable capacity/pile }}
$$

Allawable capacity/pile is the smaller af the values faund in steps 3 and 4.
(6) Calculate $\frac{* S_{p}}{D_{P}} \frac{W_{R} \times 12}{\left(N_{P r}-1\right) D_{P}}\left(\frac{S_{p}}{D_{P}}\right.$ must equal ar exceed 3)
(Nate subparagraph ; belaw.)
(7) Using the pile chart (fig. 7-25a) determine $N_{P}$ for a single pile bent (minimum $N_{P}=4$ ).
(8) Check the $c-c$ spacing between piles.
${ }^{*} \max S p=5 \mathrm{~d}_{\text {cap }}$. (If cap is nat knawn it must be designed, (see $f$ below).)

$$
\begin{aligned}
& { }^{*} \min S_{p}=3 D_{P} \\
& * \text { actual } S p=\frac{W_{R} \times 12}{N_{P}-1}
\end{aligned}
$$

If spacing requirements are nat met using a single bent, a pier is required. Use (b) figure 7-25 to determine the actual number af piles required per bent far the pier. See $f$ belaw far carbel and camman cap design.


Figure 7-25. Pile charts.
e. Example (2). Substructure Design With a Pile 8ent. Design a substructure far class 60 bridge, $L_{1}=20$ feet, $L_{2}=30$ feet, $H=15$ feet, 12 -inch $\times 12$-inch cap, $D_{P}=10$ inches, $H=10$ feet, $W_{d}=2$ kips, penetration for last 6 blaws $=6$ inches, $W_{R}=24$ feet, 7 steel stringers, 6 -inch timber deck, $N_{L}=2$ lanes.
(1) $\mathrm{Hp}=15^{\prime}<22^{\prime} ; \therefore$ OK, Na midpaint bracing required
(2) $V_{D L}=V_{D L 1}+V_{D L 2}=18.75+1100=29.75 \mathrm{kips}$

$$
\begin{aligned}
L_{e} & =L_{1}+L_{2}=20+30=50^{\prime} \\
V_{I L} & =103 \mathrm{kips} \\
P_{T} & =V_{L L}(N)+V_{D E}=103(2)+29.75=235.75 \mathrm{kips}
\end{aligned}
$$

(3) Capacity per pile $=40$ kips
(4) $P=\frac{2 W_{d} h}{S+1}=\frac{(2)(2)(10)}{\frac{q}{\delta}+1}=20 \mathrm{kips}$
$\therefore$ Allowable capacity per pile $=20 \mathrm{k}$ ıps (lower of steps 3 and 4)
(5) $N_{\mu r}=\frac{P_{T}}{\text { allowable capacity per pile }}=\frac{235.75}{20}=11.79$
(6) $\frac{S_{\mu}}{D_{p}}=\frac{W_{R} \times 12}{\left(N_{p r}-1\right) D_{\mu}}=\frac{24 \times 12}{10.79(10)}=2.67$
(7) Spacing requires $\frac{S_{p}}{D_{p}}>3.0$ ta enter figure $7-25$.
(8) As spacing requirements are not met try a pier.
$\frac{S_{p}}{D_{p}}=\frac{W_{R} \times 12}{\left(N_{p r}-1\right) D_{p}}=\frac{24 \times 12}{\left(\frac{11.79}{2}-1\right) 10}=5.9$
$N_{p} /$ bent $=7+$, say $8 /$ bent far 0 two bent pier.
Actual spocing $=\frac{W_{R} \times 12}{\left(N_{p} / \text { bent }-1\right)}=\frac{24 \times 12}{8-1}=41^{\prime \prime}$
Max $\mathrm{sp}=5\left(d_{\mathrm{cap}}\right)=5(12)=60^{\prime \prime}$
Min $\mathrm{sp}=3\left(\mathrm{D}_{p}\right)=3(10)=30^{\prime \prime} \therefore \mathrm{OK}$
(9) See $f$ below for cap ond corbel design.
f. Cap and Carbel Design.
(1) Determine the effective corbel length, $L_{c}$.
(a) $L_{c}>c-c$ spacing
(b) $L_{c}>(1 / 6)\left(H_{p}\right)$
(c) $\therefore$ Select convenient length greoter than (o) and (b) above.
(2) Moment design.
(a) Determine $M_{c}, M_{c}=\frac{P_{\tau} L_{c}}{4}$
(b) Determine $m_{c}\left(m_{c}=m\right)$ fram table 7-2 or 7-3.
(c) Determine $N_{c} . N_{c}=\frac{M_{c}}{m_{c}}$.
(3) Shear design.
(a) Determine $V_{c} . V_{c}=\frac{\mathrm{P}_{T}}{2}$.
(b) Determine $v_{c} . v_{c}=\left(v_{c}=v\right)$ fram table 7-2 or 7-3.
(c) Determine $N_{c} . N_{c}=\frac{V_{c}}{V_{c}}$.

Nate: The higher af steps (2) and (3) abave determines $\mathrm{N}_{c}$. Minimum $N_{c}=$ lesser number af piles or stringers.
(4) Determine corbel spacıng, Sp.

$$
{ }^{*} S p=\frac{W_{R} \times 12}{N_{C}-1} .
$$

(5) Common cap design.
(a) Determine $d_{c a p} . d_{c a p}=\frac{S p}{5}$
(b) Determine $b_{c a p}$. $b_{c a p}=\frac{2 P_{T}}{N_{c} b_{c}}$
g. Example (3). Carbel and Camman Cap Design. Design a 12 -inch $\times$ 12 -inch carbel and cammon cap using the infarmatian given in example (2) (e above).
(1)
(a) $L_{c}>41^{\prime \prime}=3.42^{\prime}$ (See example 2, e abave)
(b) $L_{c}>1 / 6\left(H_{p}\right)=(1 / 6)(15)=2.5^{\prime}$
(c) Select $L_{c}$ a canvenient length, say $L_{c}=4.0^{\prime}\left(>3.42^{\prime},>2.5^{\prime}\right)$
(2)
(a) $M_{c}=\frac{P_{T} L_{c}}{4}=\frac{(235.75)(4.0)}{4}=235.8 \mathrm{kip} \mathrm{ft}$
(b) $\mathrm{m}_{\mathrm{c}}=57.6 \mathrm{kip} \mathrm{ft}$
(c) $N_{c}=\frac{M_{c}}{m_{c}}=\frac{235.8}{57.6}=4.1$, say 5 corbels
(3)
(a) $V_{c}=\frac{P_{T}}{2}=\frac{235.8}{2}=117.9 \mathrm{kIps}$
(b) $\mathbf{v}_{c}=14.4 \mathrm{kips}$
(c) $N_{c}=\frac{V_{c}}{v_{c}}=\frac{117.9}{14.4}=8.2$, say 9 carbels
$\therefore$ use 9 ea $12^{\prime \prime} \times 12^{\prime \prime}$ corbels
(4) $\mathrm{Sp}=\frac{\mathrm{W}_{R} \times 12}{\mathrm{~N}_{c}-1}=\frac{14 \times 12}{9-1}=21^{\prime \prime}$
(5) ,
(a) $\min d_{c a p}=\frac{S p}{5}=\frac{21}{5}=4.2^{\prime \prime}$
(b) $\min b_{c a p}=\frac{2 P_{T}}{N_{c} b_{c}}=\frac{(2) 235.75}{(7)(12)}=5.2^{\prime \prime}$

Absalute min $=6^{\prime \prime} \times 8^{\prime \prime} \therefore 12^{\prime \prime} \times 12^{\prime \prime}$ OK far cammon cap.
h. Abutments. Figures 7-26 through 7-28 show sketches of abutment types that are narmally used far temporary ar semipermanent bridges. A guide to the selectian of abutments is given in table 7-7.


Figure 7-26. Timber sill abutment.


Figure 7-27. limber bent obutment.


Figure 7-28. Timber pile abutment.

Type	Span	Height	Remarks
Timber sill	To 25'	Ta $3^{\prime}$	Highway bridges only. Designed far vertical loads anly and steel or timber stringers. Use par C for design.
Timber bent	To 30'	To $6^{\prime}$	Highway bridges only. Designed for vertical loads. Deadman used for harizantal stability. Used with steel or timber stringers Use Par C for design. See TM 5-312 for deadman design.
Timber ar steel pile	Any length	To $10^{\prime}$	Designed far vertical and langitudinal laads and steel ar timber stringers. Use par E far design.

i. General Notes. The fallowing guidelines are generally applicable in the design of substructures as discussed in this paragraph and illustrated in the abave exomples.
(1) Posts. Maximum c-to-c spacing is 5 times depth of cap or sill. $c$-ta-c distance of autside posts equals the distance face-ta-face between curbs.
(2) Cops and sills. With round timber, diameter at least 2 inches greater than that af post. Hew timber ta fit at tap and joints. With rectangular timber, at least same size timber as posts with larger dimensians vertical; $6^{\prime \prime} \times 8^{\prime \prime}$ is absalute minimum.
(3) Bracing. If bents are more than 4 feet high, use transverse cross bracing on all bents and longitudinal bracing between bents in every other span. Transverse bracing an pile bents may be omitted if pile is exposed less than 11 feet above graund line. Minimum size bracing is $2^{\prime \prime} \times 10^{\prime \prime}$.
(4) Round aff rule. The raund off rule, nated in step 1 , o obave, is used far the entire rapid field design except where noted with an asterisk, *.
(5) To obtoin the most economicol bridge design for o given size stringer, use the procedures outlined in $o$ or $b$ obove ond repeot the procedure increosing or decreosing $N_{s}$ by 1 until the most economical design is obtoined, or increose $N_{s}$ by:

$$
N s \frac{m \text { required }}{m \text { ovoiloble }}
$$

(6) For pier design use $N_{P R}$ per row $\left(\frac{N_{P R}}{2}\right)$ to colculote $\frac{S_{P}}{D_{P}}$.

## Section III. Panel Bridge, Bailey Type, M2

## 7-7. INTRODUCTION

o. The ponel bridge, Boiley type, $M 2$ (fig. $7-29$ ) is o through-truss bridge supported by two moin trusses formed from 10 -foot steel "ponels."
b. Ponel bridge ports moy be tronsported on twenty-five 5 -ton dump trucks ond eight pole troilers. The looding plon is bosed on the experience thot the double-single truss ossembly provides for most bridging problems which require the ponel bridge, Boiley type, M2. The loods hove been orronged on the bosis of the copobility of the obove vehicles to corry oll ports issued for o 130 -foot DD bridge, including spores. The engineer ponel bridge compony is the TOE unit designoted to corry one bridge set ond provide technicol personnel ond equipment to tronsport and supervise erection of ponel bridging. Two 80-foot DS bridges or one 130 -foot DD bridge moy be constructed from one bridge set. Eoch bridge set hos 126 ponels (weighing 577 pounds eoch), 56 tronsoms ( 618 pounds eoch), 96 stringers ( 260 to 267 pounds eoch), 48 ribonds ( 215 pounds eoch), 48 romps ( 338 to 349 pounds each), ond chess, end posts, brocing and erection equipment. For more detailed informotion see TM 5-277.

figure 7-29. Steel panel fixed bridge, Bailey type, M2.

## 7-8. CONSTRUCTION DATA

a. Organizatian af assembly crews is given in table 7-8.

Table 7-8. Organization of Assembly Crews

	NO. OF NCO: AND EM								
	Type af bridge								
	Singlesingle	Double. single	Triplesingle	Doubledouble	Tripledouble	Doubletriple	Triplotriple	Daubletriple	Tripletriple
	Consfnuctian by monpower only							Usting 1 crone*	
CRANE. . . . . . .	- •	- .	- • .	-	-	-	- •	0-3	0-3
Truck driver . . .	. . .	. . .	. . .	. .	. .	. . .	- .	(1)	(1)
Crane operator . . .	. . .	. . .	. . .	. . .	. . .	. .	. . .	(1)	(1)
Haak mon. . . . . .	- .		. .	. .	. .	. .		(1)	(1)
PANEL. . . . . . . .	1-14	1-14	2-28	2-32	3-50	3-50	3-68	3-30	3-30
Carrying	(12)	(12)	(24)	(28)	(44)	(44)	(60)	(24)	(24)
Pin . . . . . . . .	(2)	(2)	(4)	(4)	(6)	(6)	(8)	(6)	(6)
TRANSOM .	$1-9$	1-10	1-10	1-10	1-10	2-28	$2-28$	2-20	2-20
Carrying . . . . .	(8)	(8)	(8)	(8)	(8)	(24)	(24)	(16)	(16)
Clamp . .	(1)	(2)	(2)	(2)	(2)	(4)	(4)	(4)	(4)
BRACING . . . . .	1-4	1-6	1-8	1-12	1-20	1-32	1-40	1-32	1-38
Sway broce	(2)	(2)	(2)	(2)	(2)	(6)	(6)	(6)	(6)
Roker . . . . . . .	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)
Brocing frame . . . .	. .	(2)	(2)	(4)	(4)	(8)	(8)	(10)	(8)
Chord bolp . . . . .	. . .	(		(4)	(8)	(10)	(14)	(10)	(14)
Tie plate . . . . .	. . .	. . .	(2)	(1)	(4)	. . .	(4)	- .	(4)
Overhead supp't . . .			. . ${ }^{\text {c }}$	-	$\cdots$	(6)	(6)	(4)	(4)
DECKING	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12
Stringer . . . . .	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)
Chess and rlband.	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
Tatal	$4-39$	$7-42$	3-58	5-66	6-92	7-122	7-148	$7-97$	$7-103$

*Narmally, o crane le nat used far single ar double stary assembly.

Table 7-9. Types of Grillage Needed ${ }^{1}$


Table 7-9. Types of Grillage Needed ' - Continued

Con- Safe soil struc- pressure tion (tons per sq. ft.)	$30^{\prime}$	40'	50'	60'	$70^{\prime}$	80'	$90^{\prime}$	100	$110^{\prime}$	120	$130^{\prime}$	$140^{\prime}$	$150^{\prime}$	$160^{\prime}$	$170^{\prime}$	180'	190'	200'	210'
$\begin{array}{rr} \\ & 05 \\ 0.1 .0 \\ 0 . & 2.0 \\ 2.5 \\ & 3.5\end{array}$											$\left.\begin{gathered} 7 \\ 7,8 \\ 7,8 \\ 5,7,8 \\ 2 \end{gathered} \right\rvert\,$	$\begin{gathered} 7,8 \\ 4,7,8 \\ 4,5,7,8 \\ 2 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 4,7,8 \\ 4,5,7,8 \\ 2 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 7,8 \\ 7,8 \\ 2 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 7,8 \\ 7,8 \\ 2 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 7,8 \\ 7,8 \\ 2 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 4,7,8 \\ 4,5,7,8 \\ 2 \end{gathered}$	$\begin{array}{\|c\|} \hline 7 \\ 7,8 \\ 4,7,8 \\ 4,5,7,8 \\ 2 \end{array}$	$\begin{gathered} 7 \\ 7,8 \\ 4,7,8 \\ 4,5,7,8 \\ 2 \end{gathered}$
        10.5   10   20   25        															$\begin{gathered} 7 \\ 7,8 \\ 7,8 \\ 7,8 \\ 5,7,8 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 7,8 \\ 7,8 \\ 5,7,8 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 7,8 \\ 5,7,8 \\ 2 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 7,8 \\ 5,7,8 \\ 2 \end{gathered}$	$\begin{gathered} 7 \\ 7,8 \\ 4,7,8 \\ 4,5,7,8 \\ 2 \end{gathered}$

N ${ }^{1}$ See figures 7-30 and 7-31
b. Grillage requirements are shown in table 7-9 and figures 7-30 through 7-31. Grillage shown in figure 7-30 is built from the panel bridge set.


17 PCS 6"x $6^{\prime \prime} \times 4^{\prime \prime}-6^{\prime \prime}$

Figure 7-30. Grillage built from panel bridge set.


Figure 7-30-Continued.


Figure 7-30-Continued.


Figure 7-30-Continued.


Figure 7-30-Continued.


Figure 7-31. Grillage not supplied in panel bridge set.


Figure 7-31-Continued.


Figure $7-31$ - Continued.
c. Figures 7-32 thraugh 7-43 shaw bridge layaut equipment ond a typical bridge site layout for training purpases.


Figure 7-32. Racking rollers and base plate at the end of the bridge.


Figure 7-33. Lateral spacing af base plates.


Figure 7-34. Site layaut template.

figure 7-35. Leveling far placement of grillage bearing templates, and rollers.


Figure 7-36. Skerch af proposed loyout of o panel bridge.


Figure 7-37. Base plote ond racking rollers in position on grilloge before launching bridge.


Figure 7-38. Transom used as template.


Figure 7-39. Plain raller, SS, DS bridges.

figure 7-40. Plain roller, TS, DD, TD, DT, TT bridges.


Figure 7-41. Layout of rocking paler template.


ROCKING ROLLERS MUST BE AT LEAST 2'-6* FROM FINAL POSITION OF END POSTS

Figure 7-42. Vertical clearance necessory far removing first pair of near share plain rallers after links pass racking rollers.


Figure 7-43. Layaut of equipment of bridge site for troining purpases.
d. Other pertinent data pertaining to transportation, launching and canstruction of the bridge is contained in tobles 7-10 thraugh 7-15.

Table 7-10. Bridge Lounching Construction


LAUNCHING TT BRIDGES 1. Lounch wnill neor-bank rocking solless ore under lost TT bay of initiol cansituetian. 2. Add up to siz beys TT bays to toil of initial canstruction. This complatesall but 210 food span. 3 . Continue lounching until neor-bonk reaking rollers ore under lest TT boy odded in step 2 4. Add remioinder of TT boys to complete bridge ( 210 -foot apon only). 5. Add five beys 05 nose iype construction to toil of bridge. 6. Lounch forward until first throe DT bridge boys ors beyond far bank rollera. 7. Complats first three bridge bays by cenverting to TT and odding tronsoms. 8 Pull bridga bock to finol position, rumovi DS toil, odd ducking whes nseded, and jock down.

Table 7-11. Bridge Spans Lounched Incomplete

Typo	Spon, A.	No. of bays, docking \& stringers	Omitted of top story
SS	100	4	
DS	140	6	
TS	150	6 10	
DD	160	7	
	170	7	
	180	12	2
	160	3	
TD	170	10	
	180	All	
	190	All	$31 / 3$
	170	3	
DT	180	8	
	190	All	
	200	All	3
	210	All	5
		No. of bridge bayz in inifiol construction *	
	160	3	14
	170		14
TT	180	6	14
	190	All	15
	200	All	14
	210	All	13
* First throo bridgo boys ore constructod DT with only ono tronsom por bay. Lost bridgo boy is constructed DT becouso of stoggoredconstruction neces sary when adding subsequent boys.			

Toble 7-12. Number of Jacks Needed at Eoch End of Bridge

Type	Spon,   H.	No. of locks   neoded of   eoch ond of
SS	$30-100$	2
DS	$50-140$	4
TS	$80-140$	4
	$150-160$	6
DD	$100-120$	4
	$130-180$	6
TD	$110-140$	6
	$150-190$	8
DT	130	6
	$140-180$	8
	$190-210$	10
TT	160.170	10
	$180-210$	12

Toble 7-13. Number of Rocking Rollers Needed for Bridge

TYpe	Spas, f.	Near bank	For   bank
SS	30-100	2	*
	50-80	2	*
DS	90.100	2	2
	110-140	4	2
TS	80-160	4	2
DD	100-130	4	2
	140-180	4	4
TD	110-120	4	2
	130-190	4	4
DT	130-210	4	4
TT	160-210	4	4

*Use two plain rollors

## Table 7-14. Weight per Bay of Bridge

Construction	Weights per bat tons
BRIDGE	
SS	2.76
DS	3.41
TS	4.01
DD.	4.66
TD.	5.88
DT.	6.46
TT.	8.29
LAUNCHING NOSE	
SS . . . . . . . . . . . .	1.00
DS .	1.64
DD.	2.90
DECKING	
Stringora anly	0.79
Chess and steal ribands.	0.86
FOOTWALKS	0.17
OVERHEAD BRACING   Supports, tran soms, swoy bracing, and chard bolis	0.54
WEAR TREAD AND TRUSS GUARDS.	0.35
NOTE: Footwalks, woar treads, and truss guards not included. included on DT and TT.	Ovemead bracin

## Table 7-15. Critical Dimensians of Bridge

Raod width between stoel ribands	12' ${ }^{\prime \prime}$
Rood width between timber truss guards	$13^{\prime \prime}$
Leteral distonce between conterlines of trusses:	
Inner trusses	14'10'
Middle trusses	$17^{\prime} 10^{\prime \prime}$
Outer trusses.	19'3'
Lateral distance between centerlines of bose plates:	
$S$ truss bridge.	14'
D truss bridge	$16^{\prime} 4^{\prime \prime}$
T truss bridge	17' $31 / 2$
Lateral distance betwoen outside odges of base plates:	
Struss bridge.	19'5'
D truss bridge	20110
T truss bridge	21' $10 \%$ "
Lateral distance betwoen measuring lugs of racking roller templates	11'66/2'
Lateral distance between measuring lugs of plain roller templates:	
SS, DS bridges	11'6\%"
TS, DD, TD, DT, TT bridges.	$10^{\circ} 10 \%{ }^{\prime \prime}$
Longitudinal spacing between plain rollers	
Height from base of bese plate to top of chess.	$285 / 16^{\prime \prime}$
Height from base af rocking roller template to tap af rocking roller	16 5/16'
Height from bose af plain roller templated to top of plain roller	8 15/16'
Height from bose of ramp pedestal to top of romp chess	17 1/'
Height from bottom of half round lug under sloping end of ramp to top of romp chess.	$57 / 8$
Height from top of chess ta overhead bracing:	
Narmal.	14'7'"
Expedient	$123^{\prime \prime}$
Height from bose of bearing to bottom of panel.	$517 / 32^{\prime \prime}$
Height from bottom of panel to top of chess	20 11/16"
Height from botrom of half round lug of end post to tap af chess	22 13/32'
Height fram base of rocking raller beoring ta top of racking raller	13 5/16"

## 7-9. CLASSIFICATION

Table 7-16 pravides classification data for the ponel bridge.

Table 7-16. Dual Clossification by Type of Construction and Type of Crassing

SPAN	$\begin{aligned} & \text { SINGLE } \\ & \text { SIMGLE } \end{aligned}$			ODUBLESIMELE			$\begin{aligned} & \text { TRIPLE } \\ & \text { SIMGLE } \end{aligned}$			$\begin{aligned} & \text { DOUBLE } \\ & \text { DOUBLE } \end{aligned}$			$\begin{aligned} & \text { FRIPLE } \\ & \text { DOUBLE } \end{aligned}$			DDUELE   TRIPLE			$\begin{aligned} & \hline \text { TRIPLE } \\ & \text { TRIPLE } \end{aligned}$		
FEET	$\cdots$	C	n	$\cdots$	C	R	$\cdots$	c	n	$\omega$	C	R	N	c	R	$\cdots$	C	R	$\cdots$	C	A
30	79/30	42/37	$41 / 42$																		
40	24	1534	$40 / 3$																		
50	24	$3 / 31$	$38$	$7 \times 0$		84															
60	20	$169$	$\begin{aligned} & 3 \\ & \hline 12 \\ & \hline \end{aligned}$	$63$	$7 / \pi$	\%/79															
70	20	24	$10 / 30$	$160$	$16$	$73$															
80	16	20	24	$17 / 55$	$6$	$16$	$160$	$180$	$10 \%$												
90	12	16	19	$1 / 45$	$5 / 50$	$15 / 10$	$65$	$74 / 8$	$102$												
100	8	12	14	$3 / 30$	$31 / 30$	$42$	$50 / 55$	$57 / 60$	$16$	$0$		$36$									
110				20	$30 / 32$	$34$	$\frac{35}{10}$	$47 / 49$	$52 / 54$	$5$	$72$	$\infty$	$20$	$109$	$102$						
120				18	23	$27 / 30$	$30 / 35$	$3 / 41$	$43$	4/35	57/41	$6$	$76$	2/30	$6$						
130				12	18	21	20	$31 / 4$	$15 / 5$	$15 / 5$	$47 / 50$	$5$	$5 \%$	$x_{12}$	$7 / 40$	$70$	$180$	$6$			
140				8	14	17	18	24	$22 / 31$	$120 / 35$	$13$	$4 / 4$	$4 / 55$	$57 / 6$	$480$	$70 / 70$	$5$	$8$			
150							12	18	22	24	$12$	72/40	/45	$47 / 51$	$5 \mathrm{~m} / \mathrm{sa}$	$6$	$7 / 6$	$5$			
160							8	15	17	18	25	$29 / 8$	$39 / 35$	$37 / 41$	$12$	$55$	$18$	$\frac{\infty}{6}$		$109$	$\frac{109}{60}$
170							4	10	13	12	19	24	24	$31 / 34$	$38$	$4 / 30$	$51 / 4$	$5{ }_{7}$	76	$5$	-700
180										8	15	18	18	24	$29$	$3 / 45$	$46$	$56$	${ }^{5}$	$5 \frac{5}{6}$	$\pi / 7$
190													12	18	22	$50 / 35$	$28$	$451$	4/35	5	$8 / 17$
200																20	$3 / 38$	$2 / 43$	83/6	$12$	$3 / 8$
210																16	25	$31 / 35$	24	2/4	$1 / 51$

Nores. 1. $\mathrm{N}=$ Normol, $\mathbf{C}=$ Coution, $\mathbf{R}=$ Risk.
-2. Limited by Roadwoy Widih
3 Upper figure represents wheel lood closs.
Lower figure represents Irocked load closs Exomple: 46/51
4 Bridges which hove o normol roting over closs 70 must be constructed with double tronsorns.
5. Single clossificotion is designoted below class 30 .

## Section IV. Miscellaneous Bridging

## 7-10. LIGHT SUSPENSION BRIDGE DESIGN

The suspension bridge (fig. 7-44) is used for long spans high above abstacles. The flaar system is suspended fram cables, which are supported on towers and anchored to abutments.


Figure 7-44. Light suspensian bridge.
a. Design Data. See table 7-17 and figure 7-43.

Table 7-17. Light-Suspensian Bridge Design Data

Itom	0 oto
Ponal length	10 ta 15 ft .
Comber	Appraximately 2 ft.
Stringer design	See porogroph 7-5a
Flaor beoms	$4^{\prime \prime} \times 4^{\prime \prime}$ far foot traops or pock onimols.   $6^{\prime \prime} \times 6^{\prime \prime}$ for $1 / 4 \cdot t a n$ truch.   $8^{\prime \prime} \times 8^{\prime \prime}$ for $1 / 4 \cdot \tan$ truck.
Stress in suspenders	Oasign far dead laod of one panel, live laad ond $100 \%$ of live laod for impoct. See toble 12-2 far cable strength.
Length of suspenders	$h=l+\left(\frac{n}{N}\right)^{2}(C+d)$ See figure $7-44$ far meoning of symbols.
Sog ratio	5\% far foot. bridges to 10\% for onimal and light vahicle bridges.
	Sog ratio Mox totol tension   in main cables,   in ports of totol   suspended weight of   bridge ond load Length of   coble between   tawers, in   ports af spon   length
Moin-cable dasign	7 1.94 1.012   8 1.57 1.018   9 1.46 1.022   10 1.35 1.026   11 1.23 1.003   $121 / 2$ 1.12 1.041   $163 / 3$ 0.90 1.070
Jawers	$12^{\prime \prime} \times 12^{\prime \prime}$ pasts and caps will take laads, including a $21 / 2$ ton truck. $6^{\prime \prime}$ to $8^{\prime \prime}$ timber side, back, and forebraces. $1 / 2^{\prime \prime}$ wirarape side and bock guys. 1 ta 1 slope far side guys; $21 / 2$ herizontal to 1 vertical slope for back guys.
Anchoroge	Oeodman ar ofher onchorge must hold maximum tension of main coble.
Foctar of sofety	Wire rape $=2$ Cordage $=3.5$   Cordage $=3.5$

b. Example-Main Cable Design. Determine tensian in main cobles for a 200 -faat-spon suspension bridge with a suspended weight of 10 tons. Assume a 10 -percent sag rotia and a 4 -tan line load.

Suspended weight	$\begin{aligned} & \text { Pounds } \\ & 20,000 \end{aligned}$
line lood.	8,000
Impact.	8,000

Tatal..................................................... 36,000
Moximum total tensian in main cobles for a 10 -percent sag ratia $=$ $36,000 \times 1.35=48,600$ pounds. If two main cables ore used, each must hove a tensile strenath of 24,300 pounds.

## 7-11. THREE-ROPE BRIDGE

The three-rape bridge is used ta corry personnel with full field pack, maximum of 7 men of 5 -pace interval. Moximum length is 150 feet. Canstructian procedures fallaw:
a. Construct stringers or suppart far tread rope and hand rapes on near and far shore.
b. Lay aut tread rope and hond rapes parallel and ane pace apart an near shore. Minimum diameters $=1$ " for tread rapes ond $\frac{3}{4}^{\prime \prime}$ far hand rapes.
c. Cut suspender rope 12 feet lang, center an tread rope (two paces apart) and tie with a clave hitch on bottam.
d. Lift hand rope elbaw high and tie suspenders with girth hitch on inside.
e. Haul bridge aver gap with small diameter $\left(\frac{1}{2}\right.$ inch) rope and secure on far shore with a raund turn and o bowline.
$f$. Pull near share rope tight ( 5 percent sag) and secure.
g. Send one man anta bridge ta make final adjustments af suspender ropes.
h. Camplete details are given in TM 5-270.

## 7-12. FOUR-ROPE BRIDGE

The faur-rope bridge is used to carry pack anmals and personnel. Maximum length is 100 feet. Maximum capacity is 5 men with full field pocks spaced 5 poces apart or ane pack animal with hondier. The bridge is constructed the same as the three-rope bridge (para 7-11) except:
a. Crass members (minimum $3^{\prime \prime}$ diameter) are tied ta tread rapes, ane pace apart, with suspender rapes using clave hitches.
b. After erectian, decking is lashed ta the crass members and cavered with twigs, leaves, and light brush ta pravide a walking surface.

## 7-13. EXPEDIENT LOG BRIDGES

Figure 7-45 illustrates six suggested canfiguratians far expedient waaden bridges. Capacities cannat be accurately determined, as with standard bridges. They depend an the size and canditian af the timber and the strength of the lashings.


Figure 7-45. Expedient wooden bridges.


Figure 7-45-Continued.

## CHAPTER 8

## CONCRETE CONSTRUCTION

## 8-1. EXCAVATION

Initial excavation shauld be done with any available equipment, however, final excovotian shauld be done by hand, to the prescribed depths. If too much moterial is excavoted, place the cancrete ta the depth actually excavated. Da nat refill excovations to the specified depth before placing the concrete because it is tad difficult to campact the fill surface properly. When making time estimates far excovations, refer ta chapter 13 for equipment production rates and table 8-1 far hand excavation praductian rate.

Table 8-1. Earth excavatian by hand

Type of material	Cubic yards per man-haur					
	Excovatian with pick and shavel ta depth indicated				Laasening eorth man with pick	Loading in trucks ar wagons ane man with shovel and laase sail
	$\begin{gathered} 0 \text { ta } 3 \\ \text { feet } \end{gathered}$	0 ta 5 feet	$\begin{gathered} 0 \text { to } 8 \\ \text { feet } \end{gathered}$	$\left\|\begin{array}{c} 0 \text { ta } 10 \\ \text { feet } \end{array}\right\|$		
Sand.	2.0	1.8	1.4	1.3		1.8
Silty sand.	1.9	1.6	1.3	1.2	6.0	2.4
Gravel, laase.	1.5	1.3	1.1	1.0		1.7
Sandy silt-clay..	1.2	1.2	1.0	. 9	4.0	2.0
Light cloy.	. 9	. 7	. 6	. 7	1.9	1.7
Dry clay..	. 6	. 6	. 5	. 5	1.4	1.7
Wet clay..	. 5	. 4	. 4	. 4	1.2	1.2
Hardpan..	. 4	. 4	. 4	. 3	1.4	1.7

## 8-2. FORMING

a. Elements of woaden forms far a cancrete woll ar slab are shown in figure 8-1.


Figure 8-1. Farm far o concrete woll.
(1) Sheathing. Sheathing farms the surfoces of the concrete. It should be as smooth as passible, especiolly if the finished surfaces ore ta be exposed. Since the concrete is in a plastic state when placed in the farm, the sheothing should be watertight. Tongue and groove sheothing gives a smooth watertight surface. Plywood or masonite con alsa be used.
(2) Studs. The weight of the plastic cancrete will couse the sheathing bulge if it is not reinforced. Studs ore run vertically to add rigidity to the woll farm. Studs are generally made from $2 \times 4$ or $3 \times 6$ material.
(3) Wales (Walers). Studs olsa require reinforcing when they extend aver 4 or 5 feet. This reinfarcing is supplied by dauble wales. Double wales olso serve to tie prefabricated panels together and keep them in a straight line. They run horizontolly ond ore lopped of the carners af the forms to add rigidity. Joints narmally shauld be staggered to minimize weoknesses in form construction. Wales usually are the same material os the studs.
(4) 8roces. There ore mony types of broces which con be used to give the forms stobility. The most common type is o diogonol member ond horizontol member noiled to a stoke ond to o stud or wole. The diogonol member should moke o $30^{\circ}$ ongle with the horizontol member. Additional brocing moy be odded to the form by plocing vertical members behind the woles (strongbocks) or by plocing verticol members in the corner formed by intersecting woles. Broces ore not port of the form design ond ore not considered os providing ony odditional strength.
(5) Shoe plotes. The shoe plote is noiled into the foundotion or footing ond is carefully ploced to mointoin the correct woll dimension. The studs ore tied into the shoe ond spoced occording to the correct design.
(6) Spreoders. In order to mointoin proper distonce between forms, smoll pieces of wood ore cut to the some length os the thickness of the woll ond ore ploced between the forms. These ore colled spreoders. The spreoders must be removed before the concrete hordens. A wire should be securely ottoched to the spreoders so thot they con be pulled out ofter the concrete hos exerted enough pressure to the wolls to ollow them to be eosily removed.
(7) Tie wires. Tie wire is o tensile unit designed to hold the concrete forms secure ogoinst the loteral pressure of unhordened concrete. A double strond of tie wire is olwoys used.
b. Elements of wooden forms for concrete columns ore shown in figure 8-2.
(1) Sheothing. In column forms, sheothing runs verticolly to sove on the number of sowcuts required. The corner joints should be firmly noiled to insure wotertightness.
(2) Botten. Botten ore norrow strips of boords (cleots) thot ore ploced directly over the sowcuts to fosten the severol pieces of vertical sheothing together.
(3) Yokes. The horizontal dimensions on o column ore smoll enough so thot brocing is not required in the vertical plone. A rectongulor horizontol broce known os o yoke is used. The yoke wrops oround the column ond keeps the concrete from distorting the form. The yoke con be locked by the sheothing, scob, or bolt type yoke lock.
c. Elements of steel poving forms ore shown in figure 8-3.
(1) The steel forms ore mode in 10 -foot lengths ond vory in height from 8 to 12 inches.
(2) Anchoring pins of proper length ( 18 -inch pin for 8 -inch form to 30 -inch pin for 12 -inch form) ore inserted in the three holes ond ore held in ploce by the locking wedges.


Figure 8-2. Form for a concrete column.


Figure 8-3. Steel paving farm.
(3) Steel farms have sliding lack plates at ane end ta fit under the flanges af adjacent farms ta insure pasitive alinement at the jaints. They shauld slide easily inta lacking pasitian.
d. The rate af canstructian far waaden farms is 10 square feet per haur. Steel paving farms can be set by 4 -man teams at the rate of appraximately 50 linear feet per haur.

## 8-3. FORM DESIGN

a. Woaden farms far a cancrete wall shauld be designed by the fallawing steps:
(I) Determine the materials available far sheathing, studs, wales, braces, shae plates and tie wires.
(2) Determine the mixer autput by dividing the mixer yield by the batch time. Batch time includes laading all ingredients, mixing, and unlaading. If mare than ane mixer will be used, multiply mixer autput by the number af mixers.

$$
\text { Mixer autput (cu } \mathrm{ft} / \mathrm{hr})=\frac{\text { Mixer yield }(\mathrm{cu} \mathrm{ft})}{\text { Batch time }(\mathrm{min})} \times \frac{60 \mathrm{~min}}{\mathrm{hr}}
$$

(3) Determine the areo that is enclosed by the forms.

$$
\text { Plan area }(\mathrm{sq} \mathrm{ft})=\mathrm{L} \times \mathrm{W}
$$

(4) Detemine the rote of placing the cancrete in the farm by dividing the mixer autput by the plan area.

$$
\text { Rate of plocing }(\mathrm{ft} / \mathrm{hr})=\frac{\text { Mixer autput }(\mathrm{cu} \mathrm{ft} / \mathrm{hr})}{\text { Plan area }(\mathrm{sq} \mathrm{ft})}
$$

(5) Make a reasanable estimate af the plocing temperature of the concrete.
(6) Determine the maximum concrete pressure by entering the bottom af figure 8-4 with the rote af placing. Drow a line vertically up until it intersects the carrect concrete temperoture curve. Read harizantolly acrass from the point af intersection ta the left side af the graph and determine the maximum cancrete pressure.
(7) Determine the maximum stud spacing by entering the bottam af figure $8-5$ with the moximum cancrete pressure. Draw a line vertically up until it intersects the correct sheathing curve. Reod horizantolly ocrass from the point of intersection to the left side of the graph. If the stud spacing is nat on even number af inches, raund the value af the stud spacing down to the next lawer even number of inches. Far example, - stud spacing of 17.5 inches wauld be rounded dawn to 16 inches.
(8) Determine unifarm load on a stud by multiplying the maximum concrete pressure by the stud spacing.

Uniform laad an stud (lb/lineal ft)

$$
=\text { Maximum cancrete pressure (lb/sq ft) }
$$

(9) Determine the maximum wole spacing by entering the bottam of figure 8-6 with the unifarm load an a stud. Draw o line vertically up until it intersects the correct stud size curve. Read horizantolly acrass from the paint af intersection ta the left side of the graph. If the wale spocing is not an even number af inches, raund the value of the wale spocing down ta the next lower even number of inches. Double wales (twa similar members) are used in every case os shawn in figure 8-6.

286


Figure 8-4. Maximum concrete pressure graph.

' maximum allowable stud SPACING = 32 INCHES

* SANDED FACE GRAIN PARALLEL TO SPAN

Figure 8-5. Maximum stud spacing graph.

maxmum allowable wale Spacing = 48 INCHES
figure 8-6. Maximum wale spacing graph.
(10) Determine the uniform load on a wale by multiplying the maximum concrete pressure by the wale spocing.

Uniform laad on wale (lb/lineal ft)
$=$ Maximum concrete pressure ( $\mathrm{lb} / \mathrm{sq} \mathrm{ft}$ ) $\times$ wale spacing $(\mathrm{ft})$
(11) Determine the tie wire spacing, bosed on the wale size, by entering the bottom of figure 8-7 with the uniform load on a wole. Draw a line vertically up until it intersects the correct double wale size curve. Reod horizontally across from the point of intersection to the left side of the graph. If the tie spocing is not an even number of inches, round the value of the tie spacing down to the next lower even number of inches.
(12) Determine the tie wire spacing based on the tie wire strength by dividing the tie wire strength by the uniform load on a wale. If the tie wire spocing is not an even number of inches, round the computed value of the tie spacing down to the next lower even number of inches. If possible, use o tie wire size thot will provide a tie spocing equal to or greater than the stud spacing. Always use a double strand of wire. If the strength of the avoilable tie wire is unknown, the minimum breoking load for a dauble strand of wire (found in the Army supply system) is given in table 8-2.

$$
\text { Tie wire spacing }(\mathrm{in})=\frac{\text { Tie wire strength }(\mathrm{lbs}) \times(12 \mathrm{in} / \mathrm{ft})}{\text { Uniform load on wale }(\mathrm{lb} / \mathrm{ft})}
$$

(13) Determine the moximum tie spacing by selecting the smaller of the tie spacings based on the wole size and on the tie wire strength.
(14) Compare the maximum tie spacing with the maximum stud spacing. If the maximum tie spacing is less thon the maximum stud spocing, reduce maximum stud spacing to equal to the maximum tie spacing and tie at the intersections of the studs and wales. If the maximum tie spocing is greater than the moximum stud spacing, tie at the intersections of the studs and wales.
(15) Determine the number of studs for one side of a form by dividing the farm length by the stud spacing. Add one (1) to this number and round up to the next integer. During form construction, ploce studs at the spacing determined above. The spacing between the last two studs may be less thon the maximum allowable spacing

No. of studs $=\frac{\text { Length of form }(\mathrm{ft}) \times 12(\mathrm{in} / \mathrm{ft})}{\text { Stud spocing }(\mathrm{in})}+1$

' Maximum allowasle tie spacinc $=48$ INCHES
Figure 8-7. Moximum tie wire spocing.
(16) Determine the number of wales for one side of the form by dividing the form height by the wale spacing and round up to the next integer. Ploce first wale one-holf up from the bottom and the remainder at the maximum wole spacing.

## STEEL WIRE

Minimum breoking laad daubleSize af wire gage No strand pounds
8. ..... 1700
9. ..... 1420
10. ..... 1170
11. ..... 930
BARBED WIRE
Size of each wire gage No.
Minimum breaking
load pounds
$12 \frac{1}{2}$ ..... 950
$13^{1}$ ..... 660
$13 \frac{1}{2}$ ..... 950
14. ..... 650
$15 \frac{1}{2}$ ..... 850
${ }^{1}$ Single strand barbed wire
(17) Determine the time required to place the cancrete by dividing the height of the farm by the rate af placing.
b. Example Farm Design Prablem: Design the farms far a cancrete wall 40 feet lang, 2 feet thick, and 10 feet high. A 16 S Mixer is available and the crew can praduce a batch ( 16 cu ft ) of cancrete every 5 minutes. The cancrete temperature is estimated ta be $70^{\circ} \mathrm{F}$. Material available for use in canstructing farms, includes $2 \times 4$ 's and ane-inch baard sheathing.

Salutian Steps:
(1) Material available: $2 \times 4^{\prime} \mathrm{s}$, ane inch sheathing and No. 9 wire.
(2) Mixer autput $=\frac{16 \mathrm{cu} \mathrm{ft}}{5 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{\mathrm{hr}}=192 \mathrm{cu} \mathrm{ft} / \mathrm{hr}$
(3) Plan area of forms $=40 \mathrm{ft} \times 2 \mathrm{ft}=80 \mathrm{sq} \mathrm{ft}$
(4) Rate of placing $=\frac{192 \mathrm{cu} \mathrm{ft} / \mathrm{hr}}{80 \mathrm{sq} \mathrm{ft}}=2.4 \mathrm{ft} / \mathrm{hr}$
(5) Temperature of concrete: $70^{\circ} \mathrm{F}$
(6) Maximum concrete pressure (fig. $8-4$ ) $=460 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$
(7) Maximum stud spacing (fig. $8-5$ ) $=18^{\times}$use 18 inches
(8) Uniform load on studs $=460 \mathrm{lb} / \mathrm{sq} \mathrm{ft} \times \frac{18 \mathrm{in}}{12 \mathrm{in} / \mathrm{ft}}=690 \mathrm{lb} / \mathrm{ft}$
(9) Maximum wale spacing (fig. 8-6) $=23^{+}$use 22 inches
(10) Uniform load on wales $=460 \mathrm{lb} / \mathrm{sq} \mathrm{ft} \times \frac{22 \mathrm{in}}{12 \mathrm{in} / \mathrm{ft}}=843 \mathrm{lb} / \mathrm{ft}$
(1) Tie wire spacing based on wale size (fig. 8-7) $=>30^{\prime \prime}$
(12) Tie wire spacing based on wire strength

$$
=\frac{1420 \mathrm{lb} \times 12 \mathrm{in} / \mathrm{ft}}{843 \mathrm{lb} / \mathrm{ft}}=20^{+} \text {use } 20 \mathrm{inches}
$$

(13) Maximum tie spacing $=20$ inches
(14) Maximum tie spacing is greater than moximum stud spacing, therefare, reduce the tie spacing to 18 inches and tie at the intersection of each stud and double wale.
(15) Number of studs per side $=\left(40 \mathrm{ft} \times \frac{12 \mathrm{in} / \mathrm{ft}}{18 \mathrm{in}}\right)+1$

$$
=26.7^{\prime}+1 \text {, use } 28 \text { studs }
$$

(16) Number of double wales per side $=10 \mathrm{ft} \times \frac{12 \mathrm{in} / \mathrm{ft}}{22 \mathrm{in}}$

$$
=5^{+} \text {use } 6 \text { double wales }
$$

(17) Time required to place concrete $=\frac{10 \mathrm{ft}}{2.4 \mathrm{ft} / \mathrm{hr}}=4.17 \mathrm{hrs}$.
c. Wooden forms for a concrete column should be designed by the following steps:
(1) Determine the materials available for sheathing, yokes, and battens. Standard materials for column forms are $2 \times 4$ 's and 1 -inch sheathing.
(2) Determine the height of the column.
(3) Determine the largest cross-sectional dimension of column.
(4) Determine the yoke spacings by entering table 8-3 and reading down the first column until the correct height of column is reached. Then reod horizontally across the page to the column heoded by the

Table 8-3. Column Yoke Spacing (based an use of $2 \times 4$ 's and 1 -inch sheathing)

lorgest cross-sectional dimension. The center-to-center spocing of the second yoke obove the bose yoke will be equol to the volue in the lowest intervol that is partly contoined in the column height line. All subsequent yoke spocings may be obtoined by reoding up this column to the top. This procedure gives moximum unke spocings. Yokes moy be placed closer together, if desired.
d. Exomple Problem: Determine the yoke spocings for o 9 -foot column whose largest cross-sectional dimension is 36 inches. $2 \times 4$ 's ond 1 -inch sheathing ore availoble.

Solutian Steps:
(1) Materiol ovoiloble $-2 \times 4$ 's and 1 -inch sheothing
(2) Height of column is 9 feet
(3) Lorgest cross-sectianol dimension of the column is 36 inches.
(4) Moximum yoke spacing for column (toble 8-3) storting from the bottom of form ore $8^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}, 11^{\prime \prime}, 12^{\prime \prime}, 13^{\prime \prime}, 17,17^{\prime \prime}$ ond $10^{\prime \prime}$. The spoce between the top two yokes hos been reduced becouse of the limits of the column height.

## 8-4. IMPORTANT CONSIDERATIONS IN MIXING GOOD CONCRETE

o. Sond ond Aggregote. Assuming thot the proper cement is ovoiloble, the first item of importonce for o concrete job is the avoilobility of suitoble sond and coarse oggregote. Use sound, cleon sond and coorse oggregote. The sond should be free of cloy and silt ond the oggregote should be hard and strong. The omount of sond ond coorse oggregote required for eoch botch should be corefuliy measured by weight or volume.
b. Woter. The mojor factor thot offects the strength of a concrete mix is the water-cement rotio. The type, grodotion, cleonliness, and shape of the oggregote particles definitely offect the strength, but not to the extent that the woter-cement rotio does. Woter for mixing concrete should be free of foreign motter such os silt, organic moterials, olkoli, ond sulphotes. The omount of water required should be corefully meosured.

## 8-5. TYPES OF CEMENT

o. Normol Portland Cement (Type I). Normol portlond cement is used for all generol types of construction. It is used in povement ond sidewolk construction, reinforced concrete buildings ond bridges, roilways, structures, tanks, ond reservoirs, sewers, culverts, woterpipes, masonry units and soil cement mixtures.
b. Modified Partiond Cement (Type II). Madified partland cement hos a lower heot af hydratian thon Type I, generates heot ot o slawer rate ond hos impraved resistance ta sulfote ottock. It is intended far use in structures of considerable size where cement of maderote heat of hydrotian will tend ta minimize temperature rise, os in large piers, heovy obutments, heovy retoining walls ond when the concrete is placed in worm weother.
c. High-Early Portlond Cement (Type III). High-eorly partland cement is used where high strengths are desired at very eorly periads. It is used where it is desired ta remove forms os saan os passible, ta put the concrete in service as quickly os passible ond in cald weother construction to reduce the periad af pratectian agoinst low temperotures.
d. Law-Heat Partand Cement (Type IV). Law-heot partlond cement is to be used when the omaunt ond rate of heat generoted must be kept to o minimum. It is intended for use only in lorge masses af cancrete such as large doms where temperoture rise resulting from the heot generoted during hordening is a critical foctor.
e. Sulfote-Resistont Partland Cement (Type V). Sulfote-resistont partlond cement is intended far use only in structures exposed ta severe sulfate ottock.
f. Air-Entrained Portiond Cement (Type IA, IIA or IIIA). Air-entrained partland cement is o speciol cement that con be used with good results to resist severe frost octian, to resist the effect af opplicatians of solt ta povements for snow ond ice removal, ond ta reduce the omaunt af woter loss.

## 8-6. ESTIMATING QUANTITY OF STORED AGGREGATE

a. Aggregote is aften stared in cane-shaped or tent-shoped piles. A gaad farmulo ta estimote the valume af aggregate in o cone-shoped pile is: volume $=0.2618 \times$ height $\times$ diometer squored. The volume of o tent-shoped pile is: valume $=0.2618 \times$ height $\times$ diometer squored +.5 $x$ height $\times$ diameter $\times$ length of the lineor sectian. The weight of the stared oggregote is determined by multiplying the volume by the unit weight af aggregote. A good estimote of the unit weight af aggregote is $100 \mathrm{lbs} / \mathrm{cu} \mathrm{ft}$.
b. Figure 8-8 pravides a graphical method of determining the weight af oggregate in o pile. The capocity of the pile hos been related to the width of the base of the pile. The bose width con be abtained by meosuring the pile with a tope ar, appraximotely, by pocing.


Figure 8-8. Storage capacity curves.
(1) The capacity of a conical-shaped pile is determined from the bottom pair of curves. Enter the bottom of the graph with the base dimension and draw a line vertically up until it intersects the correct moterial curve. Read horizontally across from the point of intersection to the capocity in the vertical column on the inside left. For example, o conical-shoped stockpile of crushed stone 60 feet wide at the base hos a capacity of 1200 tons.
(2) Determining the capacity of o tent-shaped pile requires two steps. Note that the two ends of a tent-shaped pile are equivolent to one conical pile ond their capocity can be determined in the manner described above. The capacity per linear foot of the middle section is determined from the middle pair of curves. Enter the bottom of the groph with the bose dimension and drow a line vertically up until it intersects the correct material curve. Read horizontolly across from the point of intersection to the capacity per linear foot in the vertical column on the outside left. Multiplying the capacity per linear foot times the length of the middle section in feet gives the copacity of the middle section. Adding the middle section capacity to the copacity of the ends gives
the totol capacity. For exomple, the middle section of o tent-shoped stockpile of gravel 40 feet wide hos o copacity of 15 tons per linear foot. If the middle section were 50 feet long, the capacity of the middle section would be $50 \mathrm{ft} \times 15$ tons $/ \mathrm{ft}=750$ tons. The capacity of the two end sections is 300 tons, therefore the totol copocity is 750 tons +300 tons $=1050$ tons of gravel.
(3) The top pair of curves con be used to determine the height of the pile. Enter the bottom of the curve with the bose dimension ond drow a line vertically up until it intersects the correct moterial curve. Reod horizontally across to the right from the point of intersection to the height of the pile.

## 8-7. CONCRETE MIX DESIGN (TRIAL BATCH METHOD)

o. It is recommended that, to properly design a concrete mix, the testing equipment and procedures outlined in TM 5-742 be used. If this is not ovoilable, the procedures given in this manual will be satisfoctory. For lorge projects, a mixer should be used for mixing trial batches. For small projects, mixing by hand will suffice. The method given here is for trial mixing done by hond.
b. Construct a measuring box which has the inside dimensions of 6 inches $\times 6$ inches $\times 6$ inches. This will give a container that will hold $0.125\left(\frac{1}{\mathrm{k}}\right)$ cubic foot of materiol.
c. The amount of water that is to be added to the cement to produce the required strength concrete must be determined. It con be expressed in terms of gallons per sock of cement, or in terms of weight of water per sock of cement. Table 8-4 gives the quantities of water for concrete of given strengths for Type I non-air-entrained ond oir-entroined cement. A 15 percent sofety foctor should be added to the desired strength when selecting the amount of water. Where strength and economy are important, tests for strength should be made with materials to be used on the job.
d. The slump required for the type of construction can be obtained by referring to toble 8-5. Be sure to pick one particular slump instead of a range.
e. Using the measuring box, measure out one box of cement, two boxes of sond, ond three boxes of gravel. (Aggregote should have no surface moisture.) Place on a surfoce which will not absorb moisture. Mix the cement, sand and gravel until evenly mixed. Ploce the mixture in a mound and form o depression in the middle.

Table 8-4. Relatians Between Mixing Water and Campressive Strength af Cancrete

Narmal Portland Cement (Type I) - Non-Air-Entrained

Water-gal per sack of cement	Prabable Average Strength*, psi	
	7-day strength	28-day strength
4.	4,300	6,200
5.	3,400	5,200
6.	2,700	4,300
7.	2,100	3,500
8.	1,500	2,900

Normal Portland Cement (Type IA) - Air-Entrained

Water-gal per sack of cement	Prabable Average Strength*, psi	
	7-day strength	28-day strength
5.5..	2,200	3,700
6.0..	1,800	3,300
6.5	1,500	2,900
7.0	1,200	2,500

*A safety factar of 15 percent should be allawed when selecting the water cantent required. If 2,800 psi cancrete at 28 days is required, a water content carresponding ta a strength af 3,220 psi shauld be selected.

Table 8-5. Recommended Slumps for Various Types of Construction*

Type of construction	Slump (inches)		
	Moximum	Minimum	
Reinforced foundation walls and footings.....	4		2
Unreinforced footings, caissons, and substructure walls.	3		1
Reinforced slabs, beams, and walls	5		2
Building columns..	5		3
Pavements.	2		1
Heavy moss construction.	2		1
Bridge decks...	3		2
Sidewalk, driveway, and slabs on ground......	4		2

When high-frequency vibrotors ore not used, the values moy be increosed by obout 50 percent, but in no cose should the slump exceed 6 inches.
f. Measure out $\frac{1}{9}$ of the required water for one sack of cement and pour slowly into the cement-sand-gravel mixture. Mix well until all sand and gravel is coated with the cement-water paste.
g. Test the slump of the mixture and compare it against what is required. The procedure for determining the slump of concrete is as follows:
(1) Obtain or construct slump cone as shown in figure 8-9.
(2) Moisten cone and place on a waterproof surface such as a piece of tin or plastic. Do not place on concrete or wood unless thoroughly moistened.
(3) Completely fill the cone in three layers, each layer consisting of approximately $\frac{1}{3}$ of the volume of the cone. As each layer is placed, it must be radded 25 times with a $\frac{5}{8}$-inch, bullet-pointed, tamping rod. Each stroke af the rod should penetrate the layer of concrete below the layer being tamped, with the bottom layer being rodded throughout its entire depth.
(4) When the cone is full, strike off any excess concrete.
(5) Carefully remove the cone and place next to the concrete. Measure the slump of the concrete as shown in figure 8-9. To be an acceptable mixture, the measured slump should be within $\frac{1}{2}$-inch of the recommended slump.

## TAMPING ROD:

figure 8-9. Measurement of slumps.
h. If slump is more thon required, repeot the trial mix using mare sandgravel. If slump is less than what is desired, repeat the triol mix using less sand-gravel. Cautian: Never increase woter content ta increase the slump.
i. After the praper trial mix hos been determined, multiply the omounts used by 8 . This will give the amount af sond and gravel to mix with one sock of cement and the determined omount of woter. i. Exomple problem: Place of for a footing.

## Salution:

1. Add 15 percent to the strength for o sofety factor $3,500 \times 1.15=4,025$
2. Amaunt of water (table 8-4): 4 gollons
3. Required slump (table 8-5): 3 inches
4. After the trial botch it was found that to obtoin o 3 -inch slump 1 bax ( $\frac{1}{1} \mathrm{cu} \mathrm{ft}$ ) of cement, 2 boxes ( $\frac{1}{6} \mathrm{cu} \mathrm{ft}$ each) of sond and 4 boxes ( $\frac{1}{8} \mathrm{cu} \mathrm{ft}$ eoch) of gravel were needed.
Therefare for o ane bag mix
Cement $=1 \times \frac{1}{8} \mathrm{cu} \mathrm{ft} \times 8=1 \mathrm{cu} \mathrm{ft}=1 \mathrm{bag}$
Sond $=2 \times \frac{1}{8} \mathrm{cu} \mathrm{ft} \times 8=2 \mathrm{cu} \mathrm{ft}$ Gravel $=4 \times \frac{1}{8} \mathrm{cu} \mathrm{ft} \times 8=4 \mathrm{cu} \mathrm{ft}$
Water $=4 \mathrm{gal}$

## 8-8. ESTIMATING AMOUNT OF MATERIALS REQUIRED

a. After the mix proportians have been determined, the omaunt of each material for the job must be determined.
(1) Determine the volume of cancrete needed in cubic feet.
(2) Multiply valume of concrete needed by $\frac{3}{2}$ This gives the totol amount of dry laose materiol needed.
(3) Determine the volumetric propartion af cement, sond and gravel. This con be dane by the trial batch method or if necessory by assuming a 1-2-3 mix.
(4) Determine the tatol volume of each moterial needed by summing the desired praportian of eoch decided on in (3) abave (i.e., $1-2-3=6$ )
(5) Determine the amount af cement, sond and gravel needed by multiplying the valume of dry material needed ((2) above) by the propartional amount of the tatal mix (cement $=\frac{1}{6} \times$ tatal valume).
(6) Add lass foctor due to handling by using rule of thumb: $10 \%$ lass for job up ta 200 cubic yards of concrete needed and $.5 \%$ lass for jabs 200 cubic yards and aver. Round off ta neorest whole number. (Note: 1 sock (bag) cement $=1 \mathrm{cu} \mathrm{ft}$ )
(7) Determine omaunt of woter by using rule af thumb: 8 gal of water per sack of cement. This allows extro water for waste, cleonup ond curing.
b. Example Problem: Determine the amaunt of materiol needed to ploce a concrete wall. The size has been determined ta be 10 feet long, 3 feet high and 1 foot thick.
(1) Volume: $10 \mathrm{ft} \times 3 \mathrm{ft} \times 1 \mathrm{ft}=30 \mathrm{cu} \mathrm{ft}$
(2) Dry loase materials required: $30 \mathrm{cu} \mathrm{ft} \times \frac{3}{2}=45 \mathrm{cu} \mathrm{ft}$
(3) Mix proportion: $1-2-3=6$
(4) Amount of each material required

Cement $=45 \mathrm{cu} \mathrm{ft} \times \frac{1}{6}=7.5 \mathrm{cu} \mathrm{ft}=7.5$ bags
Sond $=45 \mathrm{cu} \mathrm{fi} \times \frac{3}{8}=15 \mathrm{cu} \mathrm{fi}$ Gravel $=45 \mathrm{cu} \mathrm{ft} \times \frac{3}{6}=22.5 \mathrm{cu} \mathrm{ft}$
(5) Amaunt of cancrete is less than 200 cubic yards, therefore apply $10 \%$ loss factor:
Cement $=1.10 \times 7.5$ bags $=8.25$ say 9 bags
Sand $=1.10 \times 15 \mathrm{cu} \mathrm{ft}=16.5$ say 17 cu ft
Grovel $=1.10 \times 22.5 \mathrm{cu} \mathrm{ft}=24.75$ say 25 cu ft
(6) Amaunt of water: $8 \frac{\mathrm{gal}}{\mathrm{bag}} \times 9$ bags $=72 \mathrm{gal}$

## 8-9. BATCHING

a. Once a design mix has been determined the project site must be loid aut and argonized ta facilitate quality cantrol of the batch (charge) which will ga inta the mixer. A recommended loyaut is to place the cement, sand, gravel and woter as close to the skip (laad bucket) of the mixer as passible.
b. When the batch is being placed in the skip, the gravel should be placed in the skip first. This allaws the material ta flaw freely and keep the skip clean. Cement is placed next and cavered with sand. This prevents the cement from being blawn away. The exact amount can be cantralled by canstructing measuring baxes which have inside dimensions of 1 faat $\times 1$ faat $\times 1$ foot and measuring all sand and gravel as it is placed in the skip. Water can be ploced into the mixer either by the use of a metering device which may be a part of the mixer, or by hand. If the water is placed by hand, it should be measured in containers which will not leak and care shauld be token that the water is not spilled as it is placed inta the mixer. Water may be added thraugh the discharge end af the mixer (discharge chute up) after the dry moteriols ore in the drum. Avoid spilling water inta the skip os it has a tendency to make the materials stick.
c. The actual mixing time will depend on the method of dischorge and size of batch. If discharge is directly inta the farm, the mixing time shauld be at least ane minute for any mix. For a batch exceeding one cubic yord the mixing time is increased 15 seconds for each additional $\frac{1}{2}$ cubic yard ar part thereaf. If the concrete is discharged into small containers, the mixing time will be langer due to the additional time required to empty the mixer drum.

## 8-10. CONCRETE PLACING

a. All forms shauld be ailed before cancrete is placed. This is ta aid in remaving forms after the cancrete has hordened.
b. Cancrete should nat be ollowed to free foll into forms ot heights greoter than 3 ta 5 feet unless suitoble drop chutes, boffles ar verticol pipes ore provided.
c. As cancrete is being placed, it shauld be campocted by vibration, spodes ar rods. Core shauld be taken not to over vibrate. This will couse the concrete ta segregote, making the concrete weoker. Segregotian is the differentiol cancentrotion af the campanents af mixed concrete, resulting in nanuniform proportions in the moss.

## 8-11. CURING AND PROTECTING CONCRETE

o. The loss of maisture must be prevented during hydrotion. Keep the expased surfoce moist by spraying or panding water, or by cavering the concrete with eorth, sond, ar burlop mointained in o moist candition.
b. Sproy-an curing compaunds ore ovoilable. Sproy on the campaund in one coot. Da nat use the campounds if the oir temperoture is abave $100^{\circ} \mathrm{F}$ ond the oir is dry.
c. Do nat let fresh cancrete drop belaw $40^{\circ} \mathrm{F}$ in temperoture.

## 8-12. MIXER CLEANING

Cleoning of the mixer should be performed ofter every use. To clean a mixer, oll cement paste shauld be washed off the outside af the mixer. The inside of the drum should be cleoned. This con be dane by plocing water ond smoll stones in the drum ond ollowing the mixer ta rotate ta cleon ond flush out oll cancrete fram the drum. After cleoning, o light caat of ail an the outside af the mixer will prevent cancrete fram sticking to the mixer during the next aperotion.

## CHAPTER 9

## MILITARY ROAD CONSTRUCTION

## 9-1. MINIMUM DESIGN REQUIREMENTS

Table 9-1 gives a summary of military road specifications.
Table 9-1. Military Road Specifications

Characteristic	Specificatian
Width:   Traveled way (single lane).   Traveled way (twa lanes).   Shaulders (each side)   Clearing.	Min- 11.5 ft (3.5 meters)   Min-23 ft ( 7.0 meters)   Min-ft ( 1.5 meters)   Min-6 ft (2 meters) an each side of raodway
Grades:   Absalute maximum. $\qquad$   Narmal maximum $\qquad$   Desirable maximum. $\qquad$	Lowest maximum gradability of vehicles far which raad is built $10 \%$   Tangents and gentle curves, less than $6 \%$; sharp curves, less than $4 \%$
Horizantal curve radius.   Vertical curve length: Invert curves. $\qquad$   Overt curves.	Desired $\mathrm{min}-150 \mathrm{ft}(45 \mathrm{~m})$ Absalute $\mathrm{min}-80 \mathrm{ft}(25 \mathrm{~m})$   $100-\mathrm{ft} \min (30 \mathrm{~m})$ for each $4 \%$ algebraic difference in grades   $125-\mathrm{ft} \min (40 \mathrm{~m})$ far each $4 \%$ algebroic
Sight distance:   Nonpassing.   Passing.	Absalute minimum - $200 \mathrm{ff}(60 \mathrm{~m})$   Absolute minimum - 350 ft ( 110 m )

Toble 9-1.-Continued

Choracteristic	Specification
Laad copacity:   Raad praper. $\qquad$   Bridges. $\qquad$	Sustain $18,000 \mathrm{lb}$ Single axle, dual wheel equivalent laad   Accammodate using troffic
Slapes:   Shaulders $\qquad$   Crawn (gravel and dirt).   Crown (poved). $\qquad$   Superelevatian. $\qquad$   Cut. $\qquad$   Fill. $\qquad$	$\frac{3}{4}$ in per ft ta $1 \frac{1}{2}$ in per ft $\frac{1}{2}$ to $\frac{3}{4}$ in per $f t$   $\frac{1}{2}$ ta $\frac{1}{2}$ in per ft $\frac{1}{4}$ ta $1 \frac{1}{4}$ in per ft Variable   Variable
Drainage......................	Adequate crown or superelevation with adequate ditches and culverts in goad candition. Toke full advantage af natural droinage. Try to lacate raod at least 5 ft above the graund-water table
Miscellaneaus:   Overhead clearance. $\qquad$   Traffic volume. $\qquad$   Turnouts (single lane) $\qquad$	Min- $14 \mathrm{ft}(4.3 \mathrm{~m})$   2,000 vehicles per day   Min-every $\frac{1}{4}$ mile

## 9-2. CROSS-SECTIONS

Figures 9-1 thraugh 9-5 give typical military raad specificatians.


Figure 9-1. Typical crass-sections illustrating raad nomenclature.


Figure 9-2. One way earth road.

SLOPE $1 / 2$ "PER. FT. CROWN


Figure 9-3. Two-woy road using single caurse constructian.


Figure 9-4. One-way raad using dauble caurse canstructian.

## SURFACE COURSE SLOPED $1 / 2 \cdot$ PERFT.

BASE COURSE OF UNIFORM THICKNESS
 SIDE BLEEDER DRAINS ARE INSTALLED IN the Shouloers.

Figure 9-5. Twa-way raad using dauble caurse canstructian.

## 9-3. CONSTRUCTION STAKES

(fig. 9-6)
a. Centerline Stakes.
(1) General. Centerline or alinement stakes are placed an the centerline of a raad ar airfield ta indicate its alinement, lacation, and direction. These stakes are the first stakes ta be placed and are usually placed at 100 faat intervals. On raugh graund ar an sharp harizantal and vertical curves, the stakes are placed claser tagether.
(2) Plocement and marking.
(a) Placement. Stakes are placed with the braad portian of the stake perpendicular ta the centerline. The side of the stake which faces the storting point (station $0+00$ ) is called the front af the stoke.
(b) Marking. The frant af the stake is morked with a $\mathbb{E}$ which meons centerline, and the statian number or the distance fram the starting point. As on example $78+00$ means 7800 feet from the starting paint. On the reverse side, or back side of the stake, is placed the amount of cut or fill, in feet, required at this station.
b. Shoulder Stakes.
(1) General. Shaulder stakes are set on the inside edge af the shaulder and are used as guides far the aperator ta determine the width of the road.
(2) Placement and marking.
(a) Placement. These stakes ore set at right angles ta the centerline appasite eoch centerline stake.
(b) Marking. Markings can be the same as thase for raugh grade stakes ar the stake con be simply o plain, unmarked piece of waad that morks the inside edge of the shoulder.
c. Slape Stakes.
(1) General. Slape stakes define the limits af grading work. Usually the area to be cleared extends 6 feet beyand the slape stakes.
(2) Placing and marking.
(a) Placing. Slope stakes are set an lines perpendiculor ta the centerline (one an eoch side), at the paints where the cut and fill slapes intersect the natural graund surface. If there is cut or fill ta be perfarmed, the stake is placed in the ground at an angle, leaning awoy fram the centerline. Slape stokes are placed at 100 -faot intervals an tongents ond at 50 -faot intervals an harizontal ar vertical curves.
(b) Marking. The front af the slope stake is the side facing the centerline. This side is marked with the amount af cut ar fill to be dane, in feet, fram the stake to the autside edge of the ditch line at o paint even with the final grade of the raod at the shaulder. The second figure on the stake represents the distance from the stoke ta the centerline af the road. The back of the stake contains the statian number and the slape required for the cut ar fill.
d. Offset Stakes.
(1) General. As saan as wark is started an a cut ar fill, the centerline and slape stakes may be destrayed. In arder to eliminate resurveying ta reploce these stakes, affset stakes are placed beyand the limits af construction far the purpase af relacating the original stakes.


Figure 9-6. Construction stake marking.
(2) Marking. The affset stake will cantain all the informatian found an the original slape stake plus the horizantal distance fram the ariginal slope stake ta the affset stake. This distonce is marked an the front of the stake and is circled ta indicate that it is an affset distance.
e. Grade Stakes.
(1) Rough grade stokes.
(a) General. Raugh grade stakes are ploced on centerlines, shoulder lines, ar slape lines after grading has begun. These stakes are placed to shaw the operatar the amount of cut or fill remaining and are nat cansidered a permanent reference.
(b) Placement and marking. The raugh grade stake is placed at either a paint of cut ar a paint af fill ta shaw haw much eorth is left befare final grade is abtained. The frant of the stake (the side af the stake facing the centerline) is marked with the letter $F$ ar $C$ indicating fill or cut, a reference line with a "craw's faat" and the distance fram the stake ta the centerline. To eliminate canfusian, the surveyar wha put in the grade stakes shauld explain haw he used the reference line faund an the stake. Same surveyors use this line as final grode and athers use this line os o reference line (to measure the amaunt of fill or cut fram the back of the stake cantaining the stotian number).
(2) Final grade stakes.
(a) Generol. Narmally these are $2 \times 2$-inch waoden stakes driven inta the graund until the tap af the stake is at a level ta represent final elevation.
(b) Plocement and marking. These stakes are placed wherever it is felt a reference ta final grade should be made such as an centerline statians. There are no markings an these stakes ather thon the blue ar red tops. The setting af the stake could represent the exact finish grade ar a certain standord distonce abave exact grade.

## 9-4. SOILS

a. Procedure far Field Identificatian Tests (fig. 9-7).
(1) Separate gravel.
(a) Remove fram sample all particles larger thon $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ diameter.
(b) Estimate percent gravel.
(2) Sedimentatian test.
(a) Place sample (less gravel) in conteen cup ond fill with water.
(b) Shake mixture rigarausly.
(c) Allaw mixture ta stand far 30 secands ta settle out.
(d) Pour off water after 30 seconds of settlement and save.
(e) Repeat (b) through (d) obove until water poured off is clear.
(f) Evaporate water from (d) above.
(g) Estimate percent fines.
(3) Camparison of gravel ond sand.
(a) Gravels have been removed in test (1), ((b) above).
(b) Fines hove been removed in test (2), ((e) above).
(c) Dry soil remaining in cup.
(d) Soil remaining in cup will be sand.
(e) Compare dry sond in cup with gravel from test (1), ((b) above).
(4) Dry strength.*
(a) Form moist pat $2^{\prime \prime}$ in diameter by $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ thick.
(b) Allow to dry with low heat.
(c) Place dry pat between thumb and index finger only and attempt to break.
(d) Breakage easy - silt.

Breakage difficult-CL.
Breakage impossible-CH.
(5) Powder test.*
(a) Rub portion of broken pat with thumb and attempt to flake particles off.
(b) Pat powders - silt (M).

Pat does not powder-clay (C).
(6) Thread test.*
(a) Form ball of moist soil (marble size).
(b) Attempt to roll ball into $\frac{1}{9}$ " diameter thread (wooden match size).
(c) Threod eosily obtained-clay (C).

Threod cannot be obtained-silt (M).
(7) Ribbon rest.*
(a) Farm cylinder of soil approximately cigar shape in size.
(b) Flatten cylinder over index finger with thumb; attempting to form ribbon $8^{\prime \prime}-9^{\prime \prime}$ long, $\frac{1}{\theta^{\prime \prime}}$ to $\frac{1^{\prime \prime}}{}$ thick, ond $1^{\prime \prime}$ wide.
(c) $8^{\prime \prime}$ to $9^{\prime \prime}$ ribbon obtained -CH .

Less than $8^{\prime \prime}$ ribbon -Cl .
(8) Wet shaking test.*
(a) Place pat of moist (not sticky) soil in palm of hand (vol about $\frac{1}{2} \mathrm{cu}$ in.).
(b) Shoke hand vigorously and strike against other hand.

[^6](c) Observe ropidity af water rising ta the surface.
(d) If fast, sample is silty (M).

If na reaction, sample is clayey (C).
(9) Grit, ar bite test.*
(a) Place pinch of sample between teeth ond bite.
(b) If sample feels gritty, sample is silt (M)
(c) If sample feels floury, sample is clay (C)
(10) Feel test.*
(a) Rub partion of dry sail aver a sensitive portion af skin, such as inside of wrist.
(b) If feel is harsh and irritating, sample is silt (M).
(c) If feel is smaoth and flaury, sample is clay (C).
(11) Shine test.*
(a) Draw smaath surface, such as knife blade ar thumb nail, aver pat of slightly maist sail.
(b) If surface becames shiny and lighter in texture, sample is a high campressible clay $(\mathrm{CH})$.
(c) If surface remains dull, sample is a low campressible clay (CL).
(12) Odar test.*
(a) Heat sample with match ar apen flame.
(b) If adar becames musty ar foul smelling, there is a strang indicatian that arganic material is present.
(13) Cast test.
(a) Campress a handful af maist sail inta a ball.
(b) Crumbles with hondling - GW, SW, GP ar SP.
(c) Withstands careful handling - SM ar SC.
(d) Handled freely - ML or MH.
(e) Withstands raugh handling -CL or CH .
(14) Slaking test.
(a) Place sail ar rack in sun to dry.
(b) Saak in water far 24 haurs.
(c) Repeot (a) and (b) abave several times.
(d) If soil ar rack disintegrates, it is paar material.
b. Charocteristics af Sails Pertinent ta Raads. Table 9-2 gives characteristics of soils pertinent ta raads and airfields.

[^7]c. Field Density Determination. The sond displacement method is so nomed becouse a colibrated sond is used to determine the volume of the hole from which a somple has been token. The test consists essentiolly of digging out o sample of the moterial to be tested, determining the volume of the hole from which the sample wos removed, and determining the dry weight of the sample. There are three requirements thot must be met:
(1) The volume of the sample must be 0.05 cu . ft . or lorger.
(2) When the sond-displacement method is used, o double cone cylinder must be used thot permits calibrating the sond for eoch sampling operotion.
(3) The sond moisture content must be constant while performing the test. (See TM 5-330 for complete testing procedure.)

Notes.

1. Column 1, division of GM and SM groups into subdivisions of $d$ ond $u$, is on the bosis of Atterberg limits; suffix $d$ is used when the liquid limit is 25 or less and the plosticity index is 5 or less; the suffix $u$ will be used otherwise.

2 Column 3 is not for basecourse directly under bituminous povements.
3. Column 5 has severol types of equipment listed.
o. Processed bose materiol ond other ongulor moterial. Steel-wheeled ond rubber-tired rollers ore recommended for hord, angulor moterials with limited fines or screening. Rubber-tired equipment is recommended for softer moterials subject to degrodation.
b. Finishing. Rubber tired equipment is recommended for rolling during finol shaping operotions for most soils and precessed moteriols.

## 9-5. DRAINAGE

o. Runoff. The rationol method of estimating runoff combines engineer judgment with calculotions bosed on onolysis, meosurement, or estimation. It is expressed by: $\mathrm{Q}=\mathrm{CI} \mathrm{A}$
where $Q=$ runoff from a given areo in cubic feet per second
$\mathrm{C}=0$ coefficient thot represents the ratio af runoff to rainfall
$l=$ intensity of roinfall in inches per hour for the estimated time of concentrotion
$A=$ drainoge oreas in ocres.

Table 9-2. Characteristics of soils


Pertinent to Roods ond Airfields


Table 9-2. Characteristics of sails


Pertinent ta Raads and Airfields - Continued


Toble 9-2. Characteristics of sails

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Letter Symbol \\
(1)
\end{tabular}} \& \multirow[b]{2}{*}{Nome

(2)} \& \multicolumn{2}{|l|}{Volue os o Subgrode Beneoth Londing Mot or as on Unsurfoced Areo} \& \multicolumn{2}{|l|}{Freedom of Dry Surfoce From Dust} <br>

\hline \& \& | Wet |
| :--- |
| (3) | \& | Dry |
| :--- |
| (4) | \& | Firm Surfoce |
| :--- |
| (5) | \& | Loose Surfoce |
| :--- |
| (6) | <br>

\hline CL \& Inorgonic cloys of low to medium piosticity, grovelly cloys; sondy, silty, ond leon cloys. \& Good \& Poor \& Foir to Poor \& Poor <br>
\hline OL \& Orgonic silts and orgonic siltcloys of low plosticity \& Good \& Very Poor \& Foir to Poor \& Poor <br>
\hline MH \& Inorgonic silts, mıcoceous or diotomoceous fine sondy or silty soils, elostic silts. \& Good \& Very Poor \& Good to Foir \& Poor <br>
\hline CH \& Inorgonic cloys of high plostıcity, for cloys. \& Good \& Poor \& Good to Foir \& Poor <br>
\hline OH \& Orgonic cloys of medium to high plosticity, orgonic silts. \& Good \& Very Poor \& Good to Foir \& Poor <br>
\hline Pr \& Peot ond other highly orgonic soils. \& Very Poor \& Extremely Poor \& Good \& Poor <br>
\hline
\end{tabular}

Pertinent to Roods ond Airfields - Continued

Compressibility ond Exponsion   (7)	Droinoge Chorocteristics   (8)	Compoction Equipment   (9)	Dry Unit Weight \#/cu ft   (10)	Airfield Index   11
Medium	Proctically impervious	Rubber-tired rolier, sheepsfoot roller.	90-130	13 or less
Medium to hıgh	Poor	Rubber-tired roller, sheepsfoot roller.	90-105	7 or less
High	Foir to Poor	Sheepsfoot roller, rubber-tired roller.	80-105	10 or less
High	Procticolly impervious	Sheepsfoot roller, rubber-tired roller	90-115	13 or less
High	Procticolly impervious	Sheepsfoo: roller, rubber-tired roller.	80-110	7 or less
Very high	Foir to poor	Compoction not proctical	.........	$\ldots$

The value of $C$ is derived fram a study of the sail, the slape and canditians of the surface. The mare cammanly used volues are shawn in table 9-3. The volue for 1 is derived fram a study of available rainfall data. When past rainfoll data is nat available refer to TM 5-330 far charts pertinent ta the areo in questian.

Table 9-3. Surface Runaff Factars

Types af surface	Factar
Asphalt pavements.	0.80 to 0.95
Cancrete pavements.	0.70 ta 0.90
Gravel ar macadam pavements...................................	0.35 to 0.70
Imperviaus sails*.	0.40 to 0.65
Impervious sails, with turf*	0.30 ta 0.55
Slightly pervious sails*.	0.15 to 0.40
Perviaus sails*...........................................................	0.01 ta 0.10
Waaded areas depending on surface slape and sail caver.	0.01 ta 0.20

[^8]b. Open Ditch Design.
(1) Determine the rate af runaff (Q) in CFS fram the area cantributing to the ditch.
(2) Determine the slape (S) in feet per faat of the ditch fram the grading plan of the area.
(3) Using table 9-4, select a retardance caefficient ( $n$ ) and a maximum permissible velacity ( $V$ mox) in fps far the soil conditions in which the ditch is ta be constructed.
(4) Determine the type of ditch to be used (i.e., nan-symmetrical triangular, symmetricol triangular, ar trapezaidal).
(5) Using the slape ( $(5)$, the retardance caefficient ( $n$ ), and velacity ( $V$ max) determine the actual hydraulic radius using the nomagraph figure 9-8.

Table 9-4. Manning's " $n$ " and Maximum Permissible Velacity of flaw in Open Channels

Ditch Lining a. Rack	Manning's " $n$ "	$\checkmark \mathrm{fps}$
(1) Smaath and Unifarm	0.035-0.040	20
(2) Jagged \& ! rregular	0.040-0.045	15-18
b. Sails		
Ditch Lining	Manning's " $n$ "	fps Max
GW	0.022-0.024	6-7
GP	0.023-0.026	7-8
d	0.023-0.025	3-5
GM	0.022-0.024	2-4
GC	0.024-0.026	5-7
SW	0.020-0.024	1-2
SP	0.022-0.024	1-2
d	0.020-0.023	2-3
SM	0.021-0.023	2-3
SC	0.023-0.025	3-4
CL	0.022-0.024	2-3
ML	0.023-0.025	3-4
OL	0.022-0.024	2-3
CH	0.022-0.023	2-3
MH	0.023-0.024	3-5
OH	0.022-0.024	2-3
PT	0.022-0.025	2-3

3LOPE in feet perfeot.s



Figure 9-8. Nomograph for solutian of Manning equatian.
(6) Calculate using $R$ and the type of ditch selected, the depth $d$ and area A. Note figure 9-9.


Figure 9-9. Typical ditch.
(7) Calculate $Q=A V$ where $A$ is the area as determined in (6) abave and $V$ is the velocity of flaw as determined in (3) abave.
(a) If $Q$ calculated is nat greater ar less than 5 percent af the runoff $Q$, then the ditch can be used.
(b) If $Q$ calculated is greater than 5 percent af the runaff $Q$, use the same ditch but with steeper side slapes and repeat ( 6 ) and (7) abave. If velocity chosen was maximum far the sail use lawer velacity and repeat (5), (6), and (7) above.
(c) If $Q$ calculated is less than 5 percent of the runaff $Q$ and the velacity used was maximum far the ditch material, change the crass section af the ditch by making side slopes flatter or by increasing bottam width if trapezoidal.
(8) As an additional safety factor add 0.5 ft ta the depth.
c. Checkdams. Checkdams are used on sidehill cuts and steep grades, where they are placed in side ditches ta slaw the water and prevent it fram washing aut the raad. Checkdams are used when the ditchline grade exceeds 5 percent ar where erasion is a problem. They are made of timber, sandbags, cancrete, rock, ar similar materials. Figure 9-10 shows the method af computing checkdam spacing.


Figure $9-10$. Methods of computing checkdom spocing.
d. Culverts.
(1) Generol. Culverts ore required wherever droinoge chonnels ore needed to cross roods, to provide ditch relief, ond to continue side ditches of the intersections of roods ond occess routes.
(2) Cross-sectionol oreo.
(o) Tolbot's formulo moy be used os on opproximote method for computing the cross-sectionol oreo of o proposed culvert. This formulo is:

$$
A=C \sqrt[4]{D^{3}} \text { or } A=C D^{3 / 4}
$$

where $A=$ oreo of woterwoy opening in squore feet


Figure 9-11. Nomogroph for solution of Tolbot's formulo.
$D=$ droinage oreo in ocres

$$
\begin{aligned}
C= & \text { coefficient of retordation bosed upon slope and soil chor- } \\
& \text { teristics, (see toble } 9-3 \text { ). }
\end{aligned}
$$

An olignment chort for solutions to Tolbot's formulo is given in figure 9-11.
(b) Hosty culvert oreo colculotion. See figure 9-12.


SIZE OF CULVERT = AREA OF WATERWAY + SAFETY FACTOR $100 \%$

Figure 9-12. Hosty culvert colculotion.
(3) Alignment. Culverts ore ploced in noturol droinage chonnels, unless such installotion would require on unusuolly long culvert, or produce o shorp bend in the chonnel on the upstreom side. Where old droinoge chonnels ore not encountered, culverts should be instolled ot right angles to the centerline. Ditch relief culverts should be instolled ot on ongle of $60^{\circ}$ to the centerline. See figure 9-13.


Figure 9-13. Alignment of culverts.
(4) Length. Usuolly culverts should be long enough to extend through fills to the point where the fill slope meets the ground. To minimize scour of the downstreom end, culverts should be 1 to 2 feet longer thon required, with the odded length on the discharge end (fig. 9-14).


Figure 9-14. Culvert extended beyond fill to prevent erosion.
(5) Elevotion. The bottom of the culvert ot the inlet is ploced on or below, but not obove streombed elevotion. At the outlet end, the bottom of the culvert normolly should be of the elevotion of the surfoce of the streom since it may fill with sediment if ploced below the surfoce.
(6) Slope. Culverts normolly ore constructed ot the grode of the noturol and ortificiol droinoge chonnels which dischorge into them. It is desiroble to use grodes of 2 to 4 percent; 0.5 percent os on obsolute minimum.
(7) Bedding. The foundotion is olwoys shoped to fit of leost onetenth of the outside diometer of the pipe. Crodles or footers moy olso be used if the soil will not provide proper support (fig. 9-15).


Figure 9-15. Culvert bedding, cover.
(8) Strutting. Figure 9-16 shaws the strutting diagram far elangating the vertical dimensians af the larger sizes of corrugated pipe culvert prior to backfilling.
10u!pnt!6u0!

(9) Strength. Culverts must be strang enough ta carry the weight af the fill obove it plus the weight af the live load that posses over the road. See toble 9-5 far recammended gages for nestable corrugoted pipe.

Table 9-5. Recammended gages far Nestable Carrugated Pipe

Diam. in inches	Crosssectionol oreo (sq ft)	Fills up ta 8 ft .	Fills up ta 16 ft.	$\begin{gathered} 20-\mathrm{ft} . \\ \text { fill } \end{gathered}$	$25-\mathrm{ft} .$ fill	$\begin{aligned} & 30-\mathrm{ft} . \\ & \text { fill } \end{aligned}$	$35-\mathrm{ft} .$ fill	$40-\mathrm{ft}$. fill
8	. 35	16	16	16	16	16	16	16
10	. 55	16	16	16	16	16	16	16
12	. 79	16	16	16	16	16	16	16
15	1.23	16	16	16	16	16	16	16
18	1.77	16	16	16	16	16	16	16
21	2.41	16	16	16	16	16	16	16
24	3.14	16	16	16	16	14	14	14
30	4.91	14	14	14	14	14	12	12
36	7.07	14	14	14	12	12	12	10
42	9.62	14	14	12	12	10	10	8
48	12.57	12	12	12	10	8	8	8
54	15.90	12	12	10		8	8	8
60	19.64	12	10	8	8	8	8	8
66	23.76	10	10	8	8	8	8	
72	28.27	10	10	8	8	8		
78	33.18	8	8	8	8	Must be designed far these fill heights and others above 40 ft .		
84	38.49	8	8	8	8			

Note. Culverts below heavy line should be strutted during installatian. See figure 9-16.
(10) Cover. The minimum caver for road culverts is one-half the pipe diameter, ar 12 inches, whichever is greater.
(11) Head walls, wing walls. They are canstructed ta prevent ar contral erasian, guide water inta the culvert, reduce seepage, and hald the culvert in place. Headwalls usually can be amitted on the outlet end. They should nat protrude abave shoulder grade and should extend 2 feet autside the shaulder. If heodwalls and wing wolls are not used, the culvert will have ta be extended ta at least 2 feet beyand the toe af the fill. See figures 9-17 through 9-19.


Figure 9-17. Rubble headwall.


Figure 9-18. Plank headwall.

figure 9-19. Lag headwall.
(11) Spocing. Culverts shauld be lacated wherever natural drainage channels are large enaugh ta require cross-drainage. On 8-percent grades, ditch-relief culverts shauld be ploced about 300 feet apart; an 5 percent grades, 500 feet opart (fig. 9-20). The bedding and spacing of pipes in multiple-pipe culverts is at least one-half the diameter of the pipe (fig. 9-21).


Figure 9-20. Culvert spacing.

OEPTH OF FILL $=1 / 20$, OR


Figure 9-21. Spacing of multiple-pipe culvert.
(12) Types. Various types of culverts are shown in figures 9-22 through 9-25.

figure 9-22. Log box culvert, 30 -inch.


Figure 9-23. Timber box culvert, $191 / 2$ - by 12 -inch.


Figure 9-24. Timber box culvert, 18-by 12 -inch.


Figure 9-25. Expedient culvert

## 9-6. flexible pavements

Figure 9-26 depicts a typical flexible pavement structure. All the layers shown in figure 9-26 ore not present in every flexible pavernent struc. ture. Far camplete design criterio for a flexible pavement structure refer
to TM 5-330


Figure 9-26. Typical flexible pavement.

## 9-7. TYPES OF SURFACES

o. Roads of Processed Moterials. Processed moteriols are prepored by crushing and screening rock, gravel, and slag. They should meet the grading requirements set forth in table 9-6.

# Table 9-6. Suggested Grading Requirements for Fine-graded Type Surface Caurse of Processed Materials 

Sieve designatian	Percent passing, by weight
$\frac{3}{4} \mathrm{in}$.	100
Na. 4.	70-100
Na. 10	35-80
Na. 40.	25-50
Na. 200.	8-25

b. Gravel Raods. Gravel roads are camposed of a compacted loyer af well graded gravelly sail. See table 9-7 far gradatian requirements for gravel raads. River gravels narmally require the additian of binder soil. The capability of gravel roads to carry heavy, sustained troffic depends on the strength and hordness of gravel, the cahesiveness af cloy binder, the thickness af the layer, and the stability of the subgrode. These surfaces make an excellent base for later pavements.

Toble 9-7. Suggested Groding Requirements for Gravel and Compasite Type Surface Courses of Pracessed Moterials

Sieve designatian	Percent passing, by weight
1 in.	100
$\frac{3}{4} \mathrm{in}$.	85-100
$\frac{3}{8} \mathrm{in}$.	65-100
Na. 4	55-85
No. 10.	40-70
No. 40.	25-45
Na. 200.	0-10

c. Earth Raods. Eorth roods consist of notive fine-groined soils, groded ond droined to farm a surface for corrying troffic. Their use is limited to dry weother ond light troffic. In combot areos, these roads ore used where necessity demonds speed of construction with limited equipment ond personnel.
d. Soil-Stobilized Surfaces.
(1) Compoction. Compoction equipment for the different types of soils-ore given in toble 9-2.
(2) Chemical stobilizotion. Toble 9-8 gives a summory of soil stobilizers for strength improvement.
e. Portoble Raad Surfoces. During operotions in the field, it is often necessory to moke temporory use of metal mesh, metol londing mats, wood mots, ar vorious types of treodwoys. These materials ore ropidly tronsported and ossembled over mud, swomps, beoches, or other unstable soils. TM $5 \div 337$ gives the details of constructing portoble surfoces.

## 9-8. BITUMINOUS MATERIAL

o. Field Identificotion of Bituminous Moterial. Refer to figure 9-27 ond figure 9-28 for field identificotion of unknown bituminous materiol.


Figure 9-27. Viscosity comporisons.

Toble 9-8. Summory of Soil Stobilizers for Strength Improvement

$\dagger$ Based on dry density af existing sail.
$\ddagger$ All quantities listed for asphalts are actual bitumen requirements, exclusive of volatiles


Figure 9-28. Field identification of unknown bituminous moteriols.
b. Thinning an Asphalt Cutbock. Refer to table $9 \rightarrow 9$ for composition of asphalt cutback.

Table 9-9. Asphalt Cutback Composition (in percent of total volume)


## CHAPTER 10

## ARMY AIRFIELDS AND HELIPORTS

## 10-1. CLASSIFICATION

a. General. The oirfield ond heliport classification system consists of combining the controlling aircroft clossification with the appropriote military area.
b. Militory Areas.
(1) Battle orea. Sector of the bottle normally under military contral of a brigade.
(2) Foward area. Sector of the theater of operatians immediately behind the battle area and normally under military control of o brigade or division.
(3) Support area. Sector of the theater of operations behind the forward area, normally within the ormy corps service areas or areas under military control of the fighter air security command.
(4) Rear orea. Sector of the theoter of operations behind the support area, normolly within the army service areo or the zone of communications.
c. Controlling Aircroft.
(1) Liarson (0-1).
(2) Surveillance ( $0 \mathrm{~V}-1$ ).
(3) Light lift (C-7A).
(4) Medium lift ( $C-130$ ).
(5) Tactical ( $F-46$ and $F-105$ ).
(6) Heovy lift ( $\mathrm{C}-124, \mathrm{C}-133, \mathrm{C}-135$, and $\mathrm{C}-141$ ).
d. Cantrolling Rotary Wing Aircraft.
(1) Observation (light) helicopter ( $\mathrm{OH}-6 \mathrm{~A}$ ).
(2) Utility helicopter (UD-1D).
(3) Cargo (medium transport) helicopter ( $\mathrm{CH}-47$ ).
(4) Cargo (heavy lift) helicopter ( $\mathrm{CH}-54$ ).

## 10-2. LAYOUT AND NOMENCLATURE

The general layout and nomenclature of army airfield ond heliports is illustrated in figures 10-1, 10-2, and 10-3.


Figure 10-1. Flightstrip namenclature.


Figure 10-2. Flightway nomenclature.


Figure 10-3. Landing area of helipad.

## 10-3. ARMY AIRFIELD DESIGN

o. Runway Length. Use the fallawing steps to determine runwoy length.
(1) Takeaff ground run (TGR) for individual aircraft is shown in table 10-1.
(2) Increase the takeoff graund run (TGR) by 10 percent far each 1,000 feet increase in altitude abave 1,000 feet.
(3) Increase the carrected runway length obtained fram the previous computation by 7 percent for each $10^{\circ} \mathrm{F}$ increase in temperature

Table 10-1. Aircraft Characteristics Used in Design af T/O Airfields

Airfield type	Anticipated service life	Passible using aircraft U.S. type	Graund run a ${ }^{\text {f }}$ sea level and $59^{\circ}$, $f f^{\text {b }}$	Minimum runwoy length ft.	Minımum runway width ft .
Battle area: Light lift Medium lift	3 days	$\begin{aligned} & C-7 A^{a} \\ & C-130^{a} \\ & C-123 \end{aligned}$	$\begin{array}{r} 625 \\ 1,600 \\ 1,600 \end{array}$	$\begin{aligned} & 1,000 \\ & 2,000 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$
Farward area: Liaison Surveillance Light lift Medium lift	2 weeks	$\begin{aligned} & O-1^{a} \\ & O V-1^{\prime} \\ & C-7 A^{a} \\ & C-130^{a} \\ & C-7 A \end{aligned}$	$\begin{array}{r} 390 \\ 2,000 \\ 625 \\ 2,000 \\ 625 \end{array}$	$\begin{array}{r} 750 \\ 2,500 \\ 1,200 \\ 2,500 \end{array}$	$\begin{aligned} & 50 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$

[^9]abave $59^{\circ} \mathrm{F}$, if takeaff graund run is greater than 5,000 feet. Increase by 4 percent per $10^{\circ}$ abave $59^{\circ}$ if takeaff ground run is less than 5,000 feet.

Nate. The temperature to be considered is the mean temperature far the wormest periad during which aperations will be conducted fram the airfield.
(4) Multiply the corrected runway length from the previaus computatians by 1.5 far rear area airfields and 1.25 for support, farword and battle area airfields.
(5) Increase the carrected runway length abtained from the previaus camputatian by 8 percent far each 1 percent of effective grodient over 2 percent. Using the above runway length, the effective gradient can be determined from the prafile of the airfield
(6) The finol runway length will be the takeaff graund run carrected (if reguired) for canditians of oltitude, temperature, safety factar, and effective gradient, and raised to the next larger 100 feet.

Table 10-2. Basic Airfield Expedient Surfacing Requirements


Nate. $U=$ unsurfaced soil with ar withaut membrane, $M=$ medium dury mat, and $I=$ subgrade airfield index must be increased to that required far heavy duty mat. $\mathrm{L}=$ light duty mat.
(7) Compare calculated length abtaned fram the previaus camputatian with the minimum length required as shown in column 5 of table 10-1. Use the greater value.
b. Runway Width. See table 10-1 far minimum runway width.
c. Basic Surfacing Requirements. Subgrade strength requirements far bath unsurfaced areas and thase to be surfaced with landing mat at battle, forward, suppart, and rear areas are shown far traffic areas (runway, toxiway, and apron) and nantraffic areas (averrun ond shaulder) in table 10-2. The fallowing types of landing mat ond membrane have been field tested under field canditions and classified as follows based an test results.
(1) Light duty landing mat-M8AI
(2) Medium duty landing mat-MX18B, MX19, AM2
(3) Membrane - Tl 7

## 10-4. HELIPAD DESIGN

a. Minimum Geametric Requirements. See table 10-3 for minimum geametric requirements.

Table 10-3. Minimum Geametric Requirements (Helipad)

Description	Farward areo			
	OH -6A	UH-1D	CH-47	CH-54
Length, ft (landing pad).	12	20	50	50
Width, ft (londing pad).	12	20	25	50
Landing pod grade in ane directian, \%.	3	3	3	3
Grade of clear area maximum $\%$..	10	10	10	10
Length, ft (landing areo).	72	100	150	150
Width, ft (landing area)..	72	100	125	150

b. Design Strength. See table 10-4 for helipad and heliport surfacing requirements. Note table 9-2 for airfield indexes af sails.

Table 10-4. Helipad and Helipart Surfacing Requirements
Airfield Index

Helipad ar helipart type	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\geq$
Forward Area Helipad: $\mathrm{OH}-6 \mathrm{~A}$.	L	U	U	U	U	U	U	U	U	$\mathbf{U}$
UH-1D	L	L	U	U	U	U	U	U	U	U
CH-47	1	$M$	M	L	L	L	L	U	U	U
CH-54.	1	M	$M$	M	L	L	L	L	U	$\mathbf{U}$
Farward Area Heliport:	L	L	U $M$	U	U L	U L	U L	U $\mathbf{U}$	$\mathbf{U}$ $\mathbf{U}$	$\mathbf{U}$ $\mathbf{U}$
Support Area Helipod: $\mathrm{OH}-6 \mathrm{~A}$.	L	U	U	U	U	U	U	$\mathbf{U}$	U	U
UH-1D.	L	L	U	U	U	U	U	U	U	U
$\mathrm{CH}-47$.	1	1	M	$M$	L	L	L	U	U	U
CH-54.	1	1	I	M	M	L	L	L	L	$\mathbf{U}$
Support Areo Heliport: UH-1D Co..........	L	L	U	U	U	U	U	U	U	U
CH-47 Ca	1	1	$M$	$M$	L	L	L	U	U	U
CH-54 Ca	1	1	M	M	M	M	'L	L	L	$\mathbf{U}$
Mixed Bn.	I	1	M	M	L	L	L	$\mathbf{U}$	U	$\mathbf{U}$
Rear Area Helipad: $\mathrm{OH}-6 \mathrm{~A} .$	L	L	U	U	U	U	U	U	U	U
UH-ID..	L	L	L	U	U	U	U	U	U	U
CH-47	1	1	M	M	L	L	L	L	U	U
CH-54.	I	1	1	M	$M$	M	L	L	L	U
Rear Area Heliport: UH-ID Co......	L	L	L	U	U	U	U	U	U	U
$\mathrm{CH}-47 \mathrm{Ca}$.	1	1	M	M	L	L	L	L	U	U
CH-54 Co.	1	1	1	$M$	M	M	L	L	L	$\mathbf{U}$
Mixed Bn	I	1	M	M	L	L	L	L	U	U
Raods:										
Farward.	M	L	L	L	U	U	U	U	$\mathbf{U}$	U
Support...............	M	L	L	L	L	U	U	U	U	U
Reor....	M	$M$	L	L	L	U	U	$\mathbf{U}$	U	U

## Nates.

I-Subgrade index must be increased to that required far medium duty mat
U-Unsurfaced sail with ar withaut membrane
L-Light duty mat
M - Medium duty mat

## 10-5. SOIL STABILIZATION AND DUST CONTROL

a. Strength Improvement. See table 9-8.
b. Dust Cantral and/ar Sail Waterproofing. Sprinkling with woter, lime salutions, and arls pravides temparary relief fram dust. Longer relief is achieved by use of asphaltic moterials such os Peneprime (AP5B), or speciol compaunds such as DCA-70. Any osphaltic material must be allowed ta cure before being expased to troffic. Aspholtic cutback materiols alsa serve to woterpraaf soils. (See table 10-5.)

Table 10-5. Dust Cantral Requirements for Heliparts

Area	Dimensian of orea requiring dust control (ft)				
	OH-6A   Cayuse	UH-10   Iroquais	AH-1G   Huey   Cobra	$\mathrm{CH}-47 \mathrm{~A}$   Chinaak	$\mathrm{CH}-54 \mathrm{~A}$   5 kycrone
Taxi-hover Lane and   Parking Pads..........	75	75	80	150	150
Tokeaff and Landing   Areas............................	80	132	150	295	216

Note: Measurements are taken from the center af rotatian of the controlling aircroft and are appraximately equal to the radius of the area affected by the ratar downwash.

## 10-6. MARKING EXPEDIENT RUNWAY

The determinatian af an airfield marking system in a theater of operatians is a prerogative of the theater commonder. See figure 10-4 far marking configuratian cansidered applicable ta theater af aperation use.


Figure 10-4. Marking expedient runway.

## 10-7. FORTIFICATIONS FOR PARKED ARMY AIRCRAFT

a. Dispersal and Spacing.
(1) Spacing. Fortification spacing should provide individual aircraft with protective structures which do not hinder ready access to the aircraft for efficient servicing, mointenance, and tactical operations.
(2) Dispersal. Dispersal should separate aircraft sufficiently to minimize the danger of interacting ammunition and fuel explosions. The method used must avoid any consistent pattern that will facilitate adjustment of high angle fire an the aircraft.
b. Minimum Requirements. See table 10-4 for minimum thickness of pratective material required to resist penetration.

## CHAPTER 11

## MAP READING

## 11-1. DEFINITION OF A MAP

A map is a graphic representatian af a portion of the earth's surface drawn ta scale an a plane.

## 11-2. TYPES OF MAPS

The fallawing are the different types of maps used.
a. Planimetric Map. A map which presents only the horizontal pasitions far the detail platted. It is distinguished fram a tapagraphic map by the omission of relief in a measurable farm.
b. Tapagraphic Map. A map which partrays relief in a measurable form, as well as the harizantal positians af the details platted. The vertical positians, ar relief, normally are represented by contour lines. On maps showing relief, the elevations usually are referred ta as mean sea level datum plane.
c. Plastic Relief Map. A topographic map pre-printed an plastic materials and farmed by heat and vacuum aver a repraductive mald, thus giving the same infarmatian os contained in a tapagraphic map in a three dimensianal farm so that the user can readily see variatian in elevation.
d. Phatamap. A repraductian af an aerial photagraph or a mosaic made fram a series af aerial phatagraphs upan which grid lines, marginal data, place names, spat elevotions, boundaries, and scale have been added. Photamaps usually are nat cantaured. They usually are used ta supplement ather maps af an area, ar serve as o map substitute.
e. Jaint Operatians Graphics (JOG's). A series af $1: 250,000$ military maps which are printed in a graund $(G)$ and an air (A) versian. JOG's are designed to pravide camman base graphics for use in combined aperatians by ground and air farce elements. The tapagraphic infarmatian is identical an both versians af the same map sheet; hawever, the (G) series indicates elevations in meters while the (A) series elevatians are depicted in feet. Bath series emphasize the air landing facilities but the (A) series has additional symbals ta identify aids and abstructions to air navigatian.
f. Pictomap. A photamap-type praduct which stresses the use of phatalithagraphic aperatians rother than the canventional techniques
used for preporation of standord maps. Heights of map features ore occentuated pictorially, while terroin and vegetation are shown in near natural colors. Important culturol features ore overprinted in red. Names, contours, ond railroads ore shown in black and water features in blue. Pictomaps are usually published at 1:25,000 scale and lorger.
g. Military City Map. A topographic map which has a scale of 1:12,500 or lorger. It shows detailed road networks of urban areas, principal buildings, and other prominent features thot are of military importance. Thoroughfares or main highways leading through urban oreas are indicated.

## 11-3. MAP SCALES

Map scoles are cotegorized as follows:
a. Small Scole Maps. Mops ot scales of 1:600,000 and smoller are used for generol planning and for strategical studies at high commond echelons. The standard small scale mop is considered to be at the scole $1: 1,000,000$.
b. Medium Scole Maps. Mops at scales larger thon $1: 600,000$, but smaller than 1:75,000 are used for planning operations including road movements and concentration of troops and supply elements. The standard medium scole map is $1: 250,000$.
c. Large Scole Maps. Mops of scale of $1: 75,000$ and larger are used to meet the toctical, technicol, and administrotive needs of field units. The standard large scale mop is the 1:50,000 map. City maps ore considered to be a large scole map product.

## 11-4. MAP COLORS

Maps, especially topographic type products, are depicted in five bosic colors:
a. Black. Culturol (man-made) features, marginal data and primory grid.
b. Brown. Terroin features and contour lines depicting elevations.
c. Green. Depicts vegetation feotures such as wooded areas, orchards, etc.
d. Blue. Represents woter features such as lakes, streoms, rivers, etc.
e. Red. Moin roads, built-up areas are indicated in this color.

## 11-5. MAP MARGINAL DATA

The locotion of marginal doto is indicoted below for maps printed prior to 196B. AMS Style Sheet 25-50-100, September 196B contains new
criteria for the location of marginal data as shawn below in parenthesis.
a. Sheet Name. The sheet nome is found in two places, the center af the upper margin ond on the right side af the lower margin. Generally the map is named after its outstanding cultural ar geagraphic feoture.
b. Sheet Number. The sheet number is found in the upper right (and lawer left) margin(s) and is used as a reference number to identify a map sheet. It is also used as part of the Stock Number Identification which is used in requisitioning maps ( $x$ belaw).
c. Series Name and Scale. The map series name is faund in the upper left margin. A map series usually comprises a graup af similar maps at the same scale and an the some sheet lines ar format design cavering a particular geagraphic area. (The editian number is faund in the upper right and lawer left margin.) The scale note is a representotive fraction which gives the ratia of a map distance to the corresponding distonce an the earth's surface.
d. Series Number. The series number appears in the upper right margin and the lower left margin. It is a camprehensive reference system campased usually af four elements and is expressed either as a four digit number ar as a letter followed by a three ar four digit numeral. Compasitian of the series number is explained in detail in FM 21-26.
e. Edition Number. The edition number is found in the upper left and lower left margins. It represents the number of times the map has had majar revisions and the agency responsible far its praduction.
f. Bar Scales. The bar scales are locoted in the center of the lawer margin. They are distance rulers used for the determination af graund distance. Maps have three or more bar scales, each depicting a different unit af measure.
g. Credit Nate. The credit note is lacated in the lawer left margin. (The credit lines are lacated in the center af the lawer margin.) It lists the praducer, dates, and general methods used in the preparation of the map and any revisians thereta. This information is impartant ta the map user in evaluating the reliability of the map.
h. Adjaining Sheets Diagram. Maps at all standard scales contain a diagram which illustrates the adjaining sheets to the north, south, east, west, and dioganally from the sheet being used. Sheet numbers are indicated an the adjoining sheets diagram far the purpose af requisitianing. Far smaller scale maps this diagram is alsa known as the "locatian diagram" ar "Index to Adjoining Sheets". (This diagram appears in the lawer right margin.)
i. Index to Boundaries. The projection is identified on the map by o note in the lower or right margin (center of the lower margin). This diagram, which is a miniature of the map, shows the boundaries which occur within the map areo, such as county and stote boundories.
i. Projection Nate. The projection is identified on the map by o note in the lower margin. Refer to TM 5-241-1 for the development characteristics of the conformal type projection systems.
k. Grid Note. The grid note is located in the center of the lower margin. It gives information pertaining to the grid system used, the interval of grid lines, and the number.
I. Grid Reference Box. The grid reference box contains instructions for composing a grid reference of a specific point and provides o step by step exomple referred to a sample point on the mop. This box usuolly is located in the lower center margin.
m. Vertical Datum Note. This note is located in the center of the lower margin. It designates the bosis for all vertical control stations, contours and elevations appearing on the map.
n. Horizontal Dotum Note. This note is located in the center of the lower morgin. It indicates the bosis for oll horizontal control appearing on the map. The network of horizontal station controls the horizontol position of oll mopped features.
a. Legend. The legend is located in the lower left margin. It illustrotes and identifies the topographic symbols used on the mop. To preclude any change of error in the identificotion of symbols, the legend must always be referred ta when o map is used.
p. Declination Diagram. The declination diagram is locoted in the lower margin and indicates the ongular relationship of true north, grid north, and mognetic north os pertoins to the map area.
q. User's Note. A user's note is located in the center of the lower morgin. It requests cooperotion from map users in notifying the map moking agency listed in the note of any errors found on the map sheet so these errors con be corrected the next time the map is revised or printed.
r. Unit Imprint. The unit imprint note is located in the lower right (center lower) margin and indicates the key number, the mop printing agency, and printing date.
s. Contaur interval. The contour interval appears in the center of the lower margin. It stotes the vertical distance between odjacent contour lines on the mop.
t. Glossary. A glossary is on explanation of technicol terms or a tronslation of terms on maps of foreign areas where the native languoge is other than English.
u. Classification. Certoin maps require o note indicating the security classification of the map. These labels are lacoted in the upper ond lower margins of a map usually in red.
v. Protractor Scale. This scole may appear in the upper margin of some maps. It is used for plotting o magnetic north line on a mop.
$w$. Coverage Diagram. On maps at scale of $1: 100,000$ and lorger the coveroge diagram may be used. it normolly is in the lower or right margin ond indicotes the methods and source data used in making the map such as oeriol photography dates and reliobility of map sources.
x. Stack Number Identification. All maps published by or for the Corps of Engineers which ore in the Army map supply system contain stock number identifications, which are used in requisitioning maps. The identificotion consists of the words STOCK NO. followed by a unique designation which is composed of the series number and sheet number of the individual map. The designation is limited to 15 units (letters ond numbers).
$y$. Elevation Guide. (The elevation guide is located in the lower right margin. This diogram, which is a minature of the mop shows the highest points on the maps. Elevation is shown with different shades of gray.)

## 11-6. DECLINATION DIAGRAM

There ore three basic base lines used to express direction as a unit of ongular meosure when using a map. These base lines are known os true north, mognetic north, and grid north. The most commonly used are magnetic ond grid north. The magnetic north is used when working with a compass ond the grid north when working with o military mop.
a. True North. True north is defined as on imoginary line from ony position on the eorth's surface to the north pole. All lines of longitude ore true north lines. The true north line on the Declination Diagrom is represented by a star.
b. Magnetic North. The mognetic north declinotion is established by the compass and chonges slightly on an onnual basis. Mognetic north is symbolized by o holf arrowheod.
c. Grid North. This base line is estoblished by the grid lines on the map. Grid north may be symbolized by the letters GN or the letter $Y$ (fig. 11-1).

Nate. For detailed explanation on declinotion diagram base line convergence refer to FM 21-26.


Figure 11-1. Declinotian diagrom bose lines.

## 11-7. SCALE AND DISTANCE (REPRESENTATIVE FRACTION)

a. The scole of a mop expresses the rotio of horizontal distance an the mop to the corresponding horizontol distance on the ground using the some unit of meosurement far both. The representotive froction (RF) is olways written with the mop distance os 1. An RF of $\frac{1}{50,000}$ or 1/50,000 or 1:50,000 means thot ane (1) unit of meosurement on the
map equals o corresponding number of like units of measurements $(50,000)$ on the ground.
b. The ground distance between two points on a map is determined by measuring the distance between the points and multiplying the mop meosurement by the denominotor of the RF.
Example: a. Mop distance between two points $=5$ units.
b. The RF of the mop is $1: 50,000$, therefore,
c. $5 \times 50,000=250,000$ units of ground distance.
c. Further data on finding unknown RF's, ground or map distances is explained in FM 21-26 and table 11-1.

## 11-8. CONTOURS

A contour line is a line representing an imoginory line on the ground along which all points are of the some elevotion.
a. Contour lines evenly spaced and wide apart indicate a uniform gentle slope.
b. Contour lines evenly spoced and close together indicate a uniform steep slope. The closer the contour lines to each other the steeper the slope.
c. Contour lines closely spoced at the top and widely spreod at the bottom indicate a concave slope.
d. Contour lines widely spoced of the top and closely spaced of the bottom indicate o convex slope.

## 11-9. SLOPE

The rate of rise and fall of a ground form is known as its slope. Slope may be expressed in severol ways but all depend upon a comparison of vertical distonce (VD) to horizontal distonce (HD). VD is the difference between the highest and lowest elevations of a slope and is determined from the contour lines. HD is the horizontal ground distance between the highest and lowest elevations of the slope and is meosured using the bar scole of the map. The VD ond HD must be expressed in the same unit of measurement.
a. A common expression of slope is as a percent (\%) which indicates the number of vertical units of elevation to every hundred units of horizontal distance. Whenever a grodient or percent is used, a plus or minus sign must be given to indicate whether the slope is rising or falling.
b. Slope moy also be expressed in degrees, a unit of ongulor measure.

Determine the volue of $\frac{V D}{H D}$ in decimal form. This will be the tangent of

Table 11-1. Map Distance Conversion

Map distance	Ground distance	Representative fraction (RF)							
One inch	Inches	25,000	50,000	75,000	100,000	200,000	250,000	500,000	1,000,000
	Feot	2,083	4, 167	6,250	8,333	16,667	20,833	41,667	83,333
	Yards	694	1,389	2,083	2.778	5,555	6,944	13,888	27,776
	Moter 5	635	1,270	1,905	2,540	5,080	6,350	12700	25,400
	Miles	0.4	0.8	1.2	1.6	3.2	4	8	16
	Kilameters	. 64	1.3	1.91	2.54	5.08	6.35	127	25.4
One centime. tor	Inctios	9,843	19,685	29,528	39,370	78,740	98,425	196,850	393,700
	Feet	820	1,640	2,460	3,281	6,562	8,202	16,404	32,808
	Yards	273	547	820	1,094	2,187	2,734	5,468	10,936
	Meters	250	500	750	1,000	2,000	2,500	5,000	10,000
	Miles	0.16	0.3	0.5	0.6	1.2	1.5	3	6
	Kilameters	. 25	. 50	. 75	1.00	200	250	5.00	10.00

the slape angle. The slape ongle can then be faund in a table of triganometric tangent functians. The appraximote slope angle moy be calculated by multiplying the grodient by 57.3. This methad is reasonably accurate for slope angles under $20^{\circ}$.

## 11-10. TOPOGRAPHIC SYMBOLS

Topagraphic symbals used an an individual map are faund and explained in the LEGEND which is placed an every map. Far detail listing of topographic symbols used an large, medium, and small scole maps refer ta FM 21-31.

## CHAPTER 12 <br> RIGGING

For a complete discussion of rigging see TM 5-725.
12-1. KNOTS

Nome	Illustration	Use
Square		Join two rapes of same size. (Will not slip, but will draw tight under strain.) To ond block loshing.
Double shoot bend		Join wet ropes, of unequal size, or rope to on oyo. (Will not slip ar draw tight under strain.)
Bowline		Form a loop. (Will not slip under stroin and is easily untied.)
Timber hitch		L:fting or drogging heavy timbers. (ls more eosily contralled if supplemented by half hitches.)
Clove hitch		Fosten rope to pipo, timber, ar post. (It is used to start ond finish oll loshings andmay be fied at ony point in ropo.)
Shaop shank		Shorten rope or toke lood off weak spot in rope.
$\left\lvert\, \begin{gathered} \text { Fitherman-d } \\ \text { send } \end{gathered}\right.$		To fasten cable or rope to anchor.

Figure 12-1. Knots.

364

## 12-2. FIBER ROPES, WIRE ROPES, CHAINS, AND HOOKS

a. Data. See tables 12-1, 12-2, and 12-3 far data on manila and sisal rape, wire rape, and chains.

Table 12-1. Properties of Manila and Sisal Rape

Naminal diameter, in.	Circumference, in.	Lbs. per ft.	No. 1 manila		Sisal	
			Breaking strength, tans	Safe warking capacity tans $(\text { F.S. }=4)$	Breaking strength, tons	Safe load, tons $(\text { F.S. }=4)$
$1 / 4$	$3 / 4$	0.20	0.30	0.07	0.24	0.06
3/8	$11 / 8$	. 040	0.67	0.16	0.54	0.13
1/2	$11 / 2$	. 075	1.32	0.33	1.06	0.26
5/8	2	. 133	2.20	0.60	1.76	0.44
$3 / 4$	21/4	. 167	2.70	0.67	2.16	0.54
7/8	$23 / 4$	. 186	3.85	0.96	3.08	0.77
1	3	. 270	4.50	1.12	3.60	0.90
$11 / 8$	$3^{1 / 2}$	. 360	6.00	1.50	4.80	1.20
$11 / 4$	$33 / 4$	. 418	6.75	1.69	5.40	1.35
$11 / 2$	$41 / 2$	. 600	9.25	2.31	7.40	1.85
$13 / 4$	51/2	. 895	13.25	3.31	10.60	2.65
2	6	1.08	15.50	3.87	12.40	3.10
21/2	71/2	1.35	23.25	5.81	18.60	4.65
3	9	2.42	32.00	8.00	25.60	6.40

Notes.

1. Breaking strength and safe laads given are far new rope used under favarable canditians. As rope ages ar deteriorates, progressively reduce safe loads ta ane-half af values given.
2. Safe working capacity may be computed, with safety factar of 4. When condition af material is daubtful, divide camputatian by 2. $T=D^{2}$
where, $\mathbf{T}=$ safe working capacity in tons
$\mathrm{D}=$ diameter in inches
3. Cordage rope is issued by circumference sizes.

Table 12-2. Breaking Strength of $6 \times 19$ Standard Wire Rope ${ }^{1}$

Diameter in. ${ }^{2}$	Approximate weight lb/ft	Iron	8reaking strength, tans of 2000 lbs			
			Traction steel	Plow steel	Impraved plow steel	Extro improved plow steel
$1 / 4$	0.10	1.4	2.6	2.39	2.74	.
3/8	0.23	2.1	4.0	5.31	6.10	7.55
1/2	0.40	3.6	6.8	9.35	10.7	13.3
5/8	0.63	5.5	10.4	14.5	16.7	20.6
$3 / 4$	0.90	7.9	14.8	20.7	23.8	29.4
7/8	1.23	10.6	20.2	28.0	32.2	39.8
1	1.60	13.7	26.0	36.4	41.8	51.7
$11 / 8$	2.03	17.2	32.7	45.7	52.6	65.0
$11 / 4$	2.50	21.0	40.6	56.2	64.6	79.9
$11 / 2$	3.60	29.7	56.6	80.0	92.0	114.0
$13 / 4$				108.0	124.0	153.0
2				139.0	160.0	198.0

$16 \times 19$ meons rope composed of 6 stronds of 19 wires eoch
${ }^{2}$ Breaking Strength of $6 \times 7$ or $6 \times 37$ wire rope is $94 \%$ of the breaking strength of $06 \times 19$ rope of on equal diometer and identical moterial. Exa mple:
Find breáking strength of $11 / 4$ inch, $6 \times 7$. Improved Plow Steel wire rope Breaking strength of $6 \times 19,1^{1 / 4}$ inch, Improved Plow Steel wire rope $=64.6$ tons Breaking strength ( $0 \times 7$ ) $=.94 \times 646=60.7$ tons

Note. Sofe working copocity with o sofety foctor of $4,7=8 D^{2}$ where
$T=$ Sofe working copocity in tons
$D=$ Diometer in inches
When condition of moteriol is doubtful, divide I by 2

Toble 12-3. Wire Rope Safety Foctars*

Type of service	Minimum safety foctar
Trock cobles.	3.2
Guys.	3.5
Miscelloneous hoisting equipment.............	5.0
Houlage ropes......................................	6.0
Derricks.	6.0
Smoll electric ond oir hoists.	7.0
Slings...................................................	8.0

*Where age and candition af rape are daubiful, or where human life ar expensive equipment moy be endangered by rape failures, apply a safety factor of at least 8
b. Properties of Hooks.
(1) Slip hook.


Figure 12-2. Slip hook.
(2) Safe laads far haaks are given in table 12-4.

Table 12-4. Safe Loads on Hooks

Diameter af metal $A$,* in	Inside diameter af eye B, in.	Width af opening C, in.	Length of hook D, in.	Safe warking copocity of hooks, lb.
11/16....	7/8	$11 / 16$	$4^{15 / 16}$	1,200
3/4............	1	$11 / 8$	$5^{13 / 32}$	1,400
7/8.	$11 / 8$	$11 / 4$	$61 / 4$	2,400
1...............	$11 / 4$	$13 / 8$	$6^{7 / 8}$	3,400
$11 / 8 . . .$.	$13 / 8$	$11 / 2$	75/8	4,200
$11 / 4 \ldots \ldots \ldots$.	$11 / 2$	$1^{11 / 16}$	$8^{19 / 32}$	5,000
13/8............	$15 / 8$	$17 / 8$	$91 / 2$	6,000
$1^{1 / 2} \ldots \ldots \ldots \ldots$.	$13 / 4$	21/16	$10^{11 / 32}$	8,000
15/8...........	2	$21 / 4$	$11^{27 / 32}$	9,400
$17 / 8$	$2^{3 / 8}$	21/2	139/32	11,000
21/4...........	$23 / 4$	3	143/16	13,600
25/8...........	31/8	$33 / 8$	$16^{1 / 2}$	17,000
3...............	$31 / 2$	4	193/4	24,000

- For reference to $A, 8, C$, or $D$, see figure 12-2.

Note Formulo for sofe work lood for hooks: I (tons) $=\mathrm{D}^{2}\left(\mathrm{in}^{2}\right)$.

## 12-3. MECHANICAL ADVANTAGES OF VARIOUS BIOCK ARRANGEMENTS

o. 8locks and Tackle. Figure 12-3 shaws examples of typicol tackle systems. In a simple tackle with 2 lines leaving the load (1, fig. 12-3), the mechanical advantage is 2 . In a simple tackle with three lines leoving the load (2, fig. 12-3), the mechanical advantage is 3 . In a simple tackle, using 2 double blacks ( 3 , fig. 12-3), with 5 lines leaving the lood (3, fig. 12-3), the mechonical advantage is 5 . In a compound system with 5 lines leaving the load (4, fig. 12-3), ond the fall line of this tockle attoched to a traveling block with 2 lines supparting it, the
mechanicol odvantage is 2 times 5 , or 10 . A more complicoted compound system (5, fig. 12-3) is made up of twa simple systems, each af which has 4 lines supparting the load. The traveling block of the first simple system is fastened ta the fall line of the second simple system, and the mechanical advantage of this campaund system is 4 times 4 , ar 16.
b. Chain Haists. With a chain hoist, a load can remoin statianary withaut requiring attention, and the hoist can be aperated by ane man to raise loads af severol tons.
c. Determining Actual Pull.

FL $=$ friction loss, the amount of farce lost ta friction in the system.
$A P=$ actual pull, the amount of farce required on the fall line to lift the laad.
Ff $=$ friction foctor, varies with canditions of the blocks.
$1 / 10$, excellent condition (new)
$1 / 8$, gaod condition
$1 / \mathrm{s}$, fair condition
$N_{s}=$ number of sheaves, tatal number of sheaves in the system including change af directian blacks.
$M A=$ theoretical mechanical advantage
$W_{L}=$ weight of the laad
Example: Assume $\mathrm{W}_{L}=2500 \mathrm{lbs}$
$N_{S}=6$ $M A=6: 1$
Ff $=1 / \mathrm{s}$
Then $\quad F L=W_{L}+N_{S}+F f$ $=2500 \mathrm{lbs}$ (6) ( $\frac{1}{5}$ )

$$
=3000 \mathrm{lbs}
$$

And $\quad A P=W_{L}+F L$
$=\frac{2500+3000}{6}$
$=916.67 \mathrm{lbs}$


Figure 12-3. Mechanicol advantage af various fackle riggings.

## 12-4. PICKET HOLDFAST

a. Holding Power. Sound pickets 5 feet long driven 3 feet into the earth, spaced 3 to 6 feet apart, and inclined away from the laad at an angle af $15^{\circ}$ should stond the pull indicoted in table 12-5.

Table 12-5. Holdfast Capacities

Type of holdfast	Undisturbed eorth	Wet clay and gravel	Wet river clay and sond
Single picket.	700	630	350
1-1 Picket holdfast.	1400	1260	700
1-ı-1 Picket holdfast	1800	1620	900
2-1 Picket holdfast.	2000	1800	1000
3-2-1 Picket haldfast..	4000	3600	2000

b. Picket Haldfast, 1-1-1 Cambination.


Figure 12-4. Picket holdfast 1-1-1 cambınotian.
c. Picket Holdfost, 3-2-1 Combinatian.


Figure 12-5. Picket holdfost, 3-2-1 combinotion.

12-5. DEADMEN
o. Log Deodmon (fig. 12-6).
b. Steel Beom Deodmon (fig. 12-7).
c. Holding Power of Deodmen in Ordinory Eorth.
(1) Log Deodmon

Symbols for figure 12-6 and the formulos below are:
$T=$ tension (breoking strength of rope)
$M D=$ meon depth (you select)
$S R=$ slope rotio ( $\frac{1}{2}, \frac{1}{3}, \frac{1}{1}$, etc.)
$H D=$ horizontol distonce (see formulo in (2) below)
$V D=$ verticol depth (must be of leost 1 ft . obove woter toble)
HP = holding power (see toble 12-5)
$\mathrm{BAr}=$ beoring oreo required (see formulo in (2) below)
$E L=$ effective length (see formulo in (2) below)
WST = width, sloping trench ( 1 to 2 feet)
$D=$ timber diometer (you select)
$L=$ timber length (see formulo in (2) below)

figure 12-6. Log deadman.


STEEL BEAM DEADMAN
Figure 12-7. Steel beam deadman.

Toble 12-6. Halding Power of Deodmen in Ordinory Eorth

Mean depth of ancharage, ft	Safe resistance far inclination of pull (vertical or horizontal) af prajected area of deadman, lbs per sq ft.				
	Vertical	1/1	1/2	1/3	1/4
3.	600	950	1,300	1,450	1,500
4.	1,050	1,750	2,200	2,600	2,700
5.	1,700	2,800	3,600	4,000	4,100
6.	2,400	3,800	5,100	5,800	6,000
7.	3,200	5,100	7,000	8,000	8,400

(2) Farmulas.
(a) $8 A_{r}=\frac{T}{H P}$ (in lbs)
(b) $E L=\frac{8 A r}{D}$
(c) $L=E L+W S T$
(d) $V D=M D+\left(\frac{D}{2}\right)$
(e) $H D=\frac{V D}{S R}$
(3) Prablems.

Given: $I=1$ in. wire rope I.P.S. (improved plow steel)
Find:

$$
\begin{aligned}
M D & =7 \mathrm{ft} . & 8 \mathrm{Ar} \\
S R & =\frac{1}{4} & E L \\
H P & =8,400 \mathrm{lb} . \text { (table 12-5) } & L \\
W S T & =1 \frac{1}{2} \mathrm{ft} . & V D \\
D & =2 \mathrm{ft} . & H D
\end{aligned}
$$

Solution: $\quad B A r=\frac{84,000}{8,400}=10$ sq. ft.

$$
E L=\frac{10}{2}=5 \mathrm{ft} .
$$

$$
L=5 \mathrm{ft} .+1 \frac{1}{2} \mathrm{ft} .=6 \frac{1}{2} \mathrm{ft} .
$$

$$
V D=7 \mathrm{ft} .+\frac{2 \mathrm{ft}}{2}=8 \mathrm{ft} .
$$

$$
H D=\frac{8}{\frac{1}{4}}=32 \mathrm{ft} .
$$

## 12-6. ATTACHMENTS

o. Clips. Clips ore used in moking eyes in wire rape. The correct methad of attaching clips is shown in figure 12-8. The base of each clip shauld bear against the line, ar lang rape, end, and the U-bolt shauld bear against the dead, or shart, end. Space the clips six rape diameters apart; the number of clips equols three times the rope diameter (in inches) plus ane. If this calculatian results in o froction, use the next larger whole number. Never use less than three clips per cannectian. For example, an a $\frac{3}{4}$-inch rope:

No. of clips $=3 D+1$ (minimum of 3 clips)

$$
\begin{aligned}
& =\left(3 \times \frac{3}{4}\right)+1 \\
& =3 \frac{1}{4}, \text { or } 4
\end{aligned}
$$

Spocing of clips $=60=6 \times \frac{3}{4}=4 \frac{1}{2} \mathrm{in}$.


Figure 12-8. Wire rope clips.
b. Clamps. Figure 12-9 shows how to apply o wire rope clamp. Slip the two end collars of the clamp on the rope, facing eoch other. Bend the rope, bringing the free end back along the long end. Slip one end collar of the clamp over both parts of the rope. Place the two side pieces of the clamp over both parts of the rope so that the free end of the rope is even with the ends of the two side pieces. Screw the collars on the side pieces, using a wrench to force a snug fit.


Figure 12-9. Wire rope clamp.
c. Wedge Socket. This fitting is shown in figure 12-10. It is used when the fitting must be changed at frequent intervals. This socket has two ports, the socket proper with a tapered opening for the wire rope and a small wedge to go into this socket. Remove the wedge and insert o loop of wire rope through the tapered opening from the bottom of the socket up. Ploce the wedge through the loop and pull the ends of the wire rope back through the topered opening until the wedge forces the wire rope against the sides of the wedge socket. The loop of wire rope must be inserted in the wedge socket so that the running part of the wire rope will form a nearly direct line to the clevis of the fitting. If properly mounted, a wedge socket will tighten when a strain is put on the wire rope.


Figure 12-10. Wedge socket ond fitting.

## 12-7. SAFE CAPACITY OF SPRUCE TIMBER AS A GIN POLE

See toble 12-7 for these capacities. Weight of timber is 40 pounds per cubic foot.

Table 12-7. Safe Capacity af Spruce Timbers os Gin Poles in Normal Operations

Size of timber, in.	Safe capacity for given length of timber, lbs					
	$\begin{gathered} 20 \mathrm{ft} \\ (6 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 25 \mathrm{ft} \\ (7.5 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 30 \mathrm{ft} \\ (9 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 40 \mathrm{ft} \\ (12 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 50 \mathrm{ft} \\ (15 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 60 \mathrm{ft} \\ (18 \mathrm{~m}) \end{gathered}$
6 dia.	5,000	3,000	2,000			
8 dia		11,000	8,000	5,000	3,000	
10 dia.	31,000	24,000	16,000	9,000	6,000	
12 dia			31,000	19,000	12,000	9,000
$6 \times 6$.	6,000	4,000	3,000			
$8 \times 8$.		14,000	10,000	6,000	4,000	
$10 \times 10$.	40,000	30,000	20,000	12,000	8,000	
$12 \times 12$.			40,000	24,000	16,000	12,000

Note. Safe capacity of eoch leg of shears or tripod is seven-eighths of the volue given for a gin pole.

## 12-8. SLINGS

o. Single Slings. See figure 12-11 for components af a single sling.
(1) A basket hitch hos a single sling passed under the laod and both ends hooked aver the haisting hook (A, fig. 12-12).
(2) Single slings with twa haaks ore sametimes used for lifting stone ( $B$, fig. 12-12).


Figure 12-11. Single sling companents.
(3) The dauble anchor hitch is used sometimes for hoisting cylindrical abjects (C, fig. 12-12).
b. Endless Slings.
(1) The anchor, ar chaker, hitch is a common methad af using an endless sling by casting the sling under the laad and inserting one laap thraugh the ather and aver the hoisting hook (D, fig. 12-12).
(2) For a basket hitch, the endless sling is passed oraund the object and both remaining loops are slipped on the hook ( E , fig. 12-12).
(3) The taggle hitch is o madification af the basket hitch and is used only for special application (F, fig. 12-12).


Figure 12-12. Hitches.

## 12-9. SLING LOAD FORMULA

a. Stress. The stress of tension in each leg of a sling depends on the number af legs, the angle af the sling leg, and the tatal laad.
b. Farmula.

$$
T=\frac{W}{N} \times \frac{L}{V}
$$

$$
\text { where } \begin{aligned}
& T=\text { tensian, in pounds } \\
& N=\text { number of legs } \\
& W=\text { weight, in pounds } \\
& V=\text { vertical distance, in feet } \\
& L=\text { length of leg, in feet }
\end{aligned}
$$

c. Prablem. Is it safe ta use a $\frac{3}{8}$-inch diameter manila rape sling to lift a 2,000 pound laad with o 4 -leg sling which has vertical distances af 6 feet and length of leg of 12 feet (fig. 12-13)?


Figure 12-13. Sling stresses.

$$
\begin{aligned}
& T=\frac{W}{N} \times \frac{L}{V} \\
& T=\frac{2,000}{4} \times \frac{12}{6}=1,000 \text { pounds }
\end{aligned}
$$

The tension an each leg will be 1,000 paunds. The safe working capocity of $\frac{3}{4}$-inch diameter monilo rape fram table 12-1 is 0.67 tans ar 1340 pounds. Since the sofe warking capacity is greater than the tensian, the rape is safe ta use.

## 12-10. HELICOPTER SLING DESIGN

o. Strength of Sling.
(1) For a single leg sling the minimum sofe load capacity of the sling should be twice the weight of the load.
(2) For a multiple leg sling each leg should hove as a minimum sofe load copacity the weight of the lood.
b. Helicopter Sling Length.
(1) For a short houl the length of each sling leg should be the same as the greatest dimension of the load. (L mox)
(2) For a long houl: the length of the rear sling legs should be the same os the greatest dimension of the load ( $L$ max); the length of the front sling legs should be .82 times the greatest dimension of the load (. 82 L max).
c. Stabilization of Loads. Helicopter sling loods are stobilized by one or more of the following methods:
(1) Reduce the airspeed of the helicopter.
(2) Increase the weight of the load.
(3) Reduce the drag surface by odjusting the relationship between the center of gravity ond the center of air pressure of the suspended load so os to assure that the narrowest load surface points in the direction of flight. This effect is obtained by either adding surface to the rear of the load or odding weight to the front. The general rule is that the load will be stoble at normal helicopter speed when the center of gravity of the load is located at the front of the surface oreo.
d. Safery.
(1) Ploce padding on sling where rubbing moy occur.
(2) To prevent in-flight "flapping" of prefabricated nylon, nylon slings, twist each sling leg one turn for every three (3) feet of length.
(3) It may be desirable to use clevises to attach sling legs to the load.

## 12-11. GROUND CREW

a. Positioning. See figure 12-14.
b. Hand Signals. See figure 12-15.
c. Sofety. Police area thoroughly.
(1) Ground personnel should wear:
(0) Steel heimet.
(b) Protective mosk, or dust goggles with respirator.
(c) Eorplugs.
(2) Helicapters ocquire a lorge chorge of static electricity during flight. A static discharge probe, which is not issued; is used to neutrolize the chorge. The prabe consists of on insulated contact rod jained to a 15'-25' length of metallic tope or wire, which in turn is attached to 0 ground rad. The graund rod is driven into the earth and the cantact rod is held by a ground crewman and touched to the helicopter hook


EMERGENCY
EMERGENCY
4 HELICOPTER MOVES LEFT

- Thit distaece mey vary, depeedent upen the specificeeviraement, e.. tercaie lealures, weother coedilions. ©nd iype of helicopter empleyed.
figure 12-14. Pasition diagram far hoak-up/releose of helicapters sling loods.

SIGNALS FOR DIRECTING HELICOPTERS


HOOKUP
COMPLETED

figure 12-15. Hand signals.

## 12-12. SHEARS

o. Moteriols. Sheors ore used to erect heovy mochinery ond bulky objects. Figure 12-16 shows the proper construction of sheors Sheors must be guyed to hold their position. They ore designed to work inclined from the verticol. Moximum sheor leg length is 60 times the leost diometer of the leg. This rotio must be reduced for extremely heovy loods.

FRAPPING


DETAIL FOR SHEAR LASHING

b. Erection. Holes should be dug ond the sheor legs ploced in them. This will prevent spreoding of legs. On hord surfoces, the legs should be level ond loshed together to prevent spreoding.

## 12-13. GIN POLE

o. Description. A gin pole is on upright spor, guyed ot the top to hold it in o vertical or neor-vertical position, ond equipped with suitoble hoisting tockle. It is eosily rigged, moved, ond operoted (fig. 12-17)


Figure 12-17. Gin pole reody for operotion.
b. Erecting. A gin pole 30 or 40 feet long moy be roised eosily by hond, but longer poles must be roised by supplementory rigging or power equipment. Figure 12-17 shows the gin pole in position for operotion, while the necessory rigging is illustroted in figure 12-18. The moximum ollowoble length is 60 times the minimum diometer. Guys ore 3 to 4 times the pole length.


Figure 12-18. Lashing for a gin pole.

## 12-14. BOOM DERRICK

a. Rigging. Booms are used on gin poles to lift loods at o distance from the base of the pole. The boom is two-thirds the length of the gin pole. For heavy loods, lower butt of boom to ground; roise it for lighter loads. It must not bear agoinst the upper two-thirds of the pole.
b. Operation. Raise the boom into position when the rigging is finished. In operotion, it is o convenient meons for loading ond unlooding
trucks ond flotcors, and for use on docks or piers. Figure 12-19 shows the boom derrick in position for operotion.


Figure 12-19. Boom derrick.

## 12-15. GUY LINE TENSION FOR SHEARS AND GIN POLES

a. Tensions. The most stress on a guy line occurs when a stroight line through the lood and pole passes through the guy line. To compute the tension use the following formula.

$$
T=\frac{\left(W_{L}+\frac{1}{2} W_{S}\right) D}{Y} .
$$

Where:

$$
\begin{aligned}
I & =\text { tension in guyline } \\
W_{L} & =\text { weight of lood } \\
W_{S} & =\text { weight of spor } \\
D & =\text { drift distance } \\
Y & =\text { perpendicular distance }
\end{aligned}
$$



Figure 12-20. Computing tension in single guylines.
b. Example Prablem.

Given:

$$
\begin{aligned}
\text { Load } & =2,500 \mathrm{lbs} \\
\text { Weight of spor } & =800 \mathrm{lbs} . \\
\text { Drift distonce } & =10 \mathrm{feet} \\
Y \text {-distance } & =20 \mathrm{feet} \\
T & =\frac{\left(2,500+\frac{1}{2}[800]\right) 10}{20}
\end{aligned}
$$

Solution:

$$
t=1,450 \mathrm{lbs} .
$$

## 12-16. HIGHLINE

The highline is o trolley line possing through o snatch block at eoch
suppart (fig. 12-20). It is the type most commanly erected at the plotaan level.


Figure 12-21. Highline.
o. Sag. The sag in the track cable when loaded shauld be not less than 5 percent of the span.
b. Farmulo for Safelaad Highline.

$$
S L=\frac{B S(\mathrm{lbs})}{5 \times S F}-\frac{D L(\mathrm{lbs})}{2}
$$

Where: $S L=$ safeload
$8 S=$ breoking strength af line
DL = dead laad
SF = safety factor
Prablem: Span is 400 feet
Track line is $\frac{3}{3}$-inch diameter manila rape
Haul line is $\frac{1}{2}$-inch diameter monila rope
Sofety foctor is 4.0
Track cable sog is 5 percent
Solutian. 8S (breaking strength) far $\frac{3}{4}$-inch diameter-manila rope $=5,400$ pounds.
$W\left(\frac{3}{4}\right.$-inch rope) $=66.8$ pounds $/ 400$ feet (table $12-1$ )
$W$ ( $\frac{1}{2}$-inch rape) $=60$ paunds/800 feet (table 12-1)
Therefore: $S L=\frac{5,400}{5 \times 4.0}-\frac{66.8}{2}$
$S L=270-33.4$
$S L=236.6$ pounds
Far the poyload, use the formula:
$P L=S L-(1 / 2 W$ af haul rape $+W$ af troveler $+W$ of carrier $)$
For this prablem, this would mean:
$P L=236.6$ - ( 30 plus the weight af the traveler and carrier)
Note. Far infarmatian on suspension bridges see chapter 7.

## CHAPTER 13

## UTILIZATION OF HEAVY EQUIPMENT

## 13-1. CRAWLER AND RUBBER TIRED TRACTORS

a. The economical hauling distonce for o dazer ranges fram 25 ta 300 feet.
b. Dozer output chort. See toble 13-1.
c. The recammended uses af tractars ta increase production are:
(1) Slot dazing. This is a method af digging and pushing material in the same path to reduce blade spillage. As the dozer cuts into the earth, windrows are built up acting as retoining wolls to keep the moterial in front of the blode. Praduction may increase up ta 30 percent.
(2) Blade to blade dozing. Using this method requires close caardination by the operators. The machines have to trovel ot the same speed ond keep the blades together. Blode ta blade dozing can praduce 1 to 1.5 cubic yards mare per pass in a range of $50-300$ feet.
(3) Dawnhill dazing. The dozer should be aperoted downhill when passible. It will receive the benefit af gravity and be able to push a lorger laad.

## Toble 13-1. Data an Troctars

Model	Capacity in LCY*	Speeds in MPH		Fuel consumed per hr
		Low	High	
D8-9A.	7.8	1.5	5.2	11
TD24..	7.8	1.7	8.2	11
HD16.	5.0	3.5	7.4	9
D7E.	5.0	2.3	6.2	9
TD20..	3.5	1.6	7.3	9
TD18.	3.5	1.7	5.7	9
HD6M.	2.6	1.5	6.5	7
D6S...	2.8	2.0	7.0	7
830M.	5.0	57	30	12
290M.	5.0	5.1	32	12
MRS100.	2.6	2.2	30	8

[^10](4) Back ripper ottachments. Stondard military blades are equipped with ripper teeth mounted to the back of the blade. On the back up portion of the cycle, these teeth may be lowered into the ground to loosen hord moterial, making it easter to obtoin a full load an the forward portion of the cycle.

## 13-2. EARTH MOVING.PRODUCTION FOR TRACTORS

a. Praduction for Iractars.

$$
\begin{gathered}
\text { Variable Time }(\text { Forward })=\frac{\text { Distance in } \mathrm{Ft}}{M P H \times 88} \\
\text { Variable Time }(\text { Return })=\frac{\text { Distance in } \mathrm{Ft}}{M P H \times 88} \\
\text { Hourly Production }=\frac{\text { EFF Hr } \times \text { Load Factor } \times 8 \text { lade Capacity }}{\text { Cycle Time }}
\end{gathered}
$$

b. Production for Tractors with Treedozer 8lades. Before committing a troctor equipped with the treedozer clearing blade, the soil condition in the proposed orea of operation should be investigated to determine if it will support the equipment. The treedozer clearing blode can be used to make cuts through any kind of forest, except heavy swampland. Trees can be sheared at ground level, swept by the same machines into piles or windrows, and burned there. One tractor equipped with a treedozer clearing blade can clear approximately one to two acres per hour, depending on the density and size of the trees in the area. When the tractor con move forward almost continuously, shearing to ground level everything in its path, fast production can be obtained by laying out long areas, 200 ta 400 feet wide, that con be cut from the outside toward the center in a counterclockwise direction. The cut material then slides off the trailing (right) end of the treedozer clearing blade and leaves the uncut area free of fallen debris. Occasionolly the cut material will not shed, but will accumulate insteod. When this occurs, the operator should make an immediate sharp turn to the right, followed by o sharp left turn, to resume the originol line of travel. This causes the accumulated materiol to fall off without stopping the tractor. The windrows are placed lengthwise on the borders of the areas, ond piling is done by sweeping with the treedozer clearing blade, a blade width ot o time, working from the center of each area, at a right angle to the border, from left to right.

## 13-3. SCRAPERS

a. Crawler tractar-scraper cambinatian can be efficiently aperated fram 300 ta 1200 feet.
b. Rubber-tired tractar-scraper cambinatians can be efficiently aperated fram 1200 feet ta infinity.
c. Methads af increasing scraper praduction are:
(1) Dawnhill laading.
(2) Straddle laading.
(a) Make twa cuts, ane an each side af a lane which is slightly smaller than the width af the scraper.
(b) On the third cut, strip the lane left by cuts ane and twa.
d. Push Laading.
(1) Back track laading. With this methad, a tractar is used ta push the laading tractar-scraper. It is gaad where the pushing tractar has ta back anly a shart distance ta get inta pasitian ta push the next tractarscraper.
(2) Shuttle laading. With this methad, a pusher tractar is used ta push a tractar-scraper. Hawever, after the aperatian is camplete, instead af the pusher backing up ta get inta pasitian ta push anather tractar-scraper, a tractar-scraper pasitians itself sa that the pusher has anly ta reverse its directian and push the new tractar-scraper.
(3) Chain laading. This methad is used where the cut area is fairly lang. A pusher initially laads ane unit, then moves in behind anather unit which is maving parallel ta and adjacent ta the first unit
(4) Traveling. All laaded units shauld leave the cut area as fast as passible.
e. Haul Raad Maintenance. All haul raads shauld be maintained with a grader ta lawer ralling resistance and increase the haul speed af earth-movers.
f. Rippers ar Raaters. Far ease in scraper laading rip soil priar ta laading scrapers if required.
g. Capacities of Scrapers. See table 13-2.

## 13-4. EARTH MOVING PRODUCTION FOR SCRAPERS

a. Determine Cycle Jime. Cycle time is the tatal time required far a piece of equipment ta complete its entire aperatian. Cycle time is divided inta twa types af time. These times are:
(1) Fixed time. This is the time spent in aperatians other than hauling and returning. It includes that time taken far laading, accelerat-

Table 13-2. Scraper Capacity

Make and madel	Weight lbs	Capacity struck cu yds	Capacity heaped cu yds
Murray.	11,700	7.5	9
LeTaurneau.	30,500	18.9	24.1
Euclid.	33,500	18	23
Curtiss-Wright	38,900	18.25	23.6

ing, decelerating and dumping. This time can be estimated in the field or if na data is available table 13-3 may be used as a guide.
(2) Variable time. Variable time is determined by the farmula: Variable time $(\mathrm{min})=\frac{\text { haul distance }(\text { feet })}{\text { speed }(\mathrm{mph}) \times 88}$

Speed is determined by haul raad canditians. This includes grade resistance, ralling resistance, and traction. Far detailed calculations see TM 5-331A. Assume high speed far haul raads with hard surface and slight grades, middle speed far average raad surface and medium grades, and lawest speed far paar raad surface and steep grades.

Table 13-3. Basic Fixed Time Canstants (Use as Guide Only)

Wheel scraper (with pusher):	Fixed time
4th gear haul..	Minutes $2.2$
3rd gear haul.	2.0
2nd gear haul.	1.9
Track tractar with scraper:	
Self-laaded.	2.5
Push-laaded.	2.0

b. Determine Laad Capacity. See table 13-2.
c. Determine Efficiency Factar. See table 13-4.

Table 13-4. Efficiency Foctor Chort

	Type   tractor	Warking   hours	Efficiency   foctor
Doy operation	Trock-type   Wheel-type	$50 \mathrm{~min} / \mathrm{hr}$   $45 \mathrm{~min} / \mathrm{hr}$	0.83   0.75
Night aperation	Trock-type   Wheel-type	$45 \mathrm{~min} / \mathrm{hr}$   $40 \mathrm{~min} / \mathrm{hr}$	0.75

d. Estimate Praductian. Production ( $P$ ) is estimoted by the farmula:
$P=E \times \frac{L \times H}{C}$
$\mathrm{P}=$ Praductian in bonk cu yd/unit/hr
$\mathrm{E}=$ Efficiency foctor
L= Laad factar
$\mathrm{H}=$ Heaped capocity (laose cu yds)
$C=$ Cycle time (fixed ond variable)
e. Estimote Job Durotian. This is determined by the farmula:

Jab duration (hours) $=$
Laad foctor $X$ Soil to be maved (yds)
Loose cubic yords per haur
See table 13-5 far laod factors.
f. Example: Haw long will it take to mave 500 cubic yords af clay (in ploce), $\overline{5000}$ feet ane woy with on 830M rubber-tired troctar pulling a Curtiss-Wright scroper? The haul raod is paar, work during daylight, 45-minute warking hour.
(1) Cycle time. Fram table $13-3$ fixed time $=1.9 \mathrm{~min}$

$$
\begin{aligned}
\text { Varioble time }(\mathrm{min})= & \frac{5000 \text { feet }}{5.7 \mathrm{mph} \times 88 \text { feet per secand }} \\
& =10 \mathrm{~min}
\end{aligned}
$$

Speed fram table 13-1
Cycle time $=1.9 \mathrm{~min}+10 \mathrm{~min}=11.9 \mathrm{~min}$
(2) Laod copocity. Fram table 13-2 assume heaped capacity= 23.6 cu yds .
(3) Efficiency factar. From table 13-4 efficiency factar $=0.75$.

Table 13-5. Load Factors (Estimated)

Sail type	Soil candition initially	In place	Laose	Compocted
Sand	In place		1.11	0.95
	Laose	. 90		. 86
	Compocted	1.05	1.17	
Loam	In ploce		1.25	0.90
	Loose	. 80		. 72
	Campacted	1.11	1.39	
Clay	In place		1.43	0.90
	Loose	. 70		63
	Campacted	1.17	1.59	
Rock (blasted)	In place		1.50	1.30
	Loose	. 67		. 87
	Compacted	. 77	1.15	
Hard coral (dead) camporable to limestone	In place		1.50	1.30
	Loose	. 67		. 87
	Compacted	. 77	1.16	

(4) Production in cubic yards per hour.
$23.6 \mathrm{cu} y d s$ per scraper $\times \frac{60 \mathrm{~min} \text { per hour }}{11.9 \mathrm{~min}} \times 0.75$ efficiency factor $=89$ cubic yords of material per haur.
(5) Time required to finish job. From toble 13-5, 1 cubic yord of in ploce cloy equols 1.43 cubic yords of loose moteriol.

$$
\begin{aligned}
\text { Job duration } & =\frac{1.43 \times 500 \mathrm{cu} \text { yds }}{89 \text { cubic yords per hour }} \\
& =8.05 \text { hours or obout } 8 \text { hours. }
\end{aligned}
$$

## 13-5. EQUIPMENT UTILIZATION CHART

See toble 13-6.
Toble 13-6. Equipment Utilizotion


## 13-6. GRADERS

o. Methods of Obtoining Moximum Production.
(1) In working distonces up to 1000 feet, bock up to beginining of project.
(2) In working distonces greoter thon 1000 feet, turn groder oround. b. Correct Geor Ronges for Groder Operotion. See toble 13-7.

Toble 13-7. Correct Gear Ronges Used in Grader Operotion

Operotion	Geor
Mointenonce.	2d \& 3d
Spreoding.	3d \& 4th
Mixing.	4th to 6th
Ditching.	1st to 2d
Bank sloping.	1 st
Snow removol.	5th to 6th
Finishing.	2d to 4th

c. Steps in Hosty Rood Construction.
(1) Morking cut. Place right front wheel in line with ditch stoker. Set mold boord of outside of right front wheel. Moke 3- to 4 -inch deep cut olong ditch stokes.
(2) Ditching cut. Ploce right front wheel in morking cut. Adjust mold boord so leoding edge is in line with ond behind right front wheel. Moke cuts os deep os possible ond moke os mony cuts os needed to give proper ditch depth.
(3) Moving windrow. Angle mold boord ond move windrow, obtoined from ditch cut, to center of rood.
(4) Level windrow. Level windrow to moke rood surfoce ond crown.
(5) Slope. Slope bonks to prevent erosion.
(6) Police. Cleon ond cleor ditches.
d. Production Copobilities of Groders. See toble 13-8.
e. Efficiency Foctor for Groders. For generol groder production estimotion, ossume o 60 -percent efficiency foctor.

## 13-7. COMPACTION EQUIPMENT

o. Sheepsfoot Roller.
(1) The depth of loose lift should not exceed 9 inches when o bond is desired between two lifts of moteriol.
(2) Overlop should be by of leost 1 foot.
(3) If the feet of the sheepsfoot roller do not wolk themselves out of moteriol, this is on indicotion thot the roller is exceeding the sheor stress of the soil ond the weight of the roller must be reduced.
b. 13-Wheel, Pneumotic-Tired Roller.
(1) Compoction is obtoined with loods of not more thon 7 tons.
(2) Compoction lifts should not exceed 6 inches.

Table 13-8. Production Capocities of the Grader

Operation	Rate   per hour	Unit	Canditions
Ditching	250   150   85	cu yd   cu yd   cu yd	"V" ditching, eosy digging   "V" ditching, medium digging   "V" ditching, hord digging
Grading	.2	mile	Digging side ditches and   shaping crown, 4 raund   trips required
Subgrode prepara-   tion	400	sq yd	Scarify and shape
Bose course produc-   tian	200	cu yd   cu yd	Spread moterial   Shaping surface
Surface treatment	150	sq yd	Mixing in ploce 2-in bitu-   minous material

(3) The 13 -wheel raller is best in granular type soils.
(4) The 13 -wheel roller is gaad for finishing ospholt.
c. 50-Ton, Pneumatic-Tired Roller.
(1) The 50 -ton raller will compact dawn to 18 inches with two passes.
(2) Compactian af moterial depends on unit pressure of tires and wheel load.
d. Steel Wheel Roller, 3.Wheel, 10-Ton.
(1) The 3 -wheel, 10 -Ton roller will compact up ta a 12 -inch lift af moterial.
(2) Passes of roller must averlap of leost 50 percent.
(3) The 3 -wheel, 10 -ton roller can be used ta compoct base course moterial.
e. 9-14 Tan Roller. The 9-14 tan roller is used anly os a finish raller on materials such os aspholt.

## 13-8. EARTH LIFTING EQUIPMENT

a. Shavel-Dipper Copacity in Cubic Yords. See toble 13-9.

Toble 13-9. Shovel Dipper Copocity in Cu Yds

Class of Materiol	$\frac{3}{8}$	$\frac{1}{2}$	3	I	17	112	$1 \frac{3}{4}$	2	21
Moist laom or light sandy clay	$\begin{gathered} 3.8^{\prime} \\ 85 \end{gathered}$	$\begin{aligned} & 4.6^{\prime} \\ & 115 \end{aligned}$	$\begin{aligned} & 5.3^{\prime} \\ & 165 \end{aligned}$	$\begin{aligned} & 6.0^{\prime} \\ & 205 \end{aligned}$	$\begin{aligned} & 6.5^{\prime} \\ & 250 \end{aligned}$	$\begin{aligned} & 7.0^{\prime} \\ & 285 \end{aligned}$	$\begin{aligned} & 7.4^{\prime} \\ & 320 \end{aligned}$	$\begin{aligned} & 7.8^{\prime} \\ & 355 \end{aligned}$	$\begin{gathered} 84^{\prime} \\ 405 \end{gathered}$
Sond and gravel	$\begin{array}{r} 38^{\prime} \\ 80 \end{array}$	$\begin{aligned} & 4.6^{\prime} \\ & 110 \end{aligned}$	$\begin{aligned} & 5.3^{\prime} \\ & 155 \end{aligned}$	$\begin{aligned} & 6.0^{\prime} \\ & 200 \end{aligned}$	$\begin{aligned} & 65^{\prime} \\ & 230 \end{aligned}$	$\begin{aligned} & 7.0^{\prime} \\ & 270 \end{aligned}$	$\begin{aligned} & 7.4^{\prime} \\ & 300 \end{aligned}$	$\begin{aligned} & 78 \\ & 330 \end{aligned}$	$\begin{aligned} & 8.4^{\prime} \\ & 390 \end{aligned}$
Good cammon eorth	$\begin{array}{r} 45^{\prime} \\ 70 \end{array}$	$\begin{gathered} 5.7^{\prime} \\ 95 \end{gathered}$	$\begin{aligned} & 6.8^{\prime} \\ & 135 \end{aligned}$	$\begin{aligned} & 7.8^{\prime} \\ & 175 \end{aligned}$	$\begin{aligned} & 8.5^{\prime} \\ & 210 \end{aligned}$	$\begin{aligned} & 9.2^{\prime} \\ & 240 \end{aligned}$	$\begin{aligned} & 9.7^{\prime} \\ & 270 \end{aligned}$	$\begin{gathered} 102^{\prime} \\ 300 \end{gathered}$	$\begin{array}{\|c} 11.2^{\prime} \\ 350 \end{array}$
Clay hard tough	$\begin{array}{r} 6.0^{\prime} \\ 50 \end{array}$	$\begin{gathered} 7.0^{\prime} \\ 75 \end{gathered}$	$\begin{aligned} & 8.0^{\prime} \\ & 110 \end{aligned}$	$\begin{aligned} & 9.0^{\prime} \\ & 145 \end{aligned}$	$\begin{aligned} & 9.8^{\prime} \\ & 180 \end{aligned}$	$\begin{aligned} & 10.7^{\prime} \\ & 210 \end{aligned}$	$\begin{gathered} 115 \\ 235 \end{gathered}$	$\begin{gathered} 12.2^{\prime} \\ 265 \end{gathered}$	$\begin{gathered} 13.3^{\prime} \\ 310 \end{gathered}$
Rack well blosted	40	60	95	125	155	180	205	230	275
Common, with racks and roots	30	50	80	105	130	155	180	200	245
Clay, wet ond sticky	$\begin{gathered} 6.0^{\prime} \\ 25 \end{gathered}$	$\begin{array}{r} 7.0^{\prime} \\ 40 \end{array}$	$\begin{array}{r} 8.0^{\prime} \\ 70 \end{array}$	$\begin{gathered} 9.0^{\prime} \\ 95 \end{gathered}$	$\begin{aligned} & 9.8^{\prime} \\ & 120 \end{aligned}$	$\begin{gathered} 10.7^{\prime} \\ 145 \end{gathered}$	$\begin{array}{\|c} 11.5^{\prime} \\ 165 \end{array}$	$\begin{array}{\|c} 122 \\ 185 \end{array}$	$\left\lvert\, \begin{gathered} 13.3^{\prime} \\ 230 \end{gathered}\right.$
Rock, poorly blasted	15	25	50	75	95	115	140	160	195

Power shovel yordoges - conditions-

1. Cu yds bonk meosurement per 60 min . hour with no delays

2 Suitoble depith of cut for moximum effect
3 All moteriols loaded into houling units $90^{\circ}$ swing
Note Top figures denote optimum depth of cut-bottom figures denote cubic yords per hour
b. Short Boom Drogline Performonce. See toble 13-10.
c. Scoop Looder Production. See toble 13-11.

Table 13-10. Short Boom Drogline Performonce in Cu Yds

Class of Material	車	$\frac{1}{2}$	7	1	$1 \frac{1}{4}$	$\frac{1}{2}$	13	2	21
Light, maist clay or laam	$\begin{aligned} & 5.0^{\prime} \\ & 70 \end{aligned}$	$\begin{aligned} & 5.5^{\prime} \\ & 95 \end{aligned}$	$\begin{aligned} & 6.0^{\prime} \\ & 130 \end{aligned}$	$\begin{aligned} & 6.6^{\prime} \\ & 160 \end{aligned}$	$\begin{aligned} & 70^{\prime} \\ & 195 \end{aligned}$	$\begin{aligned} & 7.4^{\prime} \\ & 220 \end{aligned}$	$\begin{aligned} & 7.7^{\prime} \\ & 245 \end{aligned}$	$\begin{aligned} & 80^{\prime} \\ & 265 \end{aligned}$	$\begin{aligned} & 8.5^{\prime} \\ & 305 \end{aligned}$
Sand ar gravel	$\begin{gathered} 5.0^{\prime} \\ 65 \end{gathered}$	$\begin{aligned} & 5.5^{\prime} \\ & 90 \end{aligned}$	$\begin{aligned} & 6.0^{\prime} \\ & 125 \end{aligned}$	$\begin{aligned} & 6.6^{\prime} \\ & 155 \end{aligned}$	$\begin{aligned} & 70^{\prime} \\ & 185 \end{aligned}$	$\begin{aligned} & 7.4^{\prime} \\ & 210 \end{aligned}$	$\begin{aligned} & 77^{\prime} \\ & 235 \end{aligned}$	$\begin{aligned} & 8.0^{\prime} \\ & 255 \end{aligned}$	$\begin{aligned} & 8.5^{\prime} \\ & 295 \end{aligned}$
Gaod camman earth	$\begin{aligned} & 6.0^{\prime} \\ & 55 \end{aligned}$	$\begin{aligned} & 6.7^{\prime} \\ & 75 \end{aligned}$	$\begin{aligned} & 7.4^{\prime} \\ & 105 \end{aligned}$	$\begin{aligned} & 8.0^{\prime} \\ & 135 \end{aligned}$	$\begin{aligned} & 8.5^{\prime} \\ & 165 \end{aligned}$	$\begin{aligned} & 90^{\prime} \\ & 190 \end{aligned}$	$\begin{aligned} & 9.5^{\prime} \\ & 210 \end{aligned}$	$\begin{aligned} & 99^{\prime} \\ & 230 \end{aligned}$	$\begin{gathered} 105^{\prime} \\ 265 \end{gathered}$
Clay; hard, taugh	$\begin{gathered} 7.3^{\prime} \\ 35 \end{gathered}$	$\begin{array}{r} 8.0^{\prime} \\ 55 \end{array}$	$\begin{aligned} & 87 \\ & 90 \end{aligned}$	$\begin{aligned} & 93^{\prime} \\ & 110 \end{aligned}$	$\left\lvert\, \begin{aligned} & 100^{\prime} \\ & 135 \end{aligned}\right.$	$\left\|\begin{array}{c} 107 \\ 160 \end{array}\right\|$	$\begin{aligned} & 11.3^{\prime} \\ & 180 \end{aligned}$	$\begin{array}{\|c} 11.8^{1} \\ 195 \end{array}$	$\begin{aligned} & 12.3^{\prime} \\ & 230 \end{aligned}$
Clay; wet, sticky	$\begin{gathered} 73^{\prime} \\ 20 \end{gathered}$	$\begin{gathered} 80^{\prime} \\ 30 \end{gathered}$	$\begin{gathered} 8.7^{\prime} \\ 55 \end{gathered}$	$\begin{aligned} & 93^{\prime} \\ & 75 \end{aligned}$	$\left\lvert\, \begin{gathered} 10.0^{\prime} \\ 95 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 10.7^{\prime} \\ 110 \end{gathered}\right.$	$\begin{aligned} & 11.3^{\prime} \\ & 130 \end{aligned}$	$\left\lvert\, \begin{gathered} 11.8^{\prime} \\ 145 \end{gathered}\right.$	$\begin{gathered} 123^{\prime} \\ 175 \end{gathered}$

Note Top figure denotes optimum depth of cut-bottom figure denotes cubic yords per hour (bonk measure).

Toble 13-11. Scoop Looder Production in Cubic Yords Per Hour Bosed on o 50 Minute Hour

SAE rated bucket capacities	Cycle time in secands											
	20	30	40	50	60	80	100	120	140	160	180	200
$1 \mathrm{cu} y \mathrm{~d}$	150	100	75	60	50	38	30	25	21	.		. ....
$1 \frac{1}{2} \mathrm{cu} y \mathrm{~d}$	220	150	110	90	75	55	45	37	32	28	25	22
21 cu yd	338	220	168	132	110	85	68	56	48	42	38	34
212 cu yd	370	250	185	150	125	94	75	63	54	47	42	37
$3 \frac{1}{2} \mathrm{cu} \mathrm{yd}$		342	260	210	175	160	110	86	75	65	58	52
4 cu yd		395	300	240	200	150	120	100	85	75	66	60

## 13-9. PRODUCTIVE CAPACITY OF ENGINEER EQUIPMENT

When time does nat permit calculatian af productian af engineer equipment table 13-12 may be used.

Table 13-12. Praductive Capacity of Equipment

Equipment	Rate units   per hour	Unit	Conditions

ORAINAGE OIICHES

Grader, motorized	250	Cu Yd	V-ditches, easy digging
	150	Cu Yd	V-ditches, med. hard digging
	85	Cu Yd	$V$-ditches, hard dıgging
Shovel or dragline, 表 cu yd	60	Cu Yd	Hard digging
	125	Cu Yd	Easy digging
Hand tools	5	' MH/100 ft	V-ditches, 3 ft wide, 1 foot deep, easy dıgging
	9	MH/100 ft	$V$-ditches, 3 ft wide, 1 foot deep, medium hard digging
OItching machine, ladder type	0-8	ft per mın	Operating speed depends on width (18 or 24 in), depth ( 0 to 99 in ), and type of soll
Ottching machine, mobile	0-28	ft per min	Same as above, except 24 in wide

CLEARING ANO GRUBBING

Hand tools	$1 \frac{1}{2}$	MH/tree	3 man blasting team, good conditions
	125	MH/acre	Light clearing
	350	MH/acre	Meduum clearing
	25	MH/100 lin yd	Light clearing, 30 ft wide
	70	MH/100 lin yd	Medium clearing, 30 tt wide
Crawler tractor, 66- to 90 -dbhp, with dozer	1.0	acre	Light stripping or clearing
	0.25	acre	Medium clearing
	20 to 50	trees	4 in to 10 in diameter
	3 to 12	trees	12 in to 30 in diameter

[^11]Table 13-12-Continued

Equipment	Rate units per hour	Unit	Conditions
GRADING			
Crawler tractor, 66- to 90-dbhp, with dozer   Shovel, power, $\frac{7}{4}$ cu yd Grader, motoized Hand tools	400 190 110 120 90 130 80 45 75 0.2 1.2 to 2.4 1.5	$\operatorname{lin} \mathrm{ft}$ $\operatorname{lin} \mathrm{ft}$ IIn ft Cu yd cu yd cu yd cu yd cu yd cu yd mile cu yd cu yd	Sidehill cut, medium-hard dıgging, $10^{\circ}$ slope   Sidehill cut, medium-hard digging, $20^{\circ}$ slope   Sidehill cut, medıum-hard digging, $30^{\circ}$ slope   Sidehill cut, meduum-hard dıgging   Sidehill cut, hard dıgging   50 ft level haul, medium hard digging   100 ft level haul, medium hard digging   Hard digging   Easy digging   0Igging side ditches and shaping crown, 4 round trips   Loading loose material into truck, 1 man with shovel   Excavation with pick and shovel, to 5 ft , easy digging
Embankment			
Tractor, 70 - to 90 -dthp, with angle-dozer Roller, sheepsfoot two drum-in-line, towed by tractor, 70 - to 90 -dthp	$\begin{aligned} & 300 \\ & \\ & 250 \\ & 200 \\ & 150 \end{aligned}$	Cu yd   cu yd cu yd cu yd	Spreading material   9 in loose layers, 8 passes   9 in loose layers, 10 passes   9 in loose layers, 12 passes

Table 13-12-Continued

Equipment	Rate units per hour	Unit	Conditions
SUBGRADE PREPARATION			
Grade, motorzed	400	sq yd	Scarity and shape
Roller, sheepsfoot, two	650	sq yd	6 in layers, 8 passes
drum-in-line, towed by	540	sq yd	6 in layers, 10 passes
tractor, 70- to 90-dbhp	450	sq yd	6 in layers, 12 passes
Roller, rubber-tired with tractor, 30-dbhp	3000	sq yd	$5 \mathrm{mph}, 5$ passes
Roller, road, tandem, 5- to	1000	sq yd	$3 \mathrm{mph}, 5$ passes
BASE COURSE CONSTRUCTION			
Tractor, 70- to 90- dbhp, with angle-dozer	300	cu yd	Spread material
Grader, motorized	200	cu yd	Spread material
	450	sq yd	Shaping surface
Roller, road, tandem, 5- to 8-ton	300	sq yd	Compacting gravel
Roller, road, tandem, 5- to 8-ton	75	cu yd	Compacting gravel
Roller, rubber-tired, tractor, 30-dbhp	1500	sq yd	Compacting gravel, 10 passes

surface treatments ano pavement construction

Sweeper, tractor, 30-dbhp	2500	sq yd	Sweeping compact base
Oistributor, trailer mounted	2550	sq yd	0.1 gal per sq yd, 24-ft spray
Oistributor, truck mounted	$$	sq yd	0.2 gal per sq yd, 24-ft spray
Spreader, aggregate, tractor powered	5000	sq yd	Spread cover aggregates
Roller, road tandem, 5- to 8-ton	3000	sq yd	Rolling aggregate, 3 mph , 3 passes
Roller, rubber-tired tractor, 30-dbhp	3000	sq yd	Rolling aggregate, 5 mph , 5 passes
Grader, motorized	150	sq yd	Mixed in place, 2-n bituminous material

Table 13-12-Continued

Equipment	Rate units   per hour	Unit	Conditions

## AGGREGATE PRODUCTION

Crusher, two-unit, 35 ton per hr	15	ton	1-In aggregate, screened ${ }^{2}$
	20	ton	$1 \frac{1}{2}$-in aggregate, screened ${ }^{2}$
	45	ton	$2 \frac{1}{2}$-in aggregate, screened*
Crusher, 75 tph	60	ton	$1 \frac{1}{2}$-in aggregate, screened ${ }^{2}$
Crusher, 225 tph	110	ton	$\frac{1}{4}$-in aggregate, screened, washed ${ }^{2}$
	220	ton	$1 \frac{1}{4}$-in aggregate, screened, washed ${ }^{2}$
Crusher 15 tph, Arbome	15	ton	1 -in aggregate, crushed ${ }^{2}$
	25	ton	11-in aggregate, crushed ${ }^{2}$
	38	ton	2-in aggregate, crushed -
Compressor, 210 cfm	210	cfm	At sea level
(Reciprocating)	194	cfm	5000 \$1 above sea level
Compressor, 250 cfm	250	cfm	At sea level
(Rotary)	250	cfm	5000 ft above sea level
Compressor, 600 cfm	600	cfm	At sea level
(Rotary)	600	cfm	5000 ft above sea level
Compressor, 210 cfm	210	cfm	At sea level
(Rotary)	210	cfm	5000 ft above sea level
Drill, rock, 35-lb class	20	lm ft	13-in hole, max depth $8 \mathrm{ft}^{2}{ }^{2}$ Requires 40 to 60 cfm of air
Drill, rock, 45-lb class	30	lın ft	$1 \frac{1}{2}$-in hole, max depth $12 \mathrm{ft}{ }^{2}$ Requires 70 to 90 ctm of air
Scoop leader, wheel 2 cu yd	200	Cu yd	Truck loading ${ }^{2}$

${ }^{2}$ Production may vary + or -25 percent depending upon the toughness of the rock

## CHAPTER 14

## FIELD SANITATION

## 14-1. SANITATION FACILITIES

For details on field sonitotion see FM 21-10

## 14-2. WASHING FACILITIES

a. Hand-washing devices should be set up near latrines and kitchens. See figure 14-1.


Figure 14-1. Hand-washing device, using number 10 can.
b. Shawers shauld be set up whenever passible far persanal hygiene and marale. See figure 14-2.

figure 14-2. Shower unit, using metal drums.

## 14-3. WASTE DISPOSAL

a. Latrines.
(I) Size shauld be adequate ta take care of at least 8 percent af the unit at ance. Sixteen feet af straddle trench in faur-faat sectians, ar twa deep pit latrines with faur-hale latrine baxes, is adequate far a 100-man unit.
(2) Lacate at least 100 meters fram kitchen, autside the cantanment area but inside the perimeter, and canvenient ta tents.
(3) See figures $14-3,14-4$, and 14-5.
(4) When filled ta within $30-\mathrm{cm}$ af graund level, or when abandaned, straddle trench latrines shauld be sprayed with insecticide, filled in, and maunded with a $60-\mathrm{cm}$ averburden af campacted earth.
(5) Lime shauld be added ta pit latrines daily. In clasing a deep pit latrine, the level af excrement shauld nat be claser than ane meter fram graund elevatian.
(6) Pipe urinals shauld be maintained by periadically adding disinfectant ta the urinal pipes and washing inta the pit. Disinfectant shauld alsa be spread an the gravel araund the pit area.


Figure 14-3. Box latrine for 50 men.


Figure 14-4. Straddle trench latrine far 100 men, with hand-washing device.


Figure 14-5. Pipe urinal arrangement.
(7) When high water tables preclude the use af pit latrines, burnaut latrines may be used. Half of a 55 -gallan drum or barrel is installed under each hale in the latrine box (fig. 14-6). The drum is remaved daily, fuel ail is added and the cantents are burned to a dry ash. An inch of diesel fuel is added far insect cantrol before replacing the drum in the latrine box.


Figure 14-6. Burn-aut latrine.
b. Garbage Pits.
(1) Size should be at least 4 feet square and 4 feet deep.
(2) Lacate as far from kitchen as possible, autside camp area if practical.
(3) When filled ta within $30-\mathrm{cm}$ of graund level, ar when abandaned, fill pit in and maund over with $60-\mathrm{cm}$ averburden af campacted earth.
(4) Liquid kitchen wastes shauld never be dumped into garbage pits as this precludes effective burning aut and shortens utilizatian for the pit.
c. Saakage Pits. Liquid kitchen wastes shauld be dispased of in soakage pits These shauld be lacated in the kitchen orea. The soakage pit may be constructed the same as the urinal (fig. 14-5) except that a grease trap must be pravided (fig. 14-7) and drainage pravided ta prevent surface runaff from filling up the pit. In constructing the pit, amit pipes and have drainage from grease pipe drain into pit.


Figure 14-7. Boffle grease trap (barrel type).

## CHAPTER 15

## RECONNAISSANCE

## 15-1. ROUTE RECONNAISSANCE

o. Definitian. Route recannoissance is gaverned by the same fundamentals that apply to oll recannaissance. Usually it is made an the ground, but it should be supplemented by air reconnaissance when procticoble. Route recannaissonce provides infarmatian ta aid in route selectian for the mavement of troops, equipment, and supplies. Infarmation saught in this type of recannaissance includes:
(1) Nature of terrain.
(2) Existing raads ond their characteristics, including load-bearing capabilities. See TM 5-330 for more detoiled informatian.
(3) Obstructians.
(4) Bridges and ather stream crassing means.
(5) Tunnels.
b. Mission. Raute recannaissance must cansider the mission of the parent unit. Recannaissance foctars include the weight, width, and height of the vehicles thot will be used; the classification of these vehicles; the appraximate number af each class ta be moved per hour; and the appraximote length of time the raute will be used.
c. Repart. A recannaissance report shauld be accurate, cancise, and clear. The preferred methad of preparatian is in simplified map farm or overlay (fig. 15-1), using symbols (toble 15-1) ta shaw the limiting features. A route recannaissance report is occompanied by an engineer recannaissance repart farm, a raad recannaissance repart and bridge, tunnel, ferry, and fard recannaissonce reports as needed. Military sketches af limiting features, local mops, and phatagraphs of significant factors (terrain, raads, tunnels, bridges, ferries, fards, and so forth) support the route repart.

## 412

Table 15-I. Overiay Symbais

## SYMBOLS FOR USE MM THE RECOMMASSAMCE REPORT

symep	
	sMus eleve ( $O B$ ) Any adous less than or ecual to 30 wéters; however, any curve grester than 30 $\qquad$ metera, but less than 45 meters is reportsble.
$Z<+3 / 19 m$	SERIES OF SHARP CÜ'vés: The figure to the ieft   Indicstes the number of curves; thst to the right, the minimum ridiua of curvature in meters,
	stiti ceaved (00) Any grade 7\% or nighep Actud to gi grade till be yhom Arown alwass bount uphilt and lengith of trrow red rextints length of grade il mao cale permils
(10y	ConesTluction (08) Any reducian in the Ireveled way below the starchards of Tafte 15-2. The figure to the left indicstes the width of the constriction; that to the right, the total constricted length, both in meters.
	Unentoistis Shom shape al slicutlure ( 0 OB ) ment owertesed clearance is less than 4.30 m , or othen the thoveled why is peicu ine stand pras of TAlteis-3 See fio is.13. NOTIL $\qquad$
	Nurial (Includes mannade snowshects) Show shape ot atructure (08) when overhead ctearance is tess than a 30 min or when the triveted way is below the slandaros of Tailt   13.3   Set PIO is-IJ. NOTE a
	STPasses Are local aitemate routés   whach enable tratice to aroot an obstrucion Byparsies are clessitied as EASY DIFFICULT or IMPOSSIBLE Each tppe by pass is redresented symboticality on the lrne extending from the symbot to the map loc: thon and detrinet as tonows
	gYPASS EASY: The obstscle can be crossed within the immediste vicinity by a US 2.5 ton truck (or Nato equivalent) without work to improve the bypass.
	gYPASS DIFFICULT: The obstacle can be crossed within the fmediate vicinity, but some work vill be necessary to prepare the bydass.

## Table 15-1-Continued

3ymber	DFSCREPTIOM 4 CRITERA
	orpass umpossibut The obstacle can only be crossed by one of the following methods:   (1) Repair of item; i.e., bridge   (2) New construction   (3) Detour using an alternate route which crosses the obstacle some distance away.
	Ratimad (ati) LIVI crace crossime Pass ing trains will interrual traltic lla* The   figure Indicates overhead clearance.
	FORD All tords are consiopied ds obstivetions    in TABLE 15-5   Type of ford   v.V.ticules P-Pedestion
	Sessonal Umiting factorn   $x$-No sedsonal limitation excepi tor limited dulation surdiden liooding - -5 ignoticant seasonas hmatations   Aaprasch Conditiont   Dillicult Easy   Metare of motion-   $M$-mus C-Clay S-Sand   C-Giavei R-rioch P-Artilicial Paving
	FLaty. All lemies are considered as abstruc hons (OBI lo itathe   Apprateh Conditupm   Dithsulf Easy   Tpe of fort   v-Venculal Fery   P-Pedestrian Ferty
$\underline{O}$	umits of sectia limits of ieconnoteiea sector of oule having the same road classification formula

Table 15-1-Continued



Figure 15-1. Example of o raute recannaissance averlay.
d. Overlay. Impartant features to be included an an averlay are shown belaw. The first five items are required:
(1) Twa grid references.
(2) Magnetic north arrow.
(3) Raute drawn ta scale.
(4) Title black.
(5) Raute clossification farmula.
(6) Length (in kilameters) between well morked points.
(7) Curves having radii af less than 45 meters ar 150 feet.
(8) Steep grades, with their maximum gradients in percent, and length af any grade af 5 percent ar greater
(9) Road width of constrictians (bridges, tunnels ond sa forth), with the widths and lengths af the traveled ways in meters.
(10) Underpass limitatians, with their limiting heights and widths in meters.
(11) Bridge bypasses, clossified as eosy, difficult, or impassible (para. 15-1c).
(12) Civil ar military raod numbers, or other designatians.
(13) Feasibility af driving aff raads, including shaulders.
(14) Lacotians of fards, ferries, ond tunnels including limiting infarmation.
(15) When causeways, snawsheds, and galleries constitute an obstructian ta traffic they shauld be included in the raute recannaissance report. Limit the dato to clearances and laad-carrying capacity. If possible, support the infarmation with photographs or sketches af each structure. Alsa, include enough descriptive informatian ta permit on evaluation concerning the strengthening ar remaval of these structures.
e. Route Classificatian Farmula. It is a standardized sequence af traveled woy width, raute type, lowest military laad classificatian, abstructians if present, and speciol conditians if present. The route clossification formulo is required for the map averlay (fig. 15-1).
(1) Width. Narrawest width af the raute expressed in meters ar feets.
(2) Route type. Determined by worst section of the route.
(a) (X) All-weather. Any raod which, with reosanable mointenonce, is passable thraughaut the year to a valume of traffic never oppreciably less than its maximum capocity. This type af raad has a waterproof surface and is only slightly affected by rain, frast, thaw, or heat. At na time is it clased ta traffic due to weather effects other thon snaw blackoge. The following are exomples af this categary: cancrete; bituminous; brick or stane.
(b) (Y) Limited oll-weother. Any road which, with reosonoble mointenonce, con be kept open in bod weother to a volume of troffic which is considerobly less thon its normol copocity. This type of rood does not hove o woterproof surfoce ond is considerobly offected by roin, frost, or thow. The following ore exomples of this cotegory: crushed rock or woterbound mocodam; grovel or lightly metoled surfoce.
(c) (Z) Foir weother. A rood which becomes quickly impossoble in bod weother ond which connot be kept open by normol mointenonce. This type of rood is seriously offected by roin, frost, or thow. The following ore exomples of this type: notural or stobilized soil; sond or cloy; shell, cinders; disintegroted gronite.
(3) Militory route clossificotion. Normolly it is the lowest bridge lood clossificotion number of the route. If no bridges occur, the worst section of the route governs.
(4) Obstructions (OB). Any foctors which restrict the type, omount, or speed of troffic flow, e.g., overheod clearances, troveled woy widths, steep grodients, shorp curves, ferries, ond fords moy couse obstructions, denoted by (OB) in the route clossification formulo. Consult tobles 15-1 ond 15-2 for limiting volues.
(5) Speciol conditions. Snow blockoge (T) ond flooding (W) ore used when the condition is regulor, recurrent, ond serious.

Exomples:
$6.7 \mathrm{~m} Y 30$. Route is 6.7 meters wide, limited oll-weother route with a lood corrying copocity of closs 30 with no obstructions.
$21 \mathrm{ft} 10(O B)(W)$. Route is 21 feet wide, foir weother route with lood corrying copocity of closs 10 . Obstructions do exist, and route is subject to, flooding.

## 15-2. ROAD RECONNAISSANCE

Rood reconnoissonce is performed to get informotion on rood clossiflcotion, primorily in support of selecting o route, ond to report chonges to existing mops for disseminotion in the theoter of operotions. Its purpose is to find out the quontity and kind of loods thot a rood con occommodote in its present condition. It moy olso include estimotes of the effort necessory to improve ond/or mointoin o road subjected to specific troffic for o definite period of time. An exomple of a rood recannoissonce report (DA Form 1248) is shown in figures 15-2 ond 15-3.

Table 15-2. Critical Dimensions far Raute Classificatian

- MINIMUM OVERHEAD CLEARANCES FOR BRIDGES

Bridge classification	Minimum overhead clear ance	
Up to 70 Above 70	4.30 meters ( $14 \mathrm{ft.0} \mathrm{in}$ ) 4.70 meters ( 15 ft .6 in )	
- MINIMUM ROUTE WIDTHS FOR BRIDGES		
	Minimum width between curbs	
Bridge   Classification	One lane (meters)	Two lane (meters)
4.12	2.75 (9.0')	5.50 (18'.0')
13.30	3.35 (11 $\left.1^{\prime} \cdot 0^{\prime}\right)$	5.50 (18'.0')
31.60	400 (13'2')	7.30 (24'-0')
61.100	4.50 (14'.9')	820 (27'0')


- ROUTE WIDTHS		
Traffic flow possibilities	Widths for wheeled vehicles	Widths for tracked vehicles
Single flow	550 meters to 7 meters ( 18 ft to 23 ft )	6 meters to 8 meters (191/2 t to 26 ft)
Double flow	Over 7 meters ( 23 ft )	Over 8 meters $(26 \mathrm{ft})$

Measuring width of roadway and horizontal and vertical clearances tor tunnels underpasses. and through truss bridges


1 Minımum overnead cfearance measured vertitally from edge of traveled way
2 Eftective width of the traveled way. curb-to-curo
3 Horizontal clearance. Is the minimum widin measured at least four teel above the traveled way
4 Maximum overhead clearance, is the minimum distance between the top of the traveted way and the lower edge of the overhead, of any obstruction below the overhead, such as trolley wires or electric light wires
4a Rise of arch (radius ol curved portion)


Figure 15-2. Road reconnaissance report (frant).


Figure 15-3. Road reconnoissonce report (bock).
a. Infarmation required -
(1) Lacal name af raad ond/or designatian.
(2) Location af road by map grid reference.
(3) Obstructions, which include, among ather items, underpasses, fords, large tree limbs, croters, projecting buildings, areas subject to inundatian, and sa farth.
(4) Bridge lacatians. (Bridge reconnoissance is outlined in paro 15-13.)
(5) Tunnel lacations, together with their lengths, widths, ond heights. (Tunnel recannoissance is described in pora 15-5 and table 15-1.)
(6) Snowshed locotions ond estimoted coverage.
(7) Gallery locotians, tagether with their lengths, widths, ond heights.
(B) Other requirements are listed in paragraph 15-Ic.
b. Raad Clossificatian formula. The raod classification farmulo is expressed in a standardized sequence af a prefix, limiting characteristics at present, width of the troveled way/cambined width of the traveled woy and the shoulders, road surfoce material, length if desired, abstructions if present, and special conditians if present.
(1) Prefix. The farmulo is prefixed by the letter " $A$ " if there ore no limiting characteristics. The letter " $B$ " is the prefix if there are any limiting characteristics.
(2) Limiting charocteristics. Symbal
 Grodients ( $7 \%$ or mare)........................................... $g$
Drainage (inadequote).............................................. d
Faundotian (unstoble)............................................ f
Surface Condition (rough).................................. . s
Camber ar superelevation (excessive)..................... i
An unknown or undetermined choracteristic is represented by a question mark fallawing the symbol af the feoture to which it refers, e.g., (d?).
(3) Width. Width af the troveled way is expressed in meters fallawed by a slash and the cambined width of the troveled way and the shoulders, e.g., 14/16.
(4) Road surfoce material. Road surfoce moterial is expressed by a letter symbol as follows:

Symbol

## Material

k Concrete
kb Bituminous or asphaltic concrete (bituminous plant mix).
nb Bituminous surface treatment on natural earth, stabilized soil, sand-clay or other select material.
b Used when type of bituminous construction cannot be determined.
$\mathrm{pb} \quad$ Bituminous surface on paving brick or stone
rb Bitumen-penetrated macadam water-bound macadam with superficial aspholt ar tar caver.
p Paving brick or stone
r Waterbound macadam, crushed rack, or coral
I Gravel or lightly metaled surface
n $\quad$ Natural earth, stabilized soil, sand-clay, shell cinders, disintegrated granite, or other select material.
$\checkmark \quad$ Various other types not mentioned above (indicate length when this symbol is used).
(5) Length. Length af road in km may or may nat be shown. If shown place in parentheses, e.g., ( 7.2 km ).
(6) Obstructions. Expressed as (OB) when existing on road, e.g., overhead clearances less than 4.30 m , reduction in the traveled way widths below the standards of (table 15-2), gradients of 7 percent or greater, and curves with a radii less than 30 m ( 100 ft ).
(7) Special conditions. Snow blockage ( $T$ ) and flooding (W) are used when the condition is regular, recurrent, and serious.

Exomples:
A $5.4 / 6.2 \mathrm{k}$ : Road has no limiting characteristics with 5.4 m traveled way, combined width of 6.2 m traveled way and shoulder, and o concrete surface.
Bcgs 14/16 (2.4 km)(OB): Road has limiting characteristics of sharp curves, steep grades, and a rough surface candition; 4.3 m of clear traveled way, 4.9 m combined with shoulders; a graveled or lightly metoled surface, 2.4 km length; obstructions ore present-
Bcgd (f?)s $3.2 / 4 . \mathrm{B} \mathrm{nb}(4.3 \mathrm{~km}$ ) ( OB )( $(\mathrm{T})$ : Road has limiting charocteristics of shorp curves, steep grades, bad drainage, unknown foundation condition, and rough surface; 3.2 m wide
troveled woy, 4.8 m wide with shoulder; o bituminous surfoce treotment; 4.3 km long, ond it contoins obstructions. The rood is subject to snow blockage.
c. Meosuring Rodii of Curves.
(1) A method of determining the rodius of o curve is bosed on the formulo -

$$
R=\frac{c^{2}}{8 m}+\frac{m}{2}(\text { fig. } 15-4)
$$

Where:
$\mathrm{c}=$ length of cord
$m=$ perpendiculor distonce from center of cord to centerline (E) of rood
$R=$ rodius of circle
By fixing m ot ony convenient distonce, such os 2 meters, the formulo becomes-

$$
R=\frac{c^{2}}{16}+1
$$

Note: Convert R, $c$, ond $m$ to like units, either feet or meters, before moking computotions.


Figure 15-4. Meosuring the rodius of o curve.

In applying the farmula, $m$ is measured from the centerline of the curve toward the estimated center of the circle and then $c$ is measured perpendicularly to $m$, making sure that $c$ is centered on $m$. If $c$ is measured at 16 meters, $R=17$ meters.
(2) Figure 15-5 shows an alternate method effective when the chord is impossible to measure due to brush, minefields, or similar obstacles. A compass azımuth is taken at twa points along the curve and the centerline distance (between the two points) of the curve paced or measured directly.

$A_{A}=$ AZIMUTH A
$A_{B}=$ AZIMUTH B
$C=$ DISTANCE ALONG $\&$ OF ROAD
$r=$ RADIUS OF CURVE

Figure 15-5. Alternate methad for measuring a curve.
(a) If $A_{B}$ is larger than $A_{A}$ :

$$
\gamma=\frac{57 \mathrm{c}}{A_{B}-A_{A}}(\gamma \text { is in the units of } c)
$$

(b) If $A_{A}$ is larger than $A_{B}$ :

$$
\gamma=\frac{57 c}{360+A_{B}-A_{A}}(\gamma \text { is in the units of } c)
$$

(3) Methad a abave is mare accurate than methad b. Bath have their advantqges.
d. Determıning raad gradien -
$\frac{\text { Vertical distance }}{\text { Harizantal distance }} \times 100=\%$ of slape
$\quad$ (or a clinameter may be used).

## 15-3. FIXED BRIDGE RECONNAISSANCE

The limiting features of bridges are af bosic importance to the selection of a raute far normal traap movements. See tables 15-3 and 15-4.
a. Bridge reconnaissance has two methads.
(1) Hasty reconnaissonce determines immediote trafficability.
(2) Deliberate recannaissance is dane when there is enaugh time and qualified personnel ta make a tharaugh analysis and classification af the bridge, including necessary repoirs or demalition pracedures.
b. Bridge symbals include the lacatian of the bridge, the arbitrarily assigned bridge number, the military lacal classification number, the overall length of the bridge, the roadway width, the vertical clearance, the bridge bypasses, harizontal clearance, under-bridge clearonce, number af spans, type af span canstruction, type of span canstruction moterial, and length and condition of spans (fig. 15-6). Infarmation should be obtained to camplete the Bridge Reconnaissance Repart Form (DA Form 1249), figures 15-7 and 15-8. Cansult chapter 7 ta determine military bridge classification.

Table 15-3. General Dimension Data Required far Each of The Seven Basic Types of Bridges

Numbar		Basic type of tridge						
figure	Oimansion data	Simple stringer	Slab	T-beam	Truss	Girder	Arch	$\begin{gathered} \text { Suspen- } \\ \text { sion } \\ \hline \end{gathered}$
1	Overall length	X	X	$x$	$x$	X	$x$	$X$
2	Number of spans	$x$						
2.	Length of spans	$x$	$\mathbf{x}$	$\mathbf{X}$	X	x	$\mathbf{x}$	$x$
2a	Panal length	...	$\cdots$	...	$x$	$\ldots$	$\cdots$	$x$
3	Height above streambed	$x$	$x$	$x$	X	X	$\mathbf{x}$	$\mathbf{X}$
3a	Height above estimated normal water level	$x$	$\mathbf{x}$	$x$	$x$	$x$	$x$	$x$
4	Travalad way width	$x$	$x$	$x$	$x$	X	x	$x$
5	Overhead clearance	$\infty$	-	$\boldsymbol{\infty}$	$x$	co	$\infty$	$x$
6	Horizontal clearance	$x$	$\mathbf{X}$	X	$x$	X	$x$	$x$

Note The letter ' X ' indicates the dimension is required


Table 15-4. Capocity Dimension Dato Required for Eoch of The Seven Basic Types of Bridges

Capasity (1) dimmeion dato	Satic typae of bridge										
	Simple atingere					Sob	T-beara	Trues	Girder	Arch	$\begin{gathered} \text { Su spers } \\ \text { cien } \end{gathered}$
Thickness of weoring surface.	1					1	1	$\pi$	$\pi$	I	$\pi$
depth of fill of crown.	$\pi$					\%	$\pi$	$\pi$	\%	$\pi$	\%
	Timbet		Stod								
	Rec. tang.	Log	I-bean	Channol	Rell						
Dietonce, c.re-c. batwean T-beame, stringare, or lloor beams . . . . .	\%	I	$\underline{1}$	$\Sigma$	\%		$\pi$	$\pi$	I	$\Sigma$	I
No. of T.beame or efringere . . .	$\Sigma$		1	$\pi$	\%	- •	\%	$\pi$	$\pi$	. .	$\pi$
Depth of asch $T$.beom or etringit. .	$\pi$	(2)	(3)	$\pi$	(1)	.	1		\%	$\cdots$	*
Widih of eveh T-beam or xitringer   Thicknemx of web of f-brame, WF.	$\pi$		(3)	(3)	(3)	. . .	1	I	I	-	1
bame, channale, ar raile		-••	$\pi$	\%	\%			$\pi$	I	$\cdots$	\%
Sog of cable . . . . . . .		-	. .	-	-	-	-	. .	$\cdots$	-	$\pi$
No. of mach sut of coble. .	. .	. .	. .		.	. .	.	. .		-•	$\pi$
Thicknate of orch ring . . . Ries af arth .	$\cdots$	$\cdots$	-	$\cdots$	-	-••	-••	$\cdots$	$\cdots$	$\cdots$	$\cdots$
Diameter of rach aire of coble .	- . $\cdot$	.	-		-	. . .	. . .	$\cdots \cdot$	$\cdots$	$\stackrel{1}{2}$	$\cdots$
Depth of plete girder . .	-.		.		.	$\cdots$	. .	$\cdots$	$\cdots$	$\cdots$	$\cdots$
Width of flengo plateo . .	. . .	. . .	- .	. . .	. . .	. .	. . .	. . .	1	.	. . .
Thieknese of flange platee.		-•	. .		. .	$\cdots$	- . .	. . .	\%	$\cdots \cdot$	. .
No. of honge plates. - Depih of flange angle .	$\cdots$	- .	$\cdots$	. . .	,	.	. $\cdot$.	$\cdots \cdot$	1	-	
Widith al llonge angle . .		-•	-				. . .		1	. - .	
Thicknese of tlange engls	-	- .	.		. .		. . .	*. .	I		. . .
Depth of wab plote . .	,	-	$\cdots$	. .	. .	. . .	-•	. . .	1	. .	. . .
Thicknere of web plote.	- ..	.	$\cdots$	. . .	. . .	. . .	.	. . .	\%	. .	. . .
Average thicknees of flonge			$\pi$								- . $\cdot$

Nata. ' $x$ ' ind icates raquirad dimensian.
I Capacify is asmpuiad by the ase of tormulas and daia in bridga manuale.
2 Diamoter.
3 Width al flange.

Symbolized on Bridge Reconnassance Redort (OA Form 1249) dy Number (Type of Construction) and Letter (Material of Construclion)

Example: 3 ak = Beam lype bridge construcled of reinforced concrete


[^12]Figure 15-6. Common types of span construction.


Figure 15-7. Bridge reconnoissonce report form (front).


Figure 15-8. Bridge recannaissance report form (back).
c. Bridge bypasses ore local detours, which are clossified os easy, difficult, ar impossible. Table 15-1 shows the symbols and requirements for each classification.

## 15-4. FLOAT BRIDGE RECONNAISSANCE

a. Two types of river crossings - hasty and deliberote.
(1) Hasty reconnaissonce determines immediate crossing.
(2) Deliberate reconnaissance is performed when there is enough time and qualified personnel are ovailoble to moke o thorough analysis considering the engineer plan and the eight common factors. These considerations are only guidelines and discretion must be used.
b. Engineer plan at compony level must know:
(1) Tactical requirement.
(a) What must cross.
(b) Where it must crass.
(c) When it must cross.
(2) Resources ovailable.
(a) Bridging
(b) Equipment, i.e., dozer.
(c) Men.

- (3) Riverline data-Reconnaissance (see c below).
(4) Time-must know the starting time of the operation.
c. Eight common factors for reconnaissance.
(1) Rood nets.
(a) At least same closs as largest vehicle crossing.
(b) Well drained.
(2) Approaches.
(a) Straight for $150^{\prime}$.
(b) 10 percent maximum grade
(c) Two lane.
(d) All weather, well drained.
(3) Abutments on banks.
(a) Same closs os bridge.
(b) Protect from scouring.
(c) Use lacal moteriol where possible.
(d) $30^{\prime \prime}$ to $40^{\prime \prime}$ high to adjust for closs 60 ramps
(4) Width.
(a) Direct measurement.
(b) Stadii and transit.
(c) Triangulotion-see number 1 , figure $15-10$.
(d) Scoling from map ar oerial photo.
(5) Depth.
(a) Sounding.
(b) Expedient methods.
(6) Current (tide variatian) - see number 2, figure 15-10.
(7) Assembly sites - desire $100^{\prime} \times 100^{\prime}$ for eoch $100^{\prime}$ af bridge.
(8) Obstructions.
(a) Pratect from debris using any expedient methads.
(b) Pratect fram flaoting mines using onti-mine baam.
(c) On a reconnarssance lacol populus moy be helpful but keep in mind the enemy could be present.
(d) Other references-TM 5-210.


## 15-5. TUNNEL RECONNAISSANCE

Because tunnels are sametımes used far starage, maintenance, assembly, ar ather purpose, their limitatians must be knawn. The required infarmatian (DA Farm 1250) is pointed out in FM 5-36.

## 15-6. FORD RECONNAISSANCE

a. Classification of Fards. Fords are classified accarding to their crossing patential for foot, wheeled, ar tracked mavement.
(1) Their trofficobility is indicated far vehicles and foot troops in table 15-5.
(2) Approaches may be paved with concrete ar bituminous material, olthaugh they are usually just sand ar gravel. The campasitian and slape of the approach are impartont; its trafficability in inclement weather depends upan them.
(3) The compositian af the streom bottam determines its passability. It is impartant, the refare, ta indicote it.
(4) The stream battam at a fard may be paved, in some cases, ta improve its laad-beoring capacity and ta reduce the stream's depth. The paved area may be af cancrete, gravel, layers of sandbags, steel mats, or waaden plonks.
(5) Seasanal floads, excessively dry periads, freezing, and other extreme canditians of weather affect the fardability of a streom.
(6) Swiftness of the current ond presence of debris offect possability of a ford. Current is recorded as swift (over 1.5 meters per secand), moderate (1 to 15 meters per second), ar slaw (less than 1 meter per second).
(7) Dimensional dota of a fard are pointed out in figure 15-9.

Toble 15-5. Trafficability af Fards

Type ot traftic	Shallow tordable depth (meters)	Minimum   width   (meters)	Maximum desirable slope for approaches ${ }^{\prime}$	Symbol
Foot	$1130 \cdots$		$1: 1$	
Trucks and truck-drewn artillery	0.75 (30')	3.6 (12)	31	$1$
Light tank	1 (39 ${ }^{\prime \prime}$ )	4.2 (14)	2:1	
Medium tanks"	t.05(42")	4.2 (14')	2.1	$\sim 2$

' Based on hard, dry surface
"Depths up to 4.3 meters cen be negotiated with deep weter fording kut
b. Stream Width.
(1) With a compass, determine the azimuth from a point an the near share clase to the water's edge ta a point near the woter's edge an the far share af the streom directly oppasite. Then anather point, either upstream or downstream from the previausly morked points, is estoblished an the neor shore, from which the azimuth ta the point on the far shore is $45^{\circ}$ at variance with the previausly marked azimuth. The distance between the twa paints on the near share is equal to the distance across the streom (fig. 15-10).
(2) Stretch a string acrass the stream, then measure the distance on the string. A meosuring tape may be used if one lang enough is availoble.
c. Stream Velocity. Stream velocity is calculated by measuring o distance olang the riverbank, then determining the time it takes o light object ta flaat this meosured distonce (fig. 15-10). Velocity is computed as follows:

Measured distance ( m or ft )
Time (sec) $=$ velocity in meters of feet per secand


Figure 15-9. Standard dimensianal data far fards.
d. Fard Recannaissance Repart. This repart is made an DA Form 1251, (Fard Recannaissance Repart). If required, worksheets may be used for rapid field wark; details are later transferred ta DA Farm 1251.

## 15-7. FERRY RECONNAISSANCE

Ferries differ widely in appearance, capacity, propulsion, constructian, etc. Far infarmation on ferry recannaissance, see FM 5-36.


1. SELECTPROMINENT OBJECTA (i.e., troe) ONFARBANK.
2. STAND ATPOINT B, OPPOSITEA, AND READ AZIMUTHXㅁ
3. MOVE UP OR DOWN STREAM TOA POINT C SO THAT AZIMUTH TO A EQUALS $X+45^{\circ}$ ORX-45 $5^{\circ}$.
4. DISTANCEBCTHENEQUAIS GAPAB.
5. DETERMINING STREAMVELOCITY


DISTANCEAB IS MEASURED FLOATING OBJECT IS THROWN INTO STREAMATC TIMEREQUIRED FORFLOATING OB JECT TO FLOAT DISTANCEA'B' IS DETERMINED
$V(F P S)=\frac{A B[F E E T]}{T I M E T O F L O A T}$
A'B'|SECI
Figure 15-10. Methads of measuring stream width and velocity.

## 15-8. WATER RECONNAISSANCE

a. Lacation af Water Source. This always involves field reconnoissance, with o brief study af a mop.
b. Source. When troops ore in combot ond moving ropidly, there is usually na time to seorch far the best water, and consequently, units must take whatever is available ond purify it with materials an hand. Quantities of water required per man per day ore given in table 17-2. The principol saurces ore-
(1) Surface water (streoms, lakes, and pands).
(2) Springs.
(3) Wells.
(4) Sea water.
(5) Roin.
(6) Snow and ice.
c. Capacity af Saurce (Quontity). It is necessary to compute the minimum, averoge, and moximum flaw of streoms, wells, ar springs, ond the dimensions ond depths af lakes ar ponds, with their rate of aut-flaw. The amount of woter thot passes a point in one minute is determined os follows:

$$
Q=A \times V \times 6.4
$$

Where: $Q=$ Flaw in gollons per minute
$A=$ Crass-sectian oreo of stream in square feet
$V=$ Flow in $\mathrm{ft} / \mathrm{min}$.
$6.4=(7.5 \mathrm{gal}$ of woter per cu ft$) \times($ carrection foctor of 0.85$)$
d. Quolity of Woter. Check the color, turbidity, adar, taste, ond passible pollution. In a pallutian check, exomine the droinoge orea, as much as time permits, for human wostes, industriol wastes, corrion (deod fish), or paisaning by enemy action.
e. Tests. Tests are perfarmed by persannel operoting woter supply and by medicol service personnel.
f. Accessibility. There should be a raod system cannecting o woter supply with the users.
g. Proposed Develapment. Compute the time, lobar, and moteriol necessory to improve the site.
h. Dota From Lacol Inhobitonts, Locol Recards, ond Soil Surveys. If a woter source is ta be used far same time, informotian must be obtained on seosonal voriotians, seosanol floods, seosanol draught, and additional saurces.
i. Standard Symbals. The abave data should be reparted on pertinent mops with the conventianal military symbols and signs described in FM 21-30.

## 15-9. ENGINEER RECONNAISSANCE

An engineer reconnoissonce is often performed in canjunctian with a raute reconnoissonce or other recannoissonce. Its primory missian is to lacote materiols to maintoin, imprave ar support engineer octivities. The results af an engineer reconnaissonce are usuolly reported an on overloy similor to the raute reconnoissonce overloy (fig. 15-1). An Engineer Reconnaissance Repart, DA Form 1711-R (figs. 15-11 ond 15-12) is prepored with the mop averloy to provide a unifarm method of reparting recannoissance af engineer interest.
o. Frant Side. Shaws sketch, key number, time, ond lacotian af item reparted.
b. Reverse Side. Gives wark estımate of manpower, equipment, and materials ta replace, reparr, or demolish items reparted an the frant side af the form. Each work estimate is keyed by number to the appropriate object on the front side of the farm (fig. 15-11). Only those columns which are applicable need be completed. Additianal sketches may be drawn if needed to better explain the type work required.
c. Engineer Recannaissance Report. Items which should be recorded on the Engineer Recannaissance Report (DA Farm 1711-R).
(1) Where it is. Give grid caordinates of the location.
(2) What it is. Give a clear, complete and cancise descriptian of the item reparted.. (Use sketch, standard symbols, and abbreviations where applicable.)
Report:
(a) Obstacles. To movement, natural and artificial, include demalitians, mines, baabytraps.
(b) Engineer materials. Particularly road material, bridge timber lumber, steel, fill, gravel, explosives.
(c) Engineer equipment. Rock crushers, saw mills, garages, machine shaps, abandoned enemy equipment, etc.
(d) Bivauac areas. Access roads, soil, drainage, size, caver, cancealment, fields of fire.
(e) Utilities. Water, sewage, electricity, natural gas, pipe lines.
(f) Water paints. Recammended locations.
(g) Map errars
(h) Wark estımates far construction, repair, ar removal af any item encountered on a recannaissance.
(3) Time observed.

## 15-10. RECONNAISSANCE OVERLAY SYMBOLS

a. Far frequently used symbals an averlays refer ta table 15-1.
b. Bridge Symbals. See figure 15-13 far correct bridge recannaissance symbals. Cansult table 15-2 and chapter 7 far bridge classificatian pracedures.
c. Engineer Resource Symbols. Use the symbols shown in figure 15-14 to depict engineer resources on the engineer reconnaissance averlay. Possible resaurces, such as water points, are denated by dashed line symbols.
d. Airfield Symbals. Abbreviations, symbals, and notations as used far route recannaissance are useful in airfield recannaissance (FM 21-30).
e. Minefield Symbals. The symbals used in the sketches and reports of minefields are as given in chapter 3.


Figure 15-11. Engineer reconnaissance report (front).


Figure 15-12. Engineer work estimate (back of engineer reconnaissance repart).

440

## FIIL Bridge simbols <br> (NDIE 4)



## ABBREYLATED BRIDEE SYMBOLS

When used oveilay must be accompenied with DA Form 1249 or getaried leport ;





 ing ienart




 Bym:
Orientialom
 WUST BL PAIO WHEN GCCORDING APPROACH CONDIFIOMS DN IME 5. VH GOL FOR RROPER ORIENTATION OF OESICMATIMG TNE IEFT AMO PICMT Brima

HUTI 4 AMY OVEDMEAD CLEABAMEE DI A BA IDGE LESS THAM TME STAMOARCS OF

Ormengut
 THE WIOTH OF FHE GRIDGE IS LESS THANTHE STANOAROS OF TABIE
 CS WHICH 45 LESS THAM THAT DF THE OUTSIOE OOUIE IS UNDCRLIMED

Figure 15-13. Bridge reconnaissance symbols.


Figure 15-14. Engineer resource symbols.

15-11. UNIT DESIGNATIONS
Far a complete caverage of military symbols see FM 21-30.
a. Branch and Duty Symbals. At times, two ar mare branch and duty symbols may be cambined. Far example, armored infantry wauld cambine the symbals for armar and infantry.


Figure 15-15. Branch and duty symbols.
b. Size ond Type of Activity Symbols.


Figure 15-16. Size and type of activity symbols.
c. Unit Designotion and Bosic Symbol. The orrongement of vorious combinotions of symbols to depict specific units is shown in figure 15-17.. Exomples of unit designotions ond bosic symbols for engineer units ond weopons ore found in figures 15-18 and 15-19.

## SIZE OF UNIT

PARENT UNIT

## ADDITIONAL INFORMATION

Figure 15-17. Unit designotion ond bosic symbols.


BRIDGE CO., 50TH ENGR. BN.


16TH ARMORED ENGR. BN. 4TH ARMORED DIV.


AVLB PLATOON, BRIDGE CO., 31ST ARMORED ENGR. BN.


## IST SQ'D., 2D PLATOON, CO.B., 162D ENGR. BN., 5TH INFANTRY DIV (MECHANIZED)



ATOMIC DEMO. MUNITIONS PLATOON, 69TH ENGR. BN.


585 TH DUMP TRUCK CO., ATTACHED TO 915 T ENGR. BN.

581
05


581ST ENGR. MAINT CO. (DIRECT
SUPPORT)
Figure 15-18. Examples of specific engineer unit symbals.

| AUTOMATIC INFANTRY <br> WEAPON | MORTAR |
| :--- | :--- | :--- |
| AIR DEFENSE <br> MACHINE GUN |  |
| ARTILLERYGUN | ANTI-TANK ROCKET |
| LAUNCHER |  |

APPROXIMATE SIZE OF WEAPON IS AS SHOWN BELOW:.
LIGHT: BASIC WEAPON SYMBOL EXAMPLE $\uparrow$ MEDIUM, ONE HORIZONTAL BAR EXAMPLE $f$ HEAVY: TWO HORIZONTAL BARS EXAMPLE 伊


Figure 15-19. Weapans symbols.
d. Unknown Symbols. When the correct symbal is not known, a symbol moy be made up, provided it is exploined in a legend added to the mop or overlay being drawn.

## CHAPTER 16

## COMMUNICATIONS

## 16-1. MORSE CODE

See figure 16-1.


Figure 16-1. Morse code.
16-2. PHONETIC ALPHABET
See figure 16-2.
16-3. GROUND AND AIR EMERGENCY CODE
See figure 16-3.

Tetter	Pro－word	Prommelacion	Lecter	Pro－yord	Pronumciation
$\cdots$	ALPA	Al PAR		HOVEBER	
	Brapo	BRAH VOH		OSCAR	OSS CAH
	Cinalile	CHFAR LRE		PAPA	PAB PAB
D	delta	DELI TAB		QuEbec	REP BECS
	ECED	gck 0 O		ROMEO	ROX ME OR
	foxtrot	PORS TROT	$\underline{\square}$	SIERRA	SER ALR RAB
	601P	9012		tasico	TASE ${ }^{\text {co }}$
	HOTEX	H2 TELI		UnTram	YOL FIEE POBM
	DEDA	C⿴囗大Es AR		VICTOR	IIX TAB
	JULIETT	TEH LE8 ETX		WHISKET	HISS CXI
1	KIIO	KEY LOH		trat	EGES RAY
	LDM	LER MAH		Tanters	XANS REY
$B$	1IIR	MTE		2010	200100
	PGMEETIC EWMEYS				
	W08	PO－WER		Seveas	－zero
	700	5 PI－YIV		ATE	
	THUH－RE8	SIX		MLiER	

figure 16－2．Phonetic alphabet．
Require doctar, seriaus injuries ..... I
Require medical supplies ..... 11
Unable ta praceed ..... X
Require faod and water ..... F
Require firearms and ammunition ..... V
Require map and campass ..... a
Require signal lamp with battery and radia ..... 1
Indicate direction to proceed ..... K
Am proceeding in this directian ..... $\uparrow$
Will attempt takeaff ..... 1)
Aireraft seriausly damaged ..... L7
Probably safe to land here ..... $\Delta$
Require fuel and ail ..... L
All well ..... LL
No ..... N
Yes ..... Y
Nat understaad ..... 」
Require engineer (mechanic)WNOTE: Elements shauld be spaced 10 feet apart, whenever passible.Figure 16-3. Graund-oir emergency cade.

## 16-4. ANTENNAS

a. Antenna Length Chart. Lengths are in feet.
b. ${ }^{1 / 2}$ Wave Antenna. Divide by 2.
c. '/4' Wave Antenna. Divide by 4.

Table 16-1. Antenna Length Chart

Frequency   megacycle	Full wave   length	Frequency   megacycle	Full wave   length
1	936		
2	468	31	30.2
3	312	32	29.2
4	234	33	28.4
5	1872	34	27.6
6	156	35	26.8
7	133.6	37	26
8	117	38	25.2
9	104	39	24.6
10	93.6	40	24
11	85	41	23.4
12	78	42	22.8
13	72	43	22.2
14	66.8	44	21.8
15	62.4	45	21.2
16	58.4	46	208
17	55	47	204
18	52	48	19.8
19	49.2	49	19.4
20	46.8	50	19
21	44.6	51	18.8
22	426	52	18.4
23	40.6	53	18
24	39	54	17.6
25	37.4	55	17.4
26	36	56	17
27	34.6	57	16.8
28	33.4	58	16.4
29	32.2	59	162
30	31.2	60	15.8
			15.6

## 450

d. Center fed Antenna(s). $\frac{1}{2}$ of desired antenna length to each side of insulatar.
e. Antenna Length formulas.

$$
\begin{gathered}
f=\text { frequency in megacycles } \\
\text { answer is ontenna length in feet } \\
\frac{1}{4}=\frac{234}{f} \quad \frac{1}{2} \text { wave }=\frac{468}{f} \quad \text { full wave }=\frac{936}{f}
\end{gathered}
$$

f. Impravised Antennas. See figure 16-4 thraugh 16-9.


Figure 16-4. Half rhambic antenna.


Figure 16-5. Jungle expedient antenna.


Figure 16-6. Inverted "L" antenna.
vertical polarization
201080 MC


Figure 16-7. Long wire antenna.


Figure 16-8. Improvised center fed half-wave ontenna.


Figure 16-9. Expedient suspended vertical antennas.

## 16-5. RADIO LOCATION

a. Lacate rodia as high os possible.
b. Locatian shauld be away fram ony metal abstructions.
c. Avoid placing in a depressian or valley, whenever passible.
d. Avoid locating a rodio near electricol power line.

## CHAPTER 17

## MISCELLANEOUS FIELD DATA

## 17-1. WEIGHTS AND SPECIFIC GRAVITIES

Table 17-1 gives weights and specific gravities af moterials commanly used in an engineer unit.

## 17-2. WATER; DISINFECTION AND QUANTITY REQUIREMENTS

## a. Water Disinfectian.

(1) Calcium hypochlarite. Add calcium hypochlorite ta praduce residual chlorine af 5 part per million (ppm) after 10 -minute cantact time, and wait additional 20 minutes befare drinking. Far a 36 -gallan lyster bag, 1 calcium hypachlarite capsule usually is enaugh: Far indrvidual use, prepare a disinfecting salutian by placing 1 calcium hypachlarite capsule in a canteen af water. Add 1 canteen-capful af disinfecting salution to each canteen af water, shake, and allaw ta set far 30 -minutes befare using.
(2) ladine tablets. Use 1 tablet per canteen af water for clear water and 2 tablets per canteen of water far claudy water. Allow the water to stond far 5 minutes, shake vigorously, and allaw ta stand another 10 minutes before drinking. Allaw cald water to stand 20 minutes befare drinking.
(3) Bailing. Bring the water to a rolling bail far 15 secands.
(4) Destruction of amaebic dysentery cysts. When cysts are suspected, pretreat all water by coagulation and sedimentation followed by sand filtration at reduced rates ar by diatomite filtratian. Water treated in this way is safe ta drink if it has a residuol chlarine cantent of 1 ppm after a 10 -minute contoct time. In emergencies, disinfect water in individual canteens by follawing the directions on the bottle af individual water purificatian tablets, unless an-increase is directed by the medical officer. Small units may bail their awn drinking water; this is a sure methad. If the lyster bag is used, the following steps must be taken:

Table 17-1. Weights and Specific Gravities

Substance	Weight, lbs. per cu. ft.	Specific gravity
Bituminaus		
Asphaltum	81	1.1-1.5
Coal, anthracite	97	1.4-1.7
Caal, bituminaus	84	1.2-1.5
Coal, coke . . . .	75	1.0-1.4
Petraleum, gasoline	42	0.66-0.69
Tar, bituminous.	75	1.20
Building materials		
Ashes, cinders . . . . . . . . . . .	40-45	
Cement, portland, laase.	94	
Cement, portland, set . .	183	2.7-3.2
Coal, anthracite . . . .	47-58	
Caal, bituminaus, lignite	40-54	
Caal, charcoal	10-14	
Caal, cake . . . . . . . . . . . . . .	23-32	
Earth, etc., excavated		
Chalk	137	1.8-2.6
Clay, damp, plastic	110	
Clay, dry	63	
Clay and gravel, dry	100	
Clay, marl	137	1.8-2.6
Earth, dry, laase . . .	76	
Earth, dry, packed.	96	
Earth, moist, laase	78	-•••
Earth, maist, packed	96	.
Earth, mud, flawing.	108	
Earth, mud, packed.	115	-•••
Sand gravel, dry, laase.	90-105	
Sand gravel, dry, packed.	100-120	. . $\cdot$
Sand gravel, wat . . . . . . . . . . . . .	118-120	
Liquids		
Oils, minerals, lubricants	57	0.90-0.93
Water, $4^{\circ} \mathrm{C}$ ( max density)	62.428	1.0
Water, ice	56	0.88-0.92
Water, snaw, fresh fallen...	8	0.125

Table 17-1. Weights and Specific Gravities - Continued

Substance	Weight, lbs. per cu. ft.	Specific gravity
Masanry, oshlar Gronite, syenite, gneiss Limestane, marble Sandstane, bluestane	$\begin{aligned} & 165 \\ & 160 \\ & 140 \end{aligned}$	$\begin{aligned} & 2.3-3.0 \\ & 2.3-2.8 \\ & 2.1-2.4 \end{aligned}$
Masanry, brick   Pressed brick   Camman brick   Saft brick.	$\begin{aligned} & 140 \\ & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 2.2-2.3 \\ & 1.8-2.0 \\ & 1.5-1.7 \end{aligned}$
Masanry, concrete Cement, stane, sand	144	2.2-2.4
Masanry, dry rubble Gronite, syenite, gneiss. Limestane, marble Sondstane, bluestane	$\begin{aligned} & 130 \\ & 125 \\ & 110 \end{aligned}$	$\begin{aligned} & 1.9-2.3 \\ & 1.9-2.1 \\ & 1.8-1.9 \end{aligned}$
Masanry, martar, rubble Granite, syenite, gneiss Limestane, morble. Sandstane, bluestone.	$\begin{aligned} & 155 \\ & 150 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2-2.8 \\ & 2.2-2.6 \\ & 2.0-2.2 \end{aligned}$
Metals, allays, ares   Aluminum, cast, hammered   Copper, cast, rolled   Iran, cost, pig   Iran, wraught   Lead.   Magnesium alloys   Manganese.   Steel, ralled   Zinc, cost, ralled	$\begin{aligned} & 165 \\ & 556 \\ & 450 \\ & 485 \\ & 710 \\ & 112 \\ & 475 \\ & 490 \\ & 440 \end{aligned}$	$\begin{gathered} 2.55-2.75 \\ 8.8-9.0 \\ 7.2 \\ 7.6-7.9 \\ 11.37 \\ 1.74-1.83 \\ 7.2-8.0 \\ 7.85 \\ 6.9-7.2 \end{gathered}$
Minerals Asbestas Bauxite	$\begin{aligned} & 153 \\ & 159 \end{aligned}$	$\begin{gathered} 2.1-2.8 \\ 2.55 \end{gathered}$

Table 17-1. Weights and Specific Gravities-Continued

Substance	Weight, lbs. per cu. ft.	Specific gravity
Rock		
Limestane, marble	165	2.5-2.8
Sandstone, bluestane	147	2.2-2.5
Riprap, limestane.	80-85	
Riprap, sandstana	90	
Riprap, shale	105	
Solids, variaus		
Glass, common	156	2.4-2.6
Hay and straw (bales)	20	
Paper . .	58	0.70-1.15
Patotaes, piled	42	
Rubber goads.	94	1.0-2.0
Salt, granulated, piled	48	
Sulfur   Wool	$125$	$\begin{gathered} 1.93-2.07 \\ 1.32 \end{gathered}$
Stone, quarried, piled		
Basalt, granite, gneiss	96	. . .
Greenstane, harnblende	107	. . . .
Limestone, marble, quartz'.	90	-•••
Sandstane .	82	. . .
Shale .	92	
Excavatians in water		
Clay .	80	. . .
River mud	90	. . .
Sand ar groval.	60	
Sand ar graval and elay	65	
Soil . .	70	
Stone riprap	65	

Table 17-1. Weights and Specific Gravities - Continued

Substonce	Weight, lbs per cu. ft.	Specific gravity
Timber, U.S. seosoned (Moisture content by weight: seasoned timber, $15 \%$ to $20 \%$; green timber, up to $50 \%$ )   Ash, white, red   Cedor, white, red   Chestnut.   Cypress   Elm, whife.   Fir, Douglos spruce   Fir, eostern   Hemlock   Hickory.   Locust.   Maple, hard   Mople, white   Oak, chestnut   Ook, live   Ook, red, block   Oak, white   Pine, Oregon .   Pine, red   Pine, white   Pine, yellow, longleaf   Pine, yellow, shortleof   Poplar   Redwood, Colifornio   Spruce, white, black   Wolnut, black   Wolnut, white	40 22 41 30 45 32 25 29 49 46 43 33 54 59 41 46 32 30 26 44 38 30 26 27 38 26	$\begin{gathered} 0.62-0.65 \\ 0.32-0.38 \\ 0.66 \\ 0.48 \\ 0.72 \\ 0.51 \\ 0.40 \\ 0.42-0.52 \\ 0.74-0.84 \\ 0.73 \\ 0.68 \\ 0.53 \\ 0.86 \\ 0.95 \\ 0.65 \\ 0.74 \\ 0.51 \\ 0.48 \\ 0.41 \\ 0.70 \\ 0.61 \\ 0.48 \\ 0.42 \\ 0.40-0.46 \\ 0.61 \\ 0.41 \end{gathered}$

(a) Break 1 ampule and paur inta filled bag; stir with clean paddle.
(b) Disinfect faucets by flushing $\frac{1}{2}$ cup of water thraugh each faucet.
(c) After 10 minutes, residual shauld exceed 1 ppm. Then add anather ampule. Keep bag cavered.
(d) Water is patable 30 minutes after adding last ampule.
b. Daily Water Requirements. Table 17-2 gives water requirements in gallans per unit cansumer per day under variaus canditians af use.

Table 17-2. Daily Water Requirements

1	2		3	4
Unit consumer	Conditions of use	Gol per unt Consumed per doy		Remarks
		Temperate/cold elimate	Desert/ Jungle	
Mon.	In combor Minimum.	1/2-1	2-3'	for eating ond drinking only, periods not to exceed 3 days
		2	3-4 ${ }^{1}$	When field rotions are used
	Normol .. . .	3	$6^{2}$	Drinking plus smoll omount for cooking or personal hygiene
	March or bivouoc   Temporary comp.	2	$5^{2}$	Minimum for all purposes.   Desiroble for all purposes (does not include bathing) Includes allowonce for waterborne sewage system
		5		
	Temporory comp with bathing facilities	15		
	Semipermonent comp Permonent دmp	$\begin{aligned} & 30-60 \\ & 60-100 \end{aligned}$		

Table 17-2. Daily Water Requirements-Cantinued

1	2	3		4
Unit consumer	Conditions of use	Gol per unit Consumed per doy		Remorks
		Temperote/cold climate	Desert/ Jungle	
Vehicle. ... . ... . ..	Level ond rolling country Mountoinous country.	$1-1$	- . . .	Depending on sire of vehicle.
		$\frac{1}{4}-1$		Depending on size of vehicle
Hospilol ... .. .....	Drinking and cooking	10 per bed	- $\cdot$.	Minimum, does not include bothing or water for flushing
	Woter woterborne sewoge.	50 per bed	$\ldots$	Includes woter for medicol personnel
Impregnoting plant, clothing, M2AI	Maximum impregnoting copocity	2,400		Aqueous process Includes 2,000 gols for plant operotions ond 400 gols for woshing ond cleoning purposes
QM bokery compony (mobile)	Two 10 -hour shifis	2,600	- .	Water far moking breod ond cleoning boking utensils
QM loundry compony.	Two 10 hour shifts.	$\begin{aligned} & 64,000 \\ & (4,000 \\ & \text { per } \\ & \text { unit }) \end{aligned}$		

[^13]
## 17-3. ELECTRICAL WIRING

a. The procedures pointed aut in this section are to be used only far on estimation of required wire sizes or when no ather method is known.
b. To determine the wire size required for a given lood:
(1) Convert laod into amperes required by using

Amperes $=\frac{\text { Tatal wotts to be serviced }}{\text { voltage }}$
or

$$
\text { Amperes }=\frac{\text { Voltoge }}{\text { resistance (ohms) }}
$$

or

$$
\text { Amperes }=\frac{745.7 \times \text { Horsepower }}{\text { voltage }}
$$

(2) Enter table 17-3 or 17-4 with amperes to be serviced and length of wire required; determine wire size needed.
(3) This procedure is to be used when power is to be furnished to a specific load such as one motor or a group of lights. The procedure for wiring a facility or wiring a generator is shown in TM 5-766.

## 17-4. TIMBER

a. Baard Measure, Size and Weight.
(1) Lumber quantities are expressed in feet, board measure ( $\mathrm{ft} \mathrm{b} . \mathrm{m}$.) ar in board feet (bd.ft.), or in thousand board feet ( $M$ bd.ft.). One board foot (or ft. b.m.) is the amount of lumber in a rough-sawed board 1 foot long, 1 foot wide, and 1 inch thick ( 144 cubic inches) or the equivolent volume in ony other shape. These originals or "nominal" dimensians and volumes determine the number of board feet in a given quantity of dressed lumber, regardless of the fact that the process of surfacing or other machining has reduced the actual dimensions and volume. Under American standards, for example, a dressed board designated as 1 inch by 12 inches is in foct $25 / 32$ inch by $11 \frac{1}{2}$ inches. This must be token into account in computing the amount of lumber needed for a given ןob. Thus, one hundred 1 -inch by 12 -inch dressed boards 16 feet long contain $\frac{100 \times 1 \times 12 \times 16}{12}=1,600$ board feet, but have on actual area of only $\frac{100 \times 11 \frac{1}{2} \times 16}{12}=1,533$ square feet; so that if 1,600 square feet of 1 -inch by 12 -inch material are desired, 1,670 board feet, plus allowance for wastage, must be ordered.
(2) Table 17-5 gives the number of board feet in one piece of lumber of the sizes given.
(3) Table 17-6 gives nominal size, dressed size, section area and weight per foot of the most common sizes of southern pine timbers.

Toble 17-3. Wire Sizes for 120 -Volt Single-Phase Circuits

Lood (amperes)	Minımum wire sise (AWG)	Service wire size (AW6)	Wire size (AWG)												
			Distance one way from mupply ta laod (feet)												
			50	75	100	125	150	175	200	250	300	350	400	450	500
15	14	10	14	12	10	8	8	6	6	6	4	4	4	2	2
20	14	10	12	10	8	8	6	6	6	4	4	2	2	2	2
25	12	8	10	8	8	6	6	4	4	4	2	2	2	1	1
30	12	8	10	8	6	6	4	4	4	2	2	1	1	0	0
35	12	6	8	6	6	4	4	4	2	2	1	1	0	0	2/0
40	10	6	8	6	6	4	4	2	2	2	1	0	0	210	2/0
45	10	6	8	6	4	4	2	2	2	1	0	0	2/0	210	3/0
50.	10	6	8	6	4	4	2	2	2	1	0	210	2/0	$3 / 0$	3/0
55	8	4	6	4	4	2	2	2	1	0	210	2/0	$3 / 0$	$3 / 0$	4/0
60	8	4	6	4	4	2	2	1	1	0	210	3/0	3/0	4/0	4/0
65	8	4	6	4	4	2	2	1	0	2/0	2/0	3/0	4/0	4/0	
70	8	4	6	4	2	2	1	1	0	210	$2 / 0$	3/0	4/0	4/0	.
75	6	4	6	4	2	2	1	0	0	210	3/0	4/0	4/0		.
80	6	4	6	4	2	2	1	0	0	210	3/0	4/0	4/0		.
85	6	4	4	4	2	1	1	0	210	3/0	$3 / 0$	4/0	.		
90	6	2	4	2	2	1	0	0	210	3/0	4/0	4/0			
95	6	2	4	2	2	1	0	210	2/0	310	4/0				
100	4	2	4	2	2	1	0	$2 / 0$	210	$3 / 0$	4/0				

Table 17-4. Wire Sizes for 220-Volt Three-Phose Circuits.

$\begin{gathered} \text { Load } \\ \text { (amperes) } \end{gathered}$	minimum whe size (AWG)	Sorvice wire size (AWG)	Wire size (AWG)												
			Distance one way from supply to load (feet)												
			100	150	200	250	300	350	400	500	600	700	800	900	1,000
15	14	12	14	12	10	8	8	8	6	6	6	4	4	4	2
20	14	10	12	10	8	8	6	6	6	4	4	2	2	2	2
25	12	8	10	8	8	6	6	6	4	4	2	2	2	2	1
30	12	8	10	8	6	6	6	4	4	2	2	2	1	1	0
35	12	8	10	8	6	6	4	4	4	2	2	1	1	0	0
40	10	6	8	6	6	4	4	4	2	2	1	1	0	0	210
45	10	6	8	6	6	4	4	2	2	2	1	0	0	210	2/0
50.	10	6	8	6	4	4	2	2	2	1	0	0	$2 / 0$	210	$3 / 0$
55.	8	8	8	6	4	4	2	2	2	1	0	2/0	2/0	3/0	3/0
60.	8	6	6	6	4	2	2	2	1	0	0	2/0	3/0	3/0	4/0
65.	8	4	6	4	4	2	2	2	1	0	2/0	210	3/0	3/0	4/0
70.	8	4	6	4	4	2	2	1	1	0	2/0	3/0	3/0	4/0	4/0
75	6	4	6	4	2	2	2	1	0	2/0	$2 / 0$	3/0	4/0	410	
80.	6	4	6	4	2	2	1	1	0	210	3/0	3/0	410	4/0	.
85.	6	4	6	4	2	2	1	0	0	210	3/0	4/0	4/0		.
90	6	4	6	4	2	2	1	0	0	2/0	3/0	$4 / 0$	4/0		
95.	6	4	6	4	2	1	1	0	210	3/0	3/0	$4 / 0$	.	.	
100.	4	2	4	2	2	1	0	0	210	3/0	4\%	410		.	
125.	4	2	4	2	1	0	2/0	2/0	3/0	4/0	-		.		
150.	2	2	2	2	0	210	210	3/0	4/0	.					
175.	2	1	2	1	0	210	3/0	410	4/0		.				
200.	1	0	1	0	210	3/0	4/0	4/0	.	.					
225	0	0	0	0	210	3/0	4/0								
250	210	210	210	210	3/0	4/0	.				.				
275 ...	3/0	3/0	3/0	3/0	3/0	4/0		.		.		.			
300.	3/0	310	310	3/0	4/0			$\cdots$			-	-		.	
325.	4/0	4/0	4/0	4/0	.	.					.			.	

Table 17-5. Board Feet

Size of prece (inches)	Length of piece (feet)							
	10	12	14	16	118	20	22	24
2 by 4.	$62 / 3$	8	$91 / 3$	102/3	12	$131 / 3$	$14^{2 / 3}$	16
2 by 6.	10	12	14	16	18	20	22	24
2 by 8.	131/3	16	18\%	$21 / 3$	24	262/3	291/3	32
2 by 10.	16\%	20	$231 / 3$	262/3	30	$331 / 3$	362/3	40
2 by 12.	20	24	28	32	36	40	44	48
2 by 14	231/3	28	$32{ }^{2 / 3}$	$37^{1 / 3}$	42	$46^{2 / 3}$	$511 / 3$	56
2 by 16.	2643	32	$371 / 3$	$422 / 3$	48	531/3	$582 / 3$	64
3 by 8	15	18	21	24	27	30	33	36
3 by 8.	20	24	28	32	36	40	44	48
3 by 10.	25	30	35	40	45	50	55	60
3 by 12...... ..	30	36	42	48	54	60	66	72
3 by $14 .$.	35	42	49	56	63	70	77	84
3 by 16.	40	48	56	64	72	80	88	96
4 by 4	$13^{1 / 3}$	16	182/3	$21^{1 / 3}$	24	$262 / 3$	291/3	32
4 by 6 .	20	24	28	32	36	40	44	48
4 by 8	262/3	32	371/3	42\%3	48	$53^{1 / 3}$	581/3	64
4 by 10 .	$33^{1 / 3}$	40	$462 / 3$	$531 / 3$	60	$66 \%$	731/3	80
4 by 12	40	48	56	64	72	80	88	96
4 by 14.	46\%	56	651/3	$742 / 3$	84	931/3	102\%	112
4 by 16 .	531/3	64	74/3	851/3	96	1062/3	1171/	128
6 by 6.	30	36	42	48	54	60	66	72
6 by $8 .$.	40	48	56	64	72	80	88	96
6 by 10	50	60	70	80	90	100	110	120
6 by 12	60	72	84	96	108	120	132	144
6 by 14	70	84	98	112	126	140	154	168
6 by 16	80	98	112	128	144	160	176	192
6 by $18 .$.	90	108	126	144	162	180	198	216
6 by 20.. . . ...	100	120	140	160	180	200	220	240
8 by 8 .	531/3	64	74\%3	851/3	96	106\%	11713	128
8 by 10	$60^{2 / 3}$	80	$931 / 3$	$1062 / 3$	120	1331/3	146\%	160
8 by 12	80	96	112	128	144	160	176	192
8 by 14	$13^{1 / 3}$	112	1302/3	$1491 / 3$	168	186\%	2051/3	224
10 by 10	$83^{1 / 3}$	100	1162/3	$1331 / 3$	150	166\%/3	$1831 / 3$	200
10 by 12..... ..	100	120	140	160	180	200	220	240
10 by $14 .$.	116\%/3	140	$1631 / 3$	186\%	210	2331/3	256\%	280
10 by 16.	$133^{1 / 3}$	160	$1863 / 3$	$2131 / 3$	240	2662/3	2931/3	320
12 by 12.	120	144	168	192	216	240	264	288
12 by 14	140	168	196	224	252	280	308	336
12 by 16	160	192	224	256	288	320	352	384
14 by 14.......	1631/3	196	2282/3	2611/3	294	$3282 / 3$	3591/3	392
14 by 16. ${ }^{\text {a }}$......	186\%	224	2611/3	2984/3	336	3731/3	4102/s	448

Toble 17－6．Properties of Southern Pine 8eams

1	2	3	4
Nominol Size	Actuol＊size dressed S4S	Areo of section bd． A．Sq．Ins．	Weight per foot pounds
$2 \times 4$.	$15 \times 3$ 3	5.89	1.63
$4 \times 4$ ．	3音 $\times$ 3 ${ }^{\text {最 }}$	13.14	3.64
$2 \times 6$ ．	$15 \times 5$ 星	9.14	2.53
$3 \times 6$ ．	$2 \mathrm{z} \times 5{ }^{5}$	14.77	4.10
$4 \times 6$ ．	$3{ }^{\frac{5}{8} \times 5} \times$	20.39	5.65
$6 \times 6$	$5 \frac{5}{8} \times 5{ }^{5}$	31.64	8.76
$2 \times 8$.	$1{ }^{\frac{5}{8}} \times 7 \frac{1}{2}$	12.19	3.38
$3 \times 8$.	$22^{\frac{5}{6} \times 7 \frac{1}{2}}$	19.69	5.47
$4 \times 8$.	$3 \frac{5}{8} \times 7 \frac{1}{2}$	27.19	7.55
$6 \times 8$.	$5 \frac{5}{8} \times 7 \frac{1}{2}$	42.19	11.72
$8 \times 8$.	$7 \frac{1}{2} \times 7 \frac{1}{2}$	56.25	15.58
$2 \times 10$ ．	$1{ }^{\frac{5}{1} \times 9} \times$	15.44	4.28
$3 \times 10$ ．	$2{ }^{\frac{5}{8}} \times 9$ 91	24.94	6.93
$4 \times 10$ ．	$3 \frac{5}{8} \times 9 \frac{1}{2}$	34.44	9.57
$6 \times 10$ ．	$5 \frac{5}{8} \times 9 \frac{1}{2}$	53.44	14.84
$8 \times 10$ ．	$7 \frac{1}{2} \times 9 \frac{1}{2}$	71.25	19.74
$10 \times 10$ ．	$9 \frac{1}{2} \times 9 \frac{1}{2}$	90.25	25.00
$2 \times 12$ ．	$15 \times 11 \frac{1}{2}$	18.69	5.18
$3 \times 12$ ．	$2{ }^{\frac{5}{4} \times 11 \frac{1}{2}}$	30.19	8.39
$4 \times 12$ ．	$3 \frac{5}{8} \times 11 \frac{1}{2}$	41.69	11.58
$6 \times 12$.	$5{ }^{5} \times 11 \frac{1}{2}$	64.69	17.96
$8 \times 12$ ．	$7 \frac{1}{2} \times 11 \frac{1}{2}$	86.25	23.89
$10 \times 12$ ．	$9 \frac{1}{2} \times 11 \frac{1}{2}$	109.25	30.26
$12 \times 12$ ．	$11 \frac{1}{2} \times 11 \frac{1}{2}$	132.25	36.63
$2 \times 14$ ．	$1 \frac{5}{8} \times 13 \frac{1}{2}$	21.94	6.09
$3 \times 14$ ．	$2 \frac{5}{8} \times 13 \frac{1}{2}$	35.44	9.84
$4 \times 14$.	$3{ }^{\frac{5}{4} \times 13 \frac{1}{2}}$	48.94	13.59
$6 \times 14$.	$5 \frac{5}{8} \times 13 \frac{1}{2}$	75.94	21.09
$8 \times 14$ ．	$7 \frac{1}{2} \times 13 \frac{1}{2}$	101.25	28.05
$10 \times 14$.	$9 \frac{1}{2} \times 13 \frac{1}{2}$	128.25	35.53

Table 17-6. Praperties of Sauthern Pine 8eams - Cantinued

1	2	3	4
Naminal Size	Actual* size dressed S 4 S	Area of sectian bd. A. Sq. Ins.	Weight per foot paunds
$12 \times 14$.	$11 \frac{1}{2} \times 13 \frac{1}{2}$	155.25	43.00
$14 \times 14$.	$13 \frac{1}{2} \times 13 \frac{1}{2}$	182.25	50.48
$2 \times 16$	$1 \frac{5}{4} \times 15 \frac{1}{2}$	25.19	7.00
$3 \times 16$.	$2{ }_{2} \times 15 \frac{1}{2}$	40.69	11.30
$4 \times 16$.	$3{ }^{\frac{5}{8} \times 15 \frac{1}{2}}$	56.19	15.61
$6 \times 16$.	$5 \frac{5}{4} \times 15 \frac{1}{2}$	87.19	24.22
$8 \times 16$.	$7 \frac{1}{2} \times 15 \frac{1}{2}$	116.25	32.20
$10 \times 16$.	$9 \frac{1}{2} \times 15 \frac{1}{2}$	147.25	40.79
$12 \times 16$.	$11 \frac{1}{2} \times 15 \frac{1}{2}$	178.25	4937
$14 \times 16$	$13 \frac{1}{2} \times 15 \frac{1}{2}$	209.25	57.96
$16 \times 16$.	$15 \frac{1}{2} \times 15 \frac{1}{2}$	240.25	66.55
$2 \times 18$.	$1 \frac{3}{8} \times 17 \frac{1}{2}$	28.44	7.90
$3 \times 18$.	$22^{\frac{5}{8} \times 17 \frac{1}{2}}$	45.94	12.76
$4 \times 18$.	$3{ }^{\frac{5}{8}} \times 17 \frac{1}{2}$	63.44	17.62
$6 \times 18$.	$5{ }_{5}^{5} \times 17 \frac{1}{2}$	98.44	27.34
$8 \times 18$.	$7 \frac{1}{2} \times 17 \frac{1}{2}$	131.25	3636
$10 \times 18$.	$9 \frac{1}{2} \times 17 \frac{1}{2}$	166.25	46.05
$12 \times 18$.	$11 \frac{1}{2} \times 17 \frac{1}{2}$	201.25	55.75

"In some species $5 \frac{1}{2}$ " is the dressed size for nominol $6^{*}$ sizes in $6^{\prime \prime} \times 6^{\prime \prime}$ and larger.
b. Internatianal Lag Rule. A lag rule, ar scale, is marked at each inch with the number af baard feet which can be sawed fram lags if the lag is measured inside the bark at the small end. Many such rules have been devised, recagnized in the lumber industry, and used in variaus lacalities. The internatianal $\frac{1}{4}$-inch lag rule, which is based an $\frac{1}{d}$-inch saw kerfs, has been adapted by statute in same states and may eventually became the universal standard. In applying the rule, na interpalatian is made far diameters between inch marks, but scaling practice in same lacalities permits using the next higher inch far diameters with a fractian larger than $\frac{1}{2}$ inch; for example, a lag $23 \frac{3}{3}$ inches in diameter is scaled as 24 inches. The scale is given in table 17-7.

Toble 17-7. Log Scole (Boord Measure of Volume)

Diometer (inches)	Length of log in feet (boord meosure)						
	8	10	12	14	16	18	20
6.	10	10	15	15	20	25	25
7.	10	15	25	30	30	35	40
8.	15	20	25	35	40	45	50
9.	20	30	35	45	50	60	70
10.	30	35	45	55	65	75	85
11.	35	45	55	70	80	95	105
12.	45	55	70	85	95	110	125
13.	55	70	85	100	115	135	150
14.	65	80	100	115	135	155	175
15.	75	95	115	135	160	180	205
16.	85	110	130	155	180	205	235
17.	95	125	150	180	205	235	265
18.	110	140	170	200	230	265	300
19.	125	155	190	225	260	300	335
20.	135	175	210	250	290	330	370
21.	155	195	235	280	320	365	410
22.	170	215	260	305	355	405	455
23.	185	235	285	335	390	445	495
24.	205	255	310	370	425	485	545
25.	220	280	340	400	460	525	590
26.	240	305	370	435	500	570	640
27.	260	330	400	470	540	615	690
28.	280	355	430	510	585	665	745
29.	305	385	465	545	630	715	800
30.	325	410	495	585	675	765	860
31.	350	440	530	625	720	820	915
32.	375	470	570	670	770	875	980
33.	400	500	605	715	820	930	1045
34.	425	535	645	760	875	990	1110
35.	450	565	685	805	925	1050	1175
36.	475	600	725	855	980	1115	1245

Toble 17-7. Log Scole (8oord Meosure of Volume) - Continued

Diometer (inches)	Length of $\log$ in feet (boord meosure)						
	8	10	12	14	16	18	20
37.	505	635	770	905	1040	1175	1315
38.	535	670	810	955	1095	1245	1390
39.	565	710	855	1005	1155	1310	1465
40.	595	750	900	1060	1220	1380	1540
41.	625	785	950	1115	1280	1450	1620
42.	655	825	995	1170	1345	1525	1705
43.	690	870	1045	1230	1410	1600	1785
44.	725	910	1095	1290.	1480	1675	1870
45.	755	955	1150	1350	1550	1755	1960
46.	795	995	1200	1410	1620	1835	2050
47.	830	1040	1255	1475	1695	1915	2140
48.	865	1090	1310	1540	1770	2000	2235

## 17-5. NAILS AND FASTENERS

o. Noils ond Spikes. The sofe loterol lood for one noil or spike driven into the side groin of seosoned lumber so thot of leost two-thirds of the length of the noil is in the wood member holding the point is os follows (reduce lood 60 percent for noils in end groin ond 25 percent for unseosoned wood):
$900 \times D^{3 / 2}$ for white pine ond eostern hemlock
$1200 \times D^{3 / 2}$ for Douglos fir and southern yellow pine
$1700 \times D^{3 / 2}$ for ook, osh, ond hord mople
Where $D=$ diometer of noils, in inches. See tobles 17-8 and 17-9.

Toble 17-8. Noil and Spike Sizes

	Size	Length (inches)	Gage	Diameter (D) (inches)	D'/'
Nails	$\begin{aligned} & 3 \mathrm{~d} \\ & 4 \mathrm{~d} \\ & 6 \mathrm{~d} \\ & 8 \mathrm{~d} \\ & 10 \mathrm{~d} \\ & 16 \mathrm{~d} \\ & 20 \mathrm{~d} \\ & 30 \mathrm{~d} \\ & 40 \mathrm{~d} \\ & 60 \mathrm{~d} \end{aligned}$	$\begin{aligned} & 11 / 4^{\prime \prime} \\ & 11 / 2^{\prime \prime} \\ & 2^{\prime \prime} \\ & 21 / 2^{\prime \prime} \\ & 3^{\prime \prime} \\ & 31 / 2^{\prime \prime} \\ & 4^{\prime \prime} \\ & 41 / 2^{\prime \prime} \\ & 5^{\prime \prime} \\ & 6^{\prime \prime} \end{aligned}$	14   $121 / 2$   $111 / 2$   $101 / 4$   8   6   5   4 2	$\begin{array}{r} 0.0800 \\ .0985 \\ .1130 \\ .1314 \\ .1483 \\ .1620 \\ .1920 \\ .2070 \\ .2253 \\ .2625 \end{array}$	$\begin{array}{r} 0.0226 \\ .0309 \\ .0380 \\ .0476 \\ .0570 \\ .0652 \\ .0841 \\ .0942 \\ .1086 \\ .1347 \end{array}$
Spikes	$\begin{gathered} 7^{\prime \prime \prime} \\ 8^{\prime \prime} \\ 9^{\prime \prime} \\ 10^{\prime \prime} \\ 12^{\prime \prime} \end{gathered}$	$\begin{gathered} 7^{\prime \prime \prime} \\ 8^{\prime \prime} \\ 9^{\prime \prime} \\ 10^{\prime \prime} \\ 12^{\prime \prime} \end{gathered}$	$\begin{aligned} & 5 / 16^{\prime \prime} \\ & 38^{\prime \prime} \\ & \text { 3/8', } \\ & \text { 3/', } \\ & \text { 3/8', } \end{aligned}$		$\begin{array}{r} 0.1750 \\ .2295 \\ .2295 \\ .2295 \\ .2295 \end{array}$

Farmule to find approximate number af noils required.
Na. lbs (12d to 60 d , froming) $=\mathrm{d} / 6 \times$ bf/ 100
No. lbs ( 2 d to 12 d , shoothing $)=\mathrm{d} / 4 \times \mathrm{bf} / 100$
where $d=$ size of desired noil in pennies
bf = total board feet to be nailed
b. Wood Screws. The sofe loterol lood in pounds, for one wood screw driven into the side groin of seosoned lumber to o penetrotion of ot leost seven times its diometer into the member receiving the point is os follows (reduce lood 25 percent for end groin ond 25 percent for unseosoned wood):
$2100 \times D^{2}$ for white pine ond eastern hemlock
$2700 \times D^{2}$ for Douglos fir ond southern yellow pine $4000 \times D^{2}$ for ook, osh, ond hord mople
See toble 17-10.

Toble 17-9. Noil Types and Number Per Pound

5ize	Length, in	Common		Finishing		Flaoring	
		Goge	Na./lb	Goge	No./lb	Goge	No./lb
2d..	1	5	876	161/2	1,351		
3d.	11/4	14	568	$151 / 2$	807		
4d..	$11 / 2$	$12^{1 / 2}$	316	15	584		
5d..	$13 / 4$	$121 / 2$	271	15	500		
6d.	2	$11 \frac{1}{2}$	181	13	309	11	157
7d..	21/4	$11 \frac{1}{2}$	161	13	238	11	139
8d.	21/2	101/4	106	$121 / 2$	189	10	99
9 d.	$23^{3 / 4}$	101/4	96	121/2	172	10	90
10d.	3	9	69	$11 \frac{1}{2}$	121	9	69
12d.	$3^{1 / 4}$	9	63	$11 \frac{1}{2}$	113	8	54
16d.	$3^{1 / 2}$	8	49	11	90	7	43
20d.	4	6	31	10	61	6	31
30d.	$4^{1 / 2}$	5	24				
40d.	5	4	18				
50d.	$5^{1 / 2}$	3	15				
60d.	6	2	11				

Nate. 1. To ovaid splitting, noil diameters should not exceed aneseventh of the thickness of lumber to be noiled.
2. Goges are U.S. Steel Wire Goge. Froctionol goges are:
Goge.
$10^{1 / 4}$
101/2
$11 \frac{1 / 2}{2}$
$12 \frac{1}{2}$
$14^{1 / 2}$
$15^{1 / 2}$ $\begin{array}{lllllll}\text { Diameter, in. } 0.1314 & 0.1278 & 0.1130 & 0.0985 & 0.0760 & 0.0673\end{array}$
c. Lag Screws. The sofe laterol laad in paunds, far one lag screw driven into the side groin of seosoned lumber to o penetration of nine times the diometer into the member receiving the paint ond holding a cleat hoving o thickness of 3.5 times the screw diometer is as follows (reduce laod 35 percent far end grain and 25 percent for unseosoned woad):
$1500 \times D^{2}$ for white pine and eostern hemlock $1700 \times D^{2}$ for Douglos fir and sauthern cypress

Toble 17-10. Woad Screw Diameters

Size	Diameter-D Inches	$\begin{gathered} \mathrm{D}^{2} \\ \text { Inches }{ }^{2} \end{gathered}$
1/2 inch-Na. 4.	0.1105	0.0122
$3 / 4$ inch - Na. 8.	. 1631	0266
1 inch - No. 10.	. 1894	. 0359
$1{ }^{1 / 2}$ inch-Na. 12	2158	. 0466
2 inch - Na. 14.	. 2421	. 0586
21/2 inch-Na. 16.	. 2684	. 0720
3 inch - Na. 18.	. 2947	. 0868

$1900 \times D^{2}$ for sauthern yellaw pine and saft maple
$2200 \times D^{2}$ for aak, ash, and hard maple
Where $D=$ diameter of shank, in inches.
d. Driftpins.
(1) Descriptian. Driftpins are lang, heavy, threadless balts used to hold heavy pieces af timber tagether. The term "driftpin" is almast universally used in practice, but far supply purposes the carrect designation is "driftbolt". Driftpins may ar may nat have heods and vary in diameter from $\frac{1}{2}$ ta 1 inch, and in length from 18 ta 26 inches.
(2) Uses. To use the driftpins, a hale slightly smaller than the diameter of the pin is made in the timber. The pin is wiped with ail, driven inta the hole, and held in place by the compression actian of the wood fibers.

## 17-6. ROOFING

a. Intraduction. Raafing repoirs should be made in clear, mild weother, with the autside temperature nat below $50^{\circ}$ F. Repair minar damages by applying asphalt plastic flashing cement. Layer breaks are repoired by opening the horizantal seam below the break and inserting a strip of raafing.
b. Materials Required. Depending an the method used to repair a roof, the quantities and kinds of materiols vary.
(1) When 4 -inch strips af fabric and asphalt roaf caating are used, the quantity af coating far 100 square feet af raofing is $\frac{A}{5}$ gollan; 39 linear feet af strips are needed.
(2) When 6 -inch strips of raafing, asphalt plastic cement, and asphalt emulsian (clay type) are used, the follawing quantities per 100 square feet af raafing are used:

Asphalt plastic cement-6 paunds
Roofing strips - 39 linear feet
Asphalt emulsian-1 gallan
c. Other Raafing. For raafing and repair when asphalt shingles, metal raofing, waad shingles, slats, or tile are used, see TM 5-617.

## 17-7. CAMOUFLAGE

a. Principles.
(1) Siting. Careful selection af the pasitian far an emplacement af equipment is the mast impartant principle af camauflage. Emplocements and their artificial camouflage materials must be made to blend with their backgraund.
(2) Discipline. Avaid unnecessary mavement of personnel and vehicles and any other activity that would change the ariginal oppearance af the area and indicate yaur presence to enemy observers.
(3) Construction. Emplay natural and artificial construction and camouflage materials ta canceol the positian.
b. Materials.
(1) Natural. Natural materials generally pravide the best concealment and are always available. Natural materials include live vegetatian, cut vegetatian, debris, sail, and sa forth.
(2) Artificial material. Artificial materials include paints, supparting frames, garnishing materiols, structural materials, screening materials, adhesives, and texturing materials. See table 17-11 far expedient paints that can be made fram materials reodily available. FM 5-35 has mare detail an comauflage materials and manhour requirements involved.
c. Individual Camouflage. Make use af terrain and backgraund, adapt clothing to the terrain, and select a route during mavement that makes use af the cancealment available.
(1) Helmets. Break up the shape af helmets by using leaves ar twigs secured with a rubber band, making a caver of burlap, distorting with burlap garlands, or pointing apprapriate calors.

Toble 17-11. Expedient Points

Paint	Materials	Mixing	Calar	Finish
Na .1	Lacal earth, GI soap, water, soot, paraffin	Mix soot with paraffin; add ta salution of 8 gal water and $1 / 2$ lbs soap. Stir in earth	Dark gray	Flat, lusterless
Na. 2	Oil, graund clay, water, gasaline, earth	Mix 2 gal water with 1 gal ail and $1 / 2$ ta $1 / 4$ gal clay; add earth. Thin with gasoline ar water	Depends an earth calars available	Glassy an metal; atherwise dull
Na. 3	Oil, clay, GI saap, water, earth	Mix $11 / 2$ bars GI saop with 3 gal water; add 1 gal ail; stir in 1 gal clay. Add earth far calar	Depends on earth calars	Glassy an metal; dull an ather

NOTE. Conned milk or powdered eggs can be used to increose binding praperties of either issue or field-expedient points.
(2) Skın. Tone down all visible skin oreas with foce paint, burnt cork, lampblock, or chorcoal.
(3) Clothing. Clothing moy be toned down to blend with the bockground by use of comouflage points, or ottaching vegetotion to blend in with existing areo.
(4) Equipment. Remove shine from metal objects with mud or foce point. Any equipment which moy moke a noise should be muffled by padding.
d. Camoufloge of Equipment ond Emplocements.
(1) Avoid regulor geometric loyouts of the position of vehicles, weopons, ond supplies. Use noturol comoufloge material and supplement with artificiol materiols.
(2) Conceal the trocks mode by vehicles so thot terrain remoins the same.
(3) Eliminate shine on vehicles.
(4) Use shadows and insure that the silhouette of emplacements and equipment is broken, so that the general outline is not detectable.
(5) In urban areas, use shadows cast by buildings.
e. Garnishing of Camouflage Nets.
(1) Garnishing density. All nets should be garnished to a predetermined degree of density. Drape nets should be garnished 100 percent in the center portion of the net, thinning out to 65 percent toward the outer edges. This will result in a coverage of about 85 percent of the entire net area. Flattop nets should be garnished 100 percent in the center portion of the net, thinning out to 25 percent toward the outer edges. This will result in a coverage of about 65 percent of the entire net area. Begin the thin-out at about one-half the radius of the net. This must not be on an obrupt change in percentages, but rather a gradual thinning-out so as to achieve a smooth transition to the desired density at the outer portion of the net.
(2) Garnishing patterns. To provide for blending into a voriety of seasonal and geographic terrain characteristics, pregarnished twine nets are issued in two blends - the all seasonal and the desert. The color blend of a net is achieved by proportionately varying the garlands of the various colors required for o particular blend, and placing the garlands in the net as an overall mixture of colors. Long, straight runs, large areas, blocks of one color, or regularity of pattern in a net should be avoided. Generally, the gorlonds are inserted into the net in such a manner that each garland will describe one of the following letters: L, U, S, C, or 1 (fig. 17-1). This should result in an amalgamation of the letter pattern forming the desired degree of density and color blend.


Figure 17-1. Garnishing.
f. Calculatian of Net Size.
(1) Drape net.

$$
\begin{aligned}
& \text { Length }=2 H+L+5^{\prime} \\
& \text { Width }=2 H+W+5^{\prime}
\end{aligned}
$$

(2) Flat top net.

$$
\begin{aligned}
& \text { Length }=4(H+2)+L \\
& \text { Width }=4(H+2)+W
\end{aligned}
$$

$$
\text { Where: } \begin{gathered}
t=\text { length of object being camouflaged } \\
\\
W=\text { width of object } \\
H=\text { height of object }
\end{gathered}
$$

## 17-8. VEHICLE RECOVERY EXPEDIENTS

a. General. Normally proper vehicle operator training, operator experience, and comman sense can prevent most vehicles from becoming stuck or in a pasition where they cannot be used. In the toctical situation, vehicle loss cannot olways be prevented, due to enemy action or terrain which has to be maneuvered. For a complete coverage of all aspects of vehicle recovery see FM 20-22.
b. Field Expedient Vehicle Recovery. See figures 17-2, 17-3, 17-4, and 17-5.


Figure 17-2. Use af wheels for a winch.


Figure 17-3. Log used to anchor trocks.

figure 17-4. Simple lever.


Figure 17-5. Ancharing a wheel.

## 17-9. FIRE EXTINGUISHERS

a. Classes of Fires.
(1) Class $A$. These are fires in ardinary cambustible materials such as bedding, mattresses, dunnage, baaks, cloth, canvas, waad, and paper.
(2) Class 8 . These are fires which accur in flammable substances such as ga soline, jet fuel, and sa forth.
(3) Class $C$. These are live electrical fires.
(4) Class D. These are cambustible metal (magnesium, etc.) fires.
b. Carban Dioxide Extinguishers (fig. 17-6).
(1) Agent. This extinguisher uses $\mathrm{CO}_{2}$ as an agent. $\mathrm{CO}_{2}$ canverts to a liquid when under pressure, as it is while standing in an extinguisher.
(2) Inspection. Manthly inspection requires checking the wire and lead seal which halds the valve lacking pin ta see that it is nat braken and checking far physical damage to the extinguisher. Semiannuol inspectian requires that the extinguisher be weighed ta insure that the
extinguisher hos o full chorge. Rechorging is necessory if the weight is 10 percent deficient.
(3) Operotion and use. Ploce extinguisher in verticol position, remove horn from brocket holding horn by rubber or wooden hondle to prevent frost bite. Remove cocking pin from dischorge volve ond dischorge agent. $\mathrm{CO}_{2}$ extinguishers should be used on Closs B \& C fires.


Figure 17-6. Corbon dioxide extingursher.
c. Pump Type Woter Extinguishers (fig. 17-7).
(1) Agent. Woter extinguishers use water as an ogent. Care must be taken to prevent this extinguisher from freezing.
(2) Inspection. Inspection includes visual and actual operation every month. Semiannual inspection includes visual inspection. octual operation, and lubricating the plunger rod.
(3) Operation and use. To operate, point the nozzle toward the fire ond pump the water by operating the pump handle. DO NOT USE ON ELECTRICAL OR GASOLINE FIRES.


Figure 17-7. Pump type water extinguisher.
d. Sada-Acid Extinguishers (fig. 17-8).
(1) Agent. Sada-acid extinguishers use water as the extinguishing agent. When the extingursher is inverted, the sada and acid mix praducing a gas which expels the water.
(2) Inspection. Inspectian includes visual checking of the extinguisher and remaving cap ta check far acid, sada, and water. Annual inspectian requires discharge, cleaning, and recharging. Care must be taken ta prevent this extinguisher fram freezing.
(3) Operatian and use. Ta aperate, grasp the nazzle and invert the cantainer. The chemical reaction and pressure accur almast immediately after inverting the extinguisher. DO NOT USE ON ELECTRICAL OR GASOLINE FIRES.


ACID BOTTLE


Figure 17-8. Sada-acid extinguisher.
e. Foom Extinguishers (fig. 17-9).
(1) Agent. The foom type extinguisher is similor in size ond shope to the sodo-ocid type extinguisher, but the operotion consists of two ogents mixing, producing o gos which expels the foom.
(2) Inspection. Inspection visuol, removing cop to inspect ingredients.
(3) Operotion ond use. To operote, grosp nozzle ond invert contoiner.


Figure 17-9. Foom extinguisher.


Figure 17-10. $\mathrm{CF}_{3} 8 \mathrm{r}$ extinguisher.
f. Bromotrifluoromethone ( $\mathrm{CF}_{3} \mathrm{Br}$ ) Extinguishers (fig. 17-10).
(1) Agent. This extinguisher uses bromotrifluoromethone, commonly known os Freon 1301, o liquefied compressed gos, as the extinguishing ogent.
(2) Inspection. In addition to visual inspection, this extinguisher must be weighed semiannually on on occurote scole to determine leokoge. If weight is 10 percent or more deficient, rechorging is necessary.
(3) Operation ond use. Pull ring pin, point horn to bose of fire and depress trigger. Avoid breothing smoke ls especiolly sofe ond effective ogoinst closs $B$ and $C$ fires.
g. Dry Chemicol Extinguishers (fig. 17-11).
(1) Agent. These extinguishers use bicorbonote of sodo or potossium bicorbonote os the extinguishing ogent.
(2) Inspection. Check seoling wire ond seol, pressure goge, hose ond nozzle. Semionnuolly, weigh cortridge of nonpressurized extinguishers ond reploce if 10 percent or more below prescribed weight.
(3) Operotion ond use. Breok seoling wire, remove locking pin, depress operoting hondle ond direct ogent at base of fire.


Figure 17-11. Dry chemicol extinguisher.
h. Fire Extinguisher Use. See table 17-12.

Table 17-12. Fire Extinguisher Use

Type	Class A fire	Class B fire	Class C fire	Class D fire
$\mathrm{CD}_{2}$ Extinguisher...	Good	Excellent	Excellent	Good
Water Extinguisher.	Excellent	Do not use	Do not use	Do not use
Soda Acıd Extinguisher	Excellent	Do not use	Do not use	Do not use
Foam Extungusher.	Good	Excellent	Excellent	Do not use
Commercial Powders and Granular Materials.	Do not use	Do not use	Do not use	Good
CF, Br Extınguisher.	Do not use	Excellent	Excellent	Do not use
Dry Chemica! Extingulsher	Only with ABC powders.	Excellent	Excellent	Special powders.

## 17-10. TRIGONOMETRIC FUNCTIONS

o. Toble 17-13 gives the formulos for solving right and oblique triongles.

Table 17-13. Trigonometric Solutions of Triongles

b. Table 17-14 gives the natural triganametric functians.

Table 17-14. Natural Triganometric Functions

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Angle \& 5 n \& Cosee \& Ton \& Coton \& 5 ec \& Cos \& <br>
\hline $0{ }^{\circ}$ \& . 000 \& \& . 000 \& \& 1.000 \& 1.000 \& $90^{\circ}$ <br>
\hline 10 \& 017 \& 57.30 \& 017 \& 57.29 \& 1.000 \& 1.000 \& $89^{\circ}$ <br>
\hline ${ }^{\circ}$ \& . 035 \& 2865 \& . 035 \& 28.64 \& 1.001 \& 999 \& $88^{\circ}$ <br>
\hline $3^{\circ}$ \& . 052 \& 1911 \& . 052 \& 19.08 \& 1.001 \& 999 \& $88^{\circ}$ <br>
\hline $4^{\circ}$ \& 070 \& 14.34 \& . 070 \& 14.30 \& 1.002 \& 998 \& $86^{\circ}$ <br>
\hline $5{ }^{\circ}$ \& . 087 \& 11.47 \& . 087 \& 1143 \& 1.004 \& 996 \& $85^{\circ}$ <br>
\hline $6^{\circ}$ \& . 105 \& 9567 \& 105 \& 9.514 \& 1.006 \& . 995 \& $84^{\circ}$ <br>
\hline 70 \& . 122 \& 8.206 \& 123 \& 8.144 \& 1.008 \& . 993 \& $83^{\circ}$ <br>
\hline $8{ }^{\circ}$ \& . 139 \& 7.185 \& 141 \& 7115 \& 1.010 \& . 990 \& $82^{\circ}$ <br>
\hline $9{ }^{\circ}$ \& 156 \& 6392 \& 158 \& 6.314 \& 1.012 \& . 988 \& $81^{\circ}$ <br>
\hline $10^{\circ}$ \& 174 \& 5.759 \& 176 \& 5.671 \& 1.015 \& . 985 \& $80^{\circ}$ <br>
\hline $11^{\circ}$ \& . 191 \& 5.241 \& . 194 \& 5. 145 \& 1.019 \& . 982 \& $70^{\circ}$ <br>
\hline $12^{\circ}$ \& . 208 \& 4.810 \& . 213 \& 4.705 \& 1022 \& . 978 \& $78^{\circ}$ <br>
\hline $13^{\circ}$ \& . 225 \& 4.445 \& 231 \& 4.331 \& 1.026 \& . 974 \& $77^{\circ}$ <br>
\hline $14^{\circ}$ \& . 242 \& 4.138 \& 249 \& 4.011 \& 1.031 \& . 970 \& $76^{\circ}$ <br>
\hline $15^{\circ}$ \& . 259 \& 3.884 \& 268 \& 3732 \& 1.035 \& . 966 \& $75^{\circ}$ <br>
\hline $16^{\circ}$ \& . 276 \& 3628 \& . 287 \& 3487 \& 1.040 \& . 961 \& $74^{\circ}$ <br>
\hline $17^{\circ}$ \& . 292 \& 3.420 \& . 306 \& 3.271 \& 1.046 \& . 956 \& $73^{\circ}$ <br>
\hline $18^{\circ}$ \& . 309 \& 3.236 \& 325 \& 3.078 \& 1.051 \& . 951 \& $72^{\circ}$ <br>
\hline $19^{\circ}$ \& 326 \& 3.072 \& . 344 \& 2.904 \& 1.058 \& . 946 \& $71^{\circ}$ <br>
\hline $20^{\circ}$ \& 342 \& 2.924 \& . 364 \& 2.747 \& 1.064 \& . 940 \& $70^{\circ}$ <br>
\hline $21^{\circ}$ \& . 358 \& 2.790 \& . 384 \& 2605 \& 1.071 \& . 934 \& $69^{\circ}$ <br>
\hline $22^{\circ}$ \& 375 \& 2.669 \& . 404 \& 2475 \& 1.079 \& 927 \& $68^{\circ}$ <br>
\hline $23^{\circ}$ \& 391 \& 2559 \& . 424 \& 2.356 \& 1.086 \& . 921 \& $67^{\circ}$ <br>
\hline $24^{\circ}$ \& . 407 \& 2.459 \& 445 \& 2246 \& 1.095 \& 914 \& $66^{\circ}$ <br>
\hline $25^{\circ}$ \& . 423 \& 2.366 \& 466 \& 2.145 \& 1.103 \& 906 \& $65^{\circ}$ <br>
\hline $26^{\circ}$ \& 438 \& 2.281 \& . 488 \& 2.050 \& 1.113 \& . 899 \& $64^{\circ}$ <br>
\hline $27^{\circ}$ \& . 454 \& 2203 \& . 510 \& 1.963 \& 1.122 \& . 891 \& $63^{\circ}$ <br>
\hline $28^{28}$ \& 469 \& 2.130 \& . 532 \& 1.881 \& 1.133 \& 883 \& $62^{\circ}$ <br>
\hline $29^{\circ}$ \& . 485 \& 2.063 \& . 554 \& 1.804 \& 1.143 \& 875 \& $61^{\circ}$ <br>
\hline $20^{\circ}$ \& 500 \& 2.000 \& . 57 \& 1.732 \& 1.155 \& . 866 \& $60^{\circ}$ <br>
\hline $31{ }^{\circ}$ \& . 515 \& 1.942 \& . 601 \& 1.664 \& 1.167 \& . 857 \& $59^{\circ}$ <br>
\hline $32^{\circ}$ \& . 530 \& 1.887 \& . 625 \& 1.600 \& 1.179 \& 848 \& $58^{\circ}$ <br>
\hline 330 \& . 545 \& 1.836 \& . 649 \& 1.540 \& 1192 \& 839 \& $57^{\circ}$ <br>
\hline $35^{\circ}$

3 \& . 559 \& 1.788 \& . 675 \& 1.483 \& 1.206 \& 829 \& $56^{\circ}$ <br>
\hline 355 \& . 574 \& 1.743 \& . 727 \& 1.428 \& 1.221 \& . 819 \& $55^{\circ}$ <br>
\hline 360 \& . 588 \& 1.701 \& . 727 \& 1.376 \& 1.236 \& . 809 \& $54^{\circ}$ <br>
\hline ${ }^{37^{\circ}}$ \& . 602 \& 1.662 \& . 754 \& 1.327 \& 1.252 \& . 79 \& $53^{\circ}$ <br>
\hline $388^{\circ}$
300 \& .616 \& 1.624 \& . 71 \& 1.230 \& 1.269 \& 788 \& $52^{\circ}$ <br>
\hline $3{ }^{30}$ \& . 629 \& 1.589 \& . 810 \& 1.235 \& 1.287 \& 77 \& $51^{\circ}$ <br>
\hline $4{ }^{40}$ \& . 643 \& 1.556
1.524 \& . 8869 \& 1192
1.150 \& 1.305
1.325 \& . 768 \& $50^{\circ}$
$49^{\circ}$ <br>
\hline $42^{\circ}$ \& . 669 \& 1.494 \& . 900 \& 1.111 \& 1.346 \& . 743 \& $48^{\circ}$ <br>
\hline $43^{\circ}$ \& 682 \& 1.466 \& . 933 \& 1.072 \& 1.367 \& . 731 \& $40^{\circ}$ <br>
\hline $44^{\circ}$ \& 695 \& 1.440 \& . 966 \& 1.036 \& 1.390 \& . 719 \& $46^{\circ}$ <br>
\hline $45^{\circ}$ \& . 07 \& 1414 \& 1.000 \& 1000 \& 1.414 \& . 707 \& $45^{\circ}$ <br>
\hline \& Cos \& Soc \& Coton \& Ton \& Cosec \& 5 in \& Angle <br>
\hline
\end{tabular}

17-11. LENGTHS, AREAS, AND VOLUMES OF GEOMETRIC FIGURES
a. Legend.
$A=$ area
$h=$ height
$b=$ length of base
$c=$ hypotenuse
$C=$ circumference
$v=$ valume
$r=$ radius
$D=$ diameter
$\pi=3.1416$
$L=$ length of arc
$K=$ length of card
b. Farmulas.
(1) Any triangle:
$A=1 / 2 b h$
or: $\operatorname{Sin} \gamma=\frac{c \operatorname{Sin} \phi}{a}$

(2) Right triangle:
$a=\sqrt{c^{2}-b^{2}}$
$b=\sqrt{c^{2}-a^{2}}$
$c=\sqrt{o^{2}+b^{2}}$
(3) Circle:
$\mathrm{A}=\pi_{r}{ }^{2}$
$A=0.7854 D^{2}$
$C=\pi D$
(4) Segment of circle:
$\mathrm{A}=\frac{\pi r^{2}}{360}-\frac{r^{2} \sin \mathrm{a}}{2}$
$L=\frac{2 \pi r}{360} \times / 0$
o-angle In degrees

(5) Sectar of circle:

$$
A=\frac{r 1}{2}=\frac{\pi r^{2}}{360} \text { (angle in degrees) }
$$

(6) Regular polygons. The area of ony regular polygan (all sides equal, oll angles equal) is equal ta the praduct af the square of the lengths of ane side and the factars shawn in table 17-15. Example: Areo of o regulor actogan hoving 6 -inch sides is $6 \times 6 \times 4.828$, or 173.81 squore inches. See factars in table.

Table 17-15. Polygon Factars

Na. af sides	Foctar	No. af sides	Factor
3	0.433	8	4.828
4	1.000	9	6.182
5	1.720	10	7.694
6	2.598	11	9.366
7	3.634	12	11.196

(7) Rectangle and parallelagram:

$$
A=a b
$$


(8) Tropezoid.

$$
A=1 / 2 o\left(b_{1}+b_{2}\right)
$$


(9) Irregular figures. Meosure widths at offsets regularly spaced along any straight line, and apply one of the following:
(a) Tropezoidal rule. $A=$ one holf the interval between offsets $X$ (sum of two end widths plus twice the sum of the intermediote widths).
(b) Simpson's rule. (Assumes laterol boundaries are parobolic curves.) $A=$ one third the interval between offsets $\times$ sum of two end widths plus twice the sum of the odd widths, except first and last (3rd, 5 th, 7 th, etc.) plus 4 times the sum of the even widths ( $2 \mathrm{nd}, 4$ th, 6 th, etc.)

Note. The above rule required an odd number of widths. If there is an even number, compute separotely the area of a tropezoid at one end.
(10) Cube:

$$
v=b^{3}
$$


b

(12) Prism or cylinder:
$v=\mathbf{a} \times$ (area of base)

(13) Pyramid or cone: $V=(1 / 3) a X$ (area of base)

(14) Sphere:

$$
\begin{aligned}
& V=(4 / 3) \pi r^{3}=\frac{\pi D^{3}}{6} \\
& \mathrm{~A}=4 \pi r^{2}
\end{aligned}
$$


(15) Prismoidol section:
$V=$ one-sixth the length $X$ (sum of the end areas plus 4 times the midsection orea)

## 17-12. FUNCTIONS OF NUMBERS

Table 17-16 gives the most used functions of all whole numbers from 1 to 100.

Table 17-16. Functions of Numbers

No.	Square	Cube	Sq. root	Logorithm
1.	1	1	1.0000	0.00000
2.	4	8	1.4142	. 30103
3.	9	27	1.7321	. 47712
4.	16	64	2.0000	. 60206
5.	25	125	2.2361	. 69897
6.	36	216	2.4495	. 77815
7.	49	343	2.6458	. 84510
8.	64	512	2.8284	. 90309
9...	81	729	3.0000	. 95424
10..	100	1000	3.1623	1.00000
11..	121	1331	3.3166	1.04139
12.	144	1728	3.4641	1.07918
13.	169	2197	3.6056	1.11394
14.	196	2744	3.7417	1.14613
15..	225	3375	3.8730	1.17609

Toble 17-16. Functions of Numbers - Continued

No.	Squore	Cube	Sq. root	Logorithm
16.	256	4096	4.0000	1.20412
17.	289	4913	4.1231	1.23045
18.	324	5832	4.2426	1.25527
19.	361	6859	4.3589	1.27875
20.	400	8000	4.4721	1.30103
21.	441	9261	4.5826	1.32222
22.	484	10648	4.6904	1.34242
23.	529	12167	4.7958	1.36173
24.	576	13824	4.8990	1.38021
25.	625	15625	5.0000	1.39794
26.	676	17576	5.0990	1.41497
27.	729	19683	5.1962	1.43136
28.	784	21952	5.2915	1.44716
29.	841	24389	5.3852	1.46240
30.	900	27000	5.4772	1.47712
31.	961	29791	5.5678	1.49136
32.	1024	32768	5.6569	1.50515
33.	1089	35937	5.7446	1.51851
34.	1156	39304	5.8310	1.53148
35.	1225	42875	5.9161	1.54407
36.	1296	46656	6.0000	1.55630
37.	1369	50653	6.0828	1.56820
38.	1444	54872	6.1644	1.57978
39.	1521	59319	6.2450	1.59106
40.	1600	64000	6.3246	1.60206
41.	1681	68921	6.4031	1.61278
42.	1764	74088	6.4807	1.62325
43.	1849	79507	6.5574	1.63347
44.	1936	85184	6.6332	1.64345
45.	2025	91125	6.7082	1.65321

Table 17-16. Functions of Numbers - Continued

No.	Squore	Cube	Sq. root	Logorithm
46.	2116	97336	6.7823	1.66276
47.	2209	103823	6.8557	1.67210
48.	2304	110592	6.9282	1.68124
49.	2401	117649	7.0000	1.69020
50.	2500	125000	7.0711	1.69897
51.	2601	132651	7.1414	1.70757
52.	2704	140608	7.2111	1.71600
53.	2809	148877	7.2801	1.72428
54.	2916	157464	7.3485	1.73239
55.	3025	166375	7.4162	1.74036
56.	3136	175616	7.4833	1.74819
57.	3249	185193	7.5498	175587
58.	3364	195112	7.6158	1.76343
59.	3481	205379	7.6811	1.77085
60.	3600	216000	7.7460	1.77815
61.	3721	226981	7.8102	178533
62.	3844	238328	7.8740	1.79239
63.	3969	250047	7.9373	179934
64.	4096	262144	8.0000	1.80618
65.	4225	274625	8.0623	1.81291
66.	4356	287496	8.1240	1.81954
67.	4489	300763	8.1854	1.82607
68.	4624	314432	8.2462	183251
69.	4761	328509	8.3066	1.83885
70.	4900	343000	8.3666	1.84510
71.	5041	357911	8.4261	1.85126
72.	5184	373248	8.4853	1.85733
73.	5329	389017	85440	1.86332
74.	5476	405224	8.6023	1.86923
75.	5625	421875	8.6603	1.87506

494
Table 17-16. Functions of Numbers-Continued

No.	Square	Cube	Sq. root	Logarithm
76.	5776	438976	8.7178	1.88081
77.	5929	456533	8.7750	1.88649
78	6084	474552	8.8318	1.89209
79	6241	493039	8.8882	1.89763
80.	6400	512000	8.9443	1.90309
81.	6561	531441	9.0000	1.90849
82.	6724	551368	9.0554	1.91381
83.	6889	571787	9.1104	1.91908
84.	7056	592704	9.1652	1.92428
85.	7225	614125	9.2195	1.92942
86.	7396	636056	9.2736	1.93450
87.	7569	658503	9.3274	1.93952
88.	7744	681472	9.3808	1.94448
89.	7921	704969	9.4340	1.94939
90.	8100	729000	9.4868	1.95424
91.	8281	753571	9.5394	1.95904
92.	8464	778688	9.5917	1.96379
93.	8649	804357	9.6437	1.96848
94.	8836	830584	9.6954	1.97313
95.	9025	857375	9.7468	1.97772
96.	9216	884736	9.7980	1.98227
97.	9409	912673	9.8489	1.98677
98.	9604	941192	9.8995	1.99123
99.	9801	970299	9.9499	1.99564
100.	10000	1000000	10.0000	2.00000

17-13. TROOP MOVEMENT FACTORS
a. Rates of March. See table 17-17.

Table 17-17. Rates and Lengths of Marches ${ }^{1}$

Unit	Average Rates of March (KMPH) ${ }^{2}$				Days March Kilo meters
	On Roads		Cross-country		
	Day	Night	Day	Nıght	
Foot troops...............	4	3.2	2.4	1.6	20-32
Trucks, general.	40	40 (lights)   16 (blackout)	12	8	280
Tracked vehicles.	24	24 (lights)   16 (blackout)	16	8	240
Truck-drawn artillery....	40	40 (lights)   16 (blackout)	12	8	280
Tractor-drawn artillery...	32	32 (lights)   16 (blackout)	16	8	240

'This table is far general planning and comparison purposes. All rates given are variable in accordance with the movement conditions as determined by reconnaissance.
${ }^{2}$ These rates include normal periodic rest halts.
b. March Formulas. See table 17-18.

Table 17-18. March Formulas and Factars

## Metric Conversian Foctors

Kilometers (Km) -
Miles (mi)
To convert kilometers to miles:
Multiply the number of kilom-
eters by the foctor .62
$\mathrm{Mi}=\mathrm{Nr}$ of $\mathrm{Km} \times .62$
To convert miles to kilometers:
Multiply the number of miles by the foctor 1.6
$\mathrm{Km}=\mathrm{Nr}$ of $\mathrm{mi} \times 1.6$

Meters (M) - Yards (yds)
To convert meters to yords:
Multiply the number af meters by the foctor 1.1
$\mathrm{Yds}=\mathrm{Nr}$ of $\mathrm{M} \times 1.1$
Ta convert yards to meters:
Multiply the number af yords by the foctor .91
$M=\mathrm{Nr}$ of $\mathrm{yds} \times .91$

Far Time Distance (TD):
Divide the distance (kilometers) by the rote of morch (kilometers per haur).
TD (hours) - $\frac{D \text { (Kilameters) }}{R(\text { Kilometers per hour) }}$
To convert fractionol parts of on hour to minutes, multiply the fractional port by 60

For Time Length (TL) of Foat Calumn:
Multiply raad spoce (RS) of the column by factor far rate af march.
$\mathrm{TL}($ minutes $)=(\mathrm{RS} \times$ factor $)$
Select factor from toble below

Rote (kmph)	Foctor
4.0	.0150
3.2	.0187
2.4	.0250
1.6	.0375

For Rood Space (RS) of Foot Troops:
Multiply number of men by factor for farmotion ond add the total distance of the intervals between units.
RS (meters) $=(\mathbf{N r}$ of men $\times$ factor $)+$ distances
Select factor fram toble below

Formation	2 M Man	5 M Mon
Single File	2.4	5.4
Calumn of Two's	1.2	2.7

Far Time Length (TL) Vehicles (Open Column):
Multiply number af vehicles by foctor far formotion and rote af morch ond add time intervols (TI) between units.
TL (minutes) $=(\mathrm{Nr}$ af vehicles $\times$ factor $)+\mathrm{TI}$ 's
Select factar from toble belaw

Rote (kmph)	$\frac{M / V_{\text {eh }}}{}$	Factar
16	100	.3750
24	100	.2500
32	100	.1875
40	100	.1500
48	100	.1250

Far Time Length (TL) af Motors (Clase Calumn):
Multiply number of vehicles by 12 and add the time intervals (TI) between units.
$\mathrm{TL}($ minutes $)=(\mathrm{Nr}$ of vehicles $\times .12)+\mathrm{TI}$ s
Far Completion Time (CT):
Add TL of calumn, TD from IP ta RP, and ony scheduled holts other than normal breoks, ta the IP time.
CT $=$ IP time + TL + TD + Scheduled Holts
Example:

le: Hr	Min	
07	45	IP time (clock time)
01	12	TL of calumn ( 1 hr 12 min )
05	55	TD (IP to RP, 5 hrs 55 min )
01	00	Meol holt (ane haur)
$C T=14$	112	1552

The move will be completed at 1552 haurs.
For Raod Space (RS) af vehicles:
Multiply the TL (minutes) by the rate in kilometers per haur ond divide by 60 .
RS (kilameters) =

$$
\frac{\mathrm{TL}(\mathrm{~min}) \times R \text { (Kilameters per hour) }}{\delta 0 \text { (minutes/haur) }}
$$

## 17-14. TIME DISTANCE CONVERSION

See table 17-19.
Table 17-19. Time Distance Conversion

Miles   per   hour	Knots	Feet   per   second	Kilometers   per   hour	Meters   per   second
1	0.8684	1.4667	1.609	0.447
2	1.74	2.93	3.22	0.894
3	2.61	4.40	4.83	1.34
4	3.47	5.87	6.44	1.79
5	4.34	7.33	8.05	2.24
6	5.21	8.80	9.66	2.68
7	6.08	10.27	11.27	3.13
8	6.95	11.73	12.87	3.58
9	7.82	13.20	14.48	4.02
10	8.68	14.67	16.09	4.47
11	9.55	16.13	17.70	4.92
12	10.42	17.60	19.31	5.36
13	11.29	19.07	20.92	5.81
14	12.16	20.53	22.53	6.26
15	13.03	22.00	24.14	6.71
16	13.89	23.47	25.75	7.15
17	14.76	24.93	27.36	7.60
18	15.63	26.40	28.97	8.05
19	16.50	27.87	30.58	8.49
20	17.37	29.33	32.19	8.94
21	18.24	30.80	33.80	9.39
22	19.10	32.27	35.41	9.83
23	19.97	33.73	37.02	10.28
24	20.84	35.20	38.62	10.73
25	21.71	36.67	40.23	11.18
26	22.58	38.13	41.84	11.62
27	23.45	39.60	43.45	12.07
28	24.32	41.07	45.06	12.52
29	25.18	42.53	46.67	12.96
30	26.05	44.00	48.28	13.41
31	26.92	45.47	49.89	13.86
32	27.79	46.93	51.50	14.31
33	28.66	48.40	53.11	14.75
34	29.53	49.87	54.72	15.20
35	30.39	51.33	56.33	15.65

Table 17-19-Continued

Miles per hour	Knots	Feet per second	$\begin{aligned} & \text { Kilometers } \\ & \text { per } \\ & \text { hour } \end{aligned}$	Meters per second
36	31.26	52.80	57.94	16.09
37	32.13	54.27	59.55	16.54
38	33.00	55.73	61.16	16.99
39	33.87	57.20	62.76	17.43
40	34.74	58.67	64.37	17.88
41	35.60	60.13	65.98	18.33
42	36.47	61.60	67.59	18.78
43	37.34	63.07	69.20	19.22
44	38.21	64.53	70.81	19.67
45	39.08	66.00	72.42	20.12
46	39.95	67.47	74.03	20.56
47	40.81	68.93	75.64	21.01
48	41.68	70.40	77.25	21.46
49	42.55	71.87	78.86	21.90
50	43.42	73.33	80.47	22.35
51	44.29	74.80	82.08	22.80
52	45.16	76.27	83.69	23.25
53	46.03	77.73	85.30	23.69
54	46.89	79.20	86.90	24.14
55	47.76	80.67	88.51	24.59
56	48.63	82.13	90.12	25.03
57	49.50	83.60	91.73	25.48
58	50.37	85.07	93.34	25.93
59	51.24	86.53	94.95	26.38
60	52.10	88.00	96.56	26.82
61	52.97	89.47	98.17	27.27
62	53.84	90.93	99.78	27.72
63	54.71	92.40	101.39	28.16
64	55.58	93.87	103.00	28.61
65	56.45	95.33	104.61	29.06
66	57.31	96.80	106.22	29.50
67	58.18	98.27	107.83	29.95
68	59.05	99.73	109.44	30.40
69	59.92	101.20	111.05	30.85
70	60.79	102.67	112.65	31.29

## Table 17-19 - Continued

Miles   per   hour	Knots	Feer   per   second	Kilometers   per   hour	Meters   per   second
71	61.66	104.13	114.26	31.74
72	62.52	105.60	115.87	32.19
73	63.39	107.07	117.48	32.63
74	64.26	108.53	119.09	33.08
75	65.13	110.00	120.70	33.53
100	86.84	146.67	160.94	44.70

## 17-15. CONVERSION FACTORS

See table 17-20.
Toble 17-20. Conversion Factors


Toble 17-20. Conversion Foctors - Continued

Multiply	by	to obtoin
Bt.u. per min.	0.02356	horse-power
Br.u. per min	0.01757	kilowotrs.
B.t.u. per min	17.57	watts
Bt.u. per sq. ft per min.	01220	wotts per squore inch
bushels.	1.244	cubic feet.
bushels.	2,150	cubic inches.
bushels.	003524	cubic meters.
bushels.	4	pecks
bushels.	64	pints (dry).
bushels.	32	quarts (dry).
Centares........... ...................	1	square meters.
centigrams...	0101	grams.
centiliters.	0.01	liters.
centımeters	0.3937	inches.
centimeters.	001	meters.
centimeters	393.7	mils.
centimeters ........ . ...........	10	millimeters
centimeters-dynes.... .. ... .....	$1020 \times 10^{-3}$	centimeter-grams
centimeter dynes	$1020 \times 10^{-8}$	meter-kilagroms.
centimeter-dynes.	$7.376 \times 10^{-8}$	pound-feet
centimeter-grams..	980.7	centimeter-dynes.
centimeter-grams.......	$10^{-5}$	meter-kilograms.
centimeter-groms. . . . . . . . . . . . .	$7.233 \times 10^{-5}$	pound•feet.
centimeters of mercury......	001316	otmospheres.
centimeters of mercury ..........	0.4461	feet of water.
centimeters of mercury	136.0	kgs per square meter
centimeters of mercury.. . .........	27.85	pounds per sq foot.
centimeters of mercury..... ........	0.1934 1969	pounds per sq inch feet per minute.
centimeters per second...........	003281	feet per second
ceñimeters per second...	0.036	kilometers per hour.
cemtimeters per second.. . .......	06	meters per minute
centimeters per secand	0.02237	miles per hour
centimeters per second.... .. ......	$\begin{gathered} 3.728 \times 10^{-4} \\ 003281 \end{gathered}$	miles per minute
crns. per sec. per sec....... .... .... cms. per sec. per sec.	$0.036$	feet per sec. per. sec.
cms per sec. per sec.......	0.02237	miles per hour per sec.
circular mils ....	$5067 \times 10^{-6}$	square centimeters.
circulor mils... .... ............... ..	$7.854 \times 10^{-7}$	square inches.
circulor mils...	0.7854	squore mils.

Table 17-20. Conversion Factors-Continued

Multiply	by	ta abtain
cord-feet.	4 ft . $\times 4 \mathrm{ft} \times 1 \mathrm{ft}$.	cubic feet.
cords.	$8 \mathrm{ft} . \times 4 \mathrm{ft} \times 4 \mathrm{ft}$.	cubic feet.
cubic centimeters.	$3.531 \times 10^{-5}$	cubic feet
cubic centimeters.	$6102 \times 10^{-2}$	cubic inches.
cubic centimeters.	$10^{-6}$	cubic meters.
cubic centimeters.	$1.308 \times 10^{-6}$	cubic yards
cubic centimeters	$2.642 \times 10^{-4}$	galions.
cubic centimeters.	$10^{-3}$	liters
cubci centimeters.	$2.113 \times 10^{-3}$	pints (liq.)
cubic centimeters.	$1.057 \times 10^{-3}$	quarts (liq)
cubic feet.	$2832 \times 10^{4}$	cubic cms.
cubic leet.	1,728	cubic inches.
cubic feet.	002832	cubic meters.
cubic feet	0.03704	cubic yards.
cubic feet	7.481	gallons.
cubic feet.	28.32	liters.
cubic feet.	59.84	pints (liq.)
cubic feet.	29.92	quarts (liq).
cubic feet per minute...	472.0	cubic cms. per sec.
cubic feet per minute..	0.1247	gallans per.sec.
cubic feet per minute..	0.4720	liters per second.
cubic feet per minute.	624	lbs. of water per min.
cubic inches	16.39	cubic centimeters.
cubic inches.	$5.787 \times 10^{-4}$	cubic feet.
cubic inches.	$1.639 \times 10^{-5}$	cubic meters.
cubic inches.	$2.143 \times 10^{-5}$	cubic yards.
cubic inches..	$4.329 \times 10^{-3}$	gallons.
cubic inches.	$1.639 \times 10^{-2}$	liters
cubic inches..	0.03463	pints (liq.).
cubic inches.	0.01732	quarts (liq.).
cubic meters.	$10^{6}$	cubic centimeters.
cubic meters........................	3531	cubic feet.
cubic meters.	61,023	cubic inches
cubic meters..	1.308	cubic yards.
cubic meters...	2642	gallans.
cubic meters.................... ....	$10^{3}$	liters
cubic meters	2113	pints (liq).
cubic meters..	1057	quarts (liq).
cubic yards.	$7.646 \times 10^{5}$	cubic centimeters.
cubic yards......	27	cubic feet.

Table 17-20. Conversion Factors-Continued

Multiply	by	ta abtain
cubic yords.. .......... . . . . . . . . . .	46,656	cubic inches.
cubic yards..	07646	cubic meters
cubic yards..	2020	gollons.
cubic yords.	764.6	liters.
cubic yords..	1616	pints (liq.).
cubic yords.	807.9	quorts (liq.)
cubic yords per minute	0.45	cubic feet per second.
cubic yords per minute.	3367	gallans per secand.
cubic yords per minute .	12.74	liters per secand
Doys.	24	hours.
days....	1440	minutes
days......	86,400	secands
decıgroms..	01	groms.
deciliters.. ..... . ...... . .. .......	0.1	liters.
decimeters.	01	meters
degrees (ongle)........ .. .... ....	60	minutes
degrees (angle) . .......... . ...	001745	radions.
degrees (ongle). ...... ............	3600	seconds.
degrees per secand... . .........	001745	rodians per second
degrees per second..... ....... ..	0.1667	revalutions per mın.
degrees per second...... ... . ..	0.002778	revalutions per sec
dekagroms ............ ........... .	10	groms.
dekaliters. . ....... . ... . .......	10	liters
dekometers.	10	meters.
drams..... ................. . ........	1.772	groms.
droms.	0.0625	ounces.
dynes................. . ........... ..	$1020 \times 10^{-3}$	grams.
dynes.............. .. ......... ..	$7233 \times 10^{-5}$	poundals.
dynes.... .................. ..........	$2.248 \times 10^{-6}$	pounds.
Ergs....................... .........	$9.486 \times 10^{-11}$	British thermal units.
Fothams feet $\qquad$	$\begin{gathered} 6 \\ 3048 \end{gathered}$	feet. centimeters.
feet	12	inches
feer	0.3048	meters.
feer.	. 36	voros
feet.	$\frac{1}{3}$	yards.
feet af woter ....................	0.4335	pounds per sq. inch.
feet per minute..... .. ........... ..	0.5080	centimeters per sec.
feet per minute..	0.01667	feet per secand.
feet per minute............... .. ....	0.01829	kilameters per haur

## Table 17-20. Conversion Factors - Continued

Multiply	by	to obtoin
feet per minute	03048	meters per minute
feet per minute	0.01136	miles per hour
feet per second.	30.4 B	centımeters per sec
feet per second.	1.097	kilometers per hour.
feet per second	05921	knots per hour
feet per second ...... .. .........	18.29	meters per minute
feet per second..... . . . . ... ....	0.6818	miles per hour
feet per second. .. . ..... ...	0.01136	miles per minute.
feet per 100 feet.	1	per cent grode
feet per sec. per sec..	30.4B	cms per sec per sec.
feet per sec per sec..	1.097	kms. per hr per sec
feet per sec. per sec........ ......	0304 B	meters per sec per sec.
feet per sec. per sec. ...........	06818	miles per hr. per sec
foot-pounds.	$1286 \times 10^{-3}$	British thermol units.
foot-pounds	$1.356 \times 10^{7}$	ergs.
foot-pounds.	$5.050 \times 10^{-7}$	horse-power-hours.
foot-pounds.	1.356	poules
foot-pounds.	$3.241 \times 10^{-4}$	kilogrom-colories.
foot pounds.	013 B 3	kılogrom-meters.
foot-pounds.	$3766 \times 10^{-7}$	kilowott-hours
foot-pounds per minute	$1.2 \mathrm{~B} 6 \times 10^{-3}$	B t. units per minute.
foot pounds per minute.	0.01667	foot-pounds per sec
foot-pounds per minute. . ..........	$3030 \times 10^{-7}$	horse-power.
foot-pounds per minute.	$3241 \times 10^{-4}$	kg-colories per mın.
foot-pounds per minute.	$2260 \times 10^{-5}$	kılowotts.
foot-pounds per second	$7.717 \times 10^{-2}$	Bt. units per minute.
foot-pounds per second.............	$1.818 \times 10^{-3}$	horse-power.
foot-pounds per second	$1.945 \times 10^{-2}$	kg-colories per min
foot-pounds per second. . .... ....	$1.356 \times 10^{-3}$	kılowotts
furlongs............. ..... .. .....	40	rods.
Gollons.	3785	cubic centimeters
gollons.	0.1337	cubic feet
goltons..	231	cubic inches.
gollons.	$3.785 \times 10^{-3}$	cubic meters
golions.. . ... . .. ..... ... .....	$4.951 \times 10^{-3}$	cubic yords
gollons......... .. .. . ..............	3.7 B 5	liters.
gollons....... ......... ... .........	8	pints (liq).
gollons.... . . .. . . . . . . . ..	4	quorts (liq.).
gollons per minute.	$2.22 \mathrm{~B} \times 10^{-3}$	cubic feet per second.

## Toble 17-20. Conversion Factors - Continued

Multiply	by	to obtain
gallons per minute....... ...........	0.06308	liters per second.
gills.	0.1183	liters.
gills.	0.25	pints (liq.).
grains (troy). . . . . . . . . . . . . . . . .	1	graıns (av.).
grains (troy).	0.06480	grams
grains (troy).	0.04167	pennyweights (troy).
grams........ .................. ..	980.7	dynes.
grams	15.43	grains (troy).
grams.	$10^{-3}$	kilograms
grams.	$10^{3}$	milligrams.
grams.	0.03527	ounces.
grams.	0.03215	ounces (tray).
grams.	0.07093	poundals.
grams.	$2.205 \times 10^{-3}$	pounds.
gram-calories	$3.968 \times 10^{-3}$	8rıish thermal units.
gram-centimeters.	$9.302 \times 10^{-3}$	Brıish thermal units.
gram-centimeters.	980.7	ergs.
gram-centimeters.	$7.233 \times 10^{-3}$	foot-pounds.
gram-centimeters	$9.807 \times 10^{-5}$	joules.
gram.centimeters.	$2344 \times 10^{-8}$	kilogram-calories.
gram.centimeters.	$10^{-5}$	kilogram-meters.
grams per cm....	$5.600 \times 10^{-3}$	pounds per inch.
grams per cu. cm.	6243	pounds per cubic foor.
grams per cu. cm........... .... ....	$\begin{gathered} 0.03613 \\ 3.405 \times 10^{-7} \end{gathered}$	pounds per cubic inch. pounds per mil-foot.
grams per cu. cm...................	$3.405 \times 10^{-7}$	pounds per mil-foot.
Hectares.	2.471	acres.
hectares.	$1.076 \times 10^{5}$	square feet
hectograms	100	grams.
hectoliters	100	liters.
hectometer	100	meters.
hectowatts..	100	watts.
hemispheres (sol. angle). .........	0.5	sphere.
hemispheres (sol. angle). ..........	4	spherical right angles.
hemispheres (sal. angle)............	6.283	steradions.
harse-power............. . ..........	$42.44$	8.t. units per min.
harse-pawer. horse-power.	$\begin{gathered} 33,000 \\ 550 \end{gathered}$	foot-pounds per min foot-pounds per sec.
horse-power.. .. ...................... . .	1.014	horse.power (metric).
harse-power............. . .........	1070	kg.-calories per mın

Table 17-20. Conversion Foctors - Continued

Multiply	by	to obtain
harse-power.	0.7457	kilowotts.
horse-power.	745.7	wotts.
horse-power (boiler).	33,520	8.14 per hour.
harse-pawer (boiler).	9.804	kilowatts.
horse-power-hours.	2547	British thermol units
horse-power-hours.	$1.9 \mathrm{~B} \times 10^{6}$	foot-pounds.
horse-power-hours..	$2684 \times 10^{6}$	joules.
horse-power-hours..	641.7	kılogram-calories.
harse-pawer-haurs..	$2.737 \times 10^{5}$	kılogram-meters.
horse-power hours.	0.7457	kilowott haurs.
hours.	60	minutes.
haurs.	3600	seconds.
Inches...... .. ............ .... .....	2.540	centimeters.
inches....... ... .. ....... ...........	$10^{3}$	mils.
inches.	. 03	voras.
inches af mercury	0.03342	atmospheres.
inches af mercury......	1.133	feet af woter.
inches of mercury...	3453	kgs per squore meter.
inches of mercury..................	70.73	pounds per square ft.
inches af mercury.................	0.4912	pounds per square in.
inches of water	0002458	otmospheres
inches of water.	007355	inches of mercury.
inches of woter	25.40	kgs per squore meter.
inches of woter.	0.5781	aunces per square in
inches of water inches of water	$\begin{gathered} 5.204 \\ 0.03613 \end{gathered}$	paunds per squore ft. pounds per square in
Joules................................	$9486 \times 10^{-4}$	British thermol units.
poules..	$10^{7}$	ergs.
joules.	0.7376	foot-pounds.
joules..	$2.390 \times 10^{-4}$	kilogram-calories.
jaules.	0.1020	kilagrom.meters
joules.	$277 \mathrm{~B} \times 10^{-4}$	watt-hours.
Kilagroms.................... .... ....	980,665	dynes.
kilograms.	$10^{3}$	grams.
kilagrams...	70.93	poundols.
kilogroms...............................	2.2046	pounds
kilogroms....	$1102 \times 10^{-3}$	tans (short)
kılogram-calories	3.968	8 ritish thermol units.

Table 17-20. Conversion Factors - Continued

Multiply	by	to abtoin
kılagram-colories.	3088	foat-paunds.
kilagram-calories	$1.588 \times 10^{-3}$	horse-pawer-haurs.
kilagram-calaries.	4183	joules.
kilagram-calories...... ..	426.6	kilagram-meters
kilagram-calories......... . .. ..	$1.162 \times 10^{-3}$	kilowott-haurs.
kg.-colories per min......	51.43	foat-paunds per sec
kg.-colaries per mın.	0.09351	harse-pawer
kg.-colories per min	0.06972	kilawatts.
kg.-cms. squared.......... . .......	$2.373 \times 10^{-3}$	pounds-feet squared.
kgs.-cms. squared.	0.3417	pounds-inches squored.
kilagrom-meters	$9.302 \times 10^{-3}$	8 ritish thermal units
kilagram-meters	$9.807 \times 10^{7}$	ergs.
kilogrom-meters.	7233	faot-paunds
kilagram-meters.	9.807	jaules.
kilogram-meters.	$2.344 \times 10^{-3}$	kilagrom-colaries
kılagrom-meters.	$2.724 \times 10^{-6}$	kilawort-haurs.
kgs. per cubic meter.	$10^{-3}$	groms per cubic cm.
kgs. per cubic meter.	0.06243	paunds per cubic faat
kgs. per cubic meter..	$3.613 \times 10^{-5}$	pounds per cubic inch.
kgs. per cubic meter.	$3.405 \times 10^{-10}$	paunds per mil. faat.
kgs. per meter.	0.6720	paunds per foot.
kgs. per squore meter..............	$9.678 \times 10^{-5}$	oimaspheres.
kgs. per square meter..............	98.07	bors.
kgs. per square meter...............	$3.281 \times 10^{-3}$	feet of woter.
kgs. per square meter............	$2.896 \times 10^{-3}$	inches af mercury.
kgs. per square meter........ ....	0.2048	paunds per squore ft
kgs. per square meter.............	$1.422 \times 10^{-3}$	paunds per squore in.
kgs. per sq. millimerer............	$10^{6}$	kgs. per squore meter.
kilolines.	$10^{3}$	moxwells.
kilaliters.	$10^{3}$	liters
kilameters	$10^{5}$	centimeters.
kilameters.	3281	feet.
kilameter	$10^{3}$	meters.
kilameters	06214	miles.
kilameters.	10936	yords
kilameters per haur..... ...... . ...	2778	centimeters per sec.
kilameters per hour.	54.68	feet per minute.
kilameters per hour.	0.9113	feet per secand.
kilameters per hour............ ...	05396	knats per haur.
kilameters per haur..	16.67	meters per minute.

## Table 17-20. Conversion Factors-Continued

Multiply	by	to obtoin
kilometers per hour..................	0.6214	miles per hour.
kms. per hour per sec.	27.78	cms per sec. persec.
kms per hour per sec	0.9113	$f$ f. per sec. per sec.
kms. per hour per sec	0.2778	meters per sec. per sec.
kms. per. hour per sec....... .....	0.6214	miles per hr per sec.
kilometers per min.... .............	60	kilometers per hour.
kilowotts	56.92	$\mathrm{B} \dagger$ units per min.
kilowotts.	$4.425 \times 10^{4}$	foot-pounds per min.
kilowotts	737.6	foot-pounds per sec
kilowotts.	1.341	horse-power
kilowotts..	14.34	kg . colories per min.
kılowotts....	$10^{3}$	wotts
kilowott-hours.	3415	British thermol units
kilowott-hours	$2.655 \times 10^{6}$	foot-pounds.
kilowott-hours.	1.341	horse-power-hours.
kılowott-hours..	$3.6 \times 10^{6}$	joules.
kilowott-hours..	860.5	kilogrom-colories.
kilowott-hours..	$3.671 \times 10^{5}$	kilogrom-meters
knots.	51.48	centimeters per sec
knots.	1.689	feet per second.
knots	1.853	kılometers per hour.
knots.	1152	miles per hour
Links (engineer's)....................	12	inches
links (surveyor's)......... ..... .. ..	7.92	inches.
liters.	$10^{3}$	cubic centımeters
liters.	0.03531	cubic feet.
liters.	61.02	cubic inches.
liter	$10^{-3}$	cubic meters.
liters.	$1.308 \times 10^{-3}$	cubic yords.
liters	0.2642	gollons.
liters.	2.113	pints (liq.).
liters.	1.057	quorts (liq.).
liters per minute.....................	$5.885 \times 10^{-4}$	cubic feet per second.
liters per minute.	$4.403 \times 10^{-3}$	gollons per second.
$\log _{10}$ N................... ... .........	2303	$\log \boldsymbol{\epsilon} N$ or $\ln N$.
$\log \epsilon \mathrm{N}$ or $\ln \mathrm{N} . . . \ldots . . . . . . . . .$.	0.4343	$\log _{10} N$.
lumens per sq. f.......... .....	1	foot-condles.

## Table 17-20. Conversion Factors - Continued

Multiply	by	to obtoin
Meters.	100	centimeters.
meters	32808	feet.
meters.	39.37	inches.
meters.	$10^{-3}$	kilometers.
meters	$10^{3}$	millimeters.
meters.	10936	yords
meter-kilogroms. ............ . ....	$9.807 \times 10^{7}$	centimeter-dynes
meter-kilogroms.	$10^{5}$	centımeter-groms
meter-kilogroms.	7.233	pound-feet.
meters per minute.	1.667	centimeters per sec
meters per minute.	3281	feet per minute.
meters per minute.. ...... .. .. ...	0.05468	feet per second.
meters per minute.	0.06	kilometers per hour.
meters per minute...... ....	0.03728	mıles per hour
meters per second...... .	196.8	feet per minute
meters per second	3.281	feet per second
meters per second. . ..............	36	kılometers per hour.
meters per second.....................	0.06	kilometers per mın.
meters per second.	2.237	miles per hour.
meters per second........... ....	0.03728	miles per mınute.
meters per sec. per sec..............	3.281	feet per sec per sec.
meters per sec. per sec.............	3.6	kms per hour per sec.
meters per sec per sec .............	2.237	miles per hour per sec
microns.	$10^{-6}$	meters.
miles.	$1.609 \times 10^{5}$	centimeters.
miles.	5280	feet
miles......................... . . . .	1.6093	kilometers
miles......... .......................	1760	yords
miles	1900.8	voros.
miles per hour...........................	4470	centimeters per sec.
miles per hour	88	feet per minute.
miles per hour.........................	1467	feet per second.
miles per hour.	1.6093	kilometers per hour.
miles per hour.	0.8684	knots per hour.
miles per hour... ........... . . ......	2682	meters per minute
miles per hour per sec.... .. ......	4470	cms. per sec. per sec.
miles per hour per sec...............	1.467	feet per sec per sec
miles per hour per sec.	16093	kms. per hour per sec.
mıles per hour per sec.	0.4470	$M$ per sec. per sec
miles per minute.....	2682	centımeters per sec.

## Table 17-20. Canversion Factors - Continued

Multiply	by	to obroin
miles per minute .. .... ............	88	feet per second.
miles per minute .. ..................	16093	kilometers per mın.
miles per minute....................	0.8684	knots per minute.
miles per minute.....................	60	miles per hour
milliers......... ... .... .	$10^{3}$	kılogroms.
milligroms	$10^{-3}$	groms
mılliliters.. ............................	$10^{-3}$	liters
millimeters.	0.1	centimeters.
millimeters.	0.03937	inches.
millimeters	3937	mils.
mils	0002540	centımeters.
mils..... ....... ... ......... ........	$10^{-3}$	inches.
miner's inches..	15	cubic feet per min.
minutes (ongle).....................	$2909 \times 10^{-4}$	rodions
minutes (ongle)........................	60	seconds (ongle).
months.....	30.42	doys.
months	730	hours.
months.	43,800	minutes.
months........... .... .... ........	$2628 \times 10^{6}$	seconds
myriograms	10	kilogroms.
myriometers.. ... ......... ... ......	10	kilometers.
myrıowotts ..... . ........ ... ......	10	kilowotts
Nouticol miles	6,080	feer.
noutical miles.	1.853	kilometers.
noutical miles.	1.152	miles.
nouticol miles....	2027	yords
Ounces.. ........ . ..................	8	droms.
ounces..............................	437.5	groins
ounces...............................	28.35	groms
ounces... ..... ......................	00625	pounds.
ounces (fluid)............ .... . . ...	1.805	cubic inches.
ounces (fluid). .......................	0.02957	liters.
ounces (troy)................ ... ... .	480	groins (troy).
ounces (troy)... ............ .........	31.10	groms.
ounces (troy) . .....................	20	pennyweights (troy).
ounces (troy)........ ................	008333	pounds (troy).
ounces per squore inch... .. ......	0.0625	pounds per sq inch.

Toble 17-20. Conversion Foctors - Continued

Multiply	by	ta obtoin
Pennyweights (troy)............ .....	24	groins (troy)
pennyweights (troy). .......... . ..	1.555	groms.
pennyweights (troy).... ..........	0.05	aunces (tray).
perches (mosonry)..... .............	24.75	cubic feet.
pints (dry).	33.60	cubic inches
pints (liq.).	28.87	cubic inches.
poundals	13,826	dynes.
poundals.	1410	groms.
poundols.	0.03108	pounds.
pounds.	444,823	dynes.
pounds..... ...... .................	7000	groins.
pounds.	453.6	groms.
pounds.	16	ounces.
paunds...	3217	poundals
pounds (troy)...... . ..... .........	0.8229	pounds (ov).
pound-feet.............. ..............	$1.356 \times 10^{7}$	centimeter-dynes.
paund-feet.	13.825	centimeter-groms.
paund-feet.	0.1383	meter-kilograms
paund-feet squored....... ......	421.3	kgs.-cms. squored.
pounds-feet squared.	144	pounds-ins. squored.
paunds-inches squared.	2.926	$\mathrm{kgs.-cms}$ squored.
paunds-inches squared....	$6.945 \times 10^{-}$	pounds-feet squored.
pounds of woter	$27.68$	cubic inches.
pounds of woter.	0.1198	gollons
pounds of woter per min.	$2.669 \times 10^{-4}$	cubic feet per sec.
pounds per cubic foot........ ....	0.01602	groms per cubic cm.
pounds per cubic foot...............	16.02	kgs per cubic meter.
pounds per cubic foot..............	$5.787 \times 10^{-4}$	pounds per cubic inch.
pounds per cubic fool ...............	$5456 \times 10^{-9}$	pounds per mil foot.
pounds per cubic inch.. ..... .....	$\begin{gathered} 27.68 \\ 2.768 \times 10^{4} \end{gathered}$	pounds per cubic cm .
pounds per cubic inch.. ........ .... pounds per cubic inch..	$\begin{gathered} 2.768 \times 10^{4} \\ 1728 \end{gathered}$	kgs. per cubic meter. pounds per cubic foot
pounds per cubic inch.. ..............	$9.425 \times 10^{-6}$	pounds per mil foot.
pounds per foot........... ..........	1488	kgs. per meter.
pounds per inch..	1786	groms per cm.
pounds per mil faot.	$2.306 \times 10^{16}$	groms per cubic cm.
pounds per square foot...	001602	feet of woter.
pounds per square foot.	4.882	kgs. per squore meter.
paunds per square foot...	$6.944 \times 10^{-3}$	pounds per sq. inch.
pounds per square inch..	0.06804	otmospheres

Table 17-20. Conversion Foctors-Continued

Multiply	by	to obrain
paunds per square inch...... .. ..	2.307	feet of woter
paunds per squore inch.	2036	inches of mercury.
paunds per square inch.	703.1	kgs. per square meter.
pounds per squore inch............	144	pounds per sq. faat.
Quodrants (angle)............... ..	90	degrees
quodrants (angle)............. .. ...	5400	minutes.
quodrants (ongle).	1.571	radians.
quorts (dry)..	67.20	cubic inches.
quorts (liq).	57.75	cubic inches.
quintols...	100	pounds.
quires..	25	sheets.
Radians	57.30	degrees.
radians	3438	minutes.
radions	0637	quadronts.
radions per secand	5730	degrees per secand.
rodions per secand.	01592	revolutions per sec
rodions per secand.	9.549	revolutions per min
radians per sec per sec. .........	573.0	revs. per min per min
radians per sec per sec.............	9.549	revs. per min. per sec.
radions per sec per sec.	01592	revs. per sec per sec
reams...	500	sheets.
revalutians	360	degrees.
revalutians	4	quodronts
revalutians..	6.283	rodions.
revolutions per minute...............	6	degrees per secand.
revalutians per minute.	0.1047	radians per secand
revolutions per minute ...... .......	0.01667	revalutions per sec.
revs. per min per min .. ... ......	$1745 \times 10^{-3}$	rods per sec per sec
revs. per mın. per mın ....... ..	001667	revs per min per sec
revs per min per min	$2.778 \times 10^{-4}$	revs. per sec. per sec.
revolutians per secand.	360	degrees per secand
revalutians per secand	6283	radians per sécond.
revalutians per secand.	60	revs per minute.
revs. per sec. per sec... ..	6283	rads per sec. per sec.
revs. per sec. per sec.	3600	revs per min. per min
revs. per sec. per sec.............	60	revs per min. per sec
rads....	16.5	feet.
Secands (ongle)... ............... ..	$4.848 \times 10^{-6}$	rodians
spheres (salid ongle)..	12.57	steradians.

Toble 17-20. Conversion Factors - Continued

Multiply	by	ta abtain
spherical right angles... ...........	0.25	hemispheres
spherical right angles .. .. ......	0125	spheres.
spherical right angles... . ....	1.571	steradians.
square centımeters. . ...	$1.973 \times 10^{5}$	circular mils
square centımeters ..	$1076 \times 10^{-3}$	square feet.
square centimeters	01550	square inches.
square centimeters	$10^{-6}$	square meters
square centimeters..	100	square millımeters.
square feet. ....... ...	$2.296 \times 10^{-5}$	acres.
square feet..	9290	square centimeters.
square feet	144	square inches.
square feet.	0.09290	square meters
square feet .. ..................... ...	$3.587 \times 10^{-8}$	square miles.
square feet........... ....... ........	1296	square varas.
square feet.................. .. ..	1/9	square yards
sq. feet-feet sqd.	$2.074 \times 10^{4}$	sq. inches-inches sqd.
square inches.	$1.273 \times 10^{6}$	circular mils.
square inches	$\begin{gathered} 6.452 \\ 6.944 \times 10^{-3} \end{gathered}$	square centimeters. square feet
square inches	$\frac{6.944 \times 10^{6}}{10}$	square feet. square mils.
square inches.	645.2	square millimeters.
sq. inches-inches sqd...	41.62	sq. cms.-cms. sqd.
sq. inches-inches sqd	$4.823 \times 10^{-5}$	sq. feet-feet sqd.
square kilometers.	247.1	acres.
square kilometers........... ... ..	$10.76 \times 10^{8}$	square feet
square kilometers........... .. .....	$10^{6}$	square meters
square kilometers....... ... .......	0.3861	square miles
square kilometers.... . . .... ......	$1.196 \times 10^{8}$	square yards.
square meters..	$2.471 \times 10^{-4}$	acres.
square meters	10.764	square feet
square meters...	$3.861 \times 10^{-7}$	square miles
square meters........	1196	square yards.
square miles...	640 ${ }^{67.88 \times 10^{8}}$	acres.
square miles ............ . .........	$\begin{gathered} 27.88 \times 10^{8} \\ 2590 \end{gathered}$	square feet.
square miles   square miles.	$\begin{gathered} 2590 \\ 3,613,040.45 \end{gathered}$	square kilameters. square varas.
square miles. .......... ...........	$3.098 \times 10^{6}$	square yards.
square millimeters...... . ......	$1.973 \times 10^{3}$	circular mils.
square millimeters	0.01	square centimeters.

Table 17-20. Conversion Factors-Continued

Multiply	by	to obtain
square millimeters	$1.550 \times 10^{-3}$	square inches.
square mils	1273	circular mils
square mils	$6.452 \times 10^{-6}$	square centmeters.
square mils.	$10^{-6}$	square inches
square voros................ . . .. ..	. 0001771	acres.
square varas	7.716049	square feet.
square varas	. 0000002765	square miles.
square varas.	857339	square yords
square yards.	$2.066 \times 10^{-4}$	acres.
square yards.	9	square feet.
square yards.	0.8361	square meters
square yords...................... ..	$3228 \times 10^{-7}$	square miles
square yords.	1.1664	square voras
steradians..	0.1592	hemispheres
steradians.	0.07958	spheres
steradians.	06366	spherical right angles
steres...	$10^{3}$	liters.
Temp. (degs. $C$ ) +273	18	abs. temp. (degs. C.).
temp. (degs. C.) $+178 . .$. ...   temp. (degs. F.) +460	1.8	temp. (degs Fahr.). abs. temp (degs. F.)
temp (degs. F.) -32.	5/9	temp. (degs. Cent.).
tons (long)..	1016	kilograms.
tons (long)	2240	pounds
tons (metric).	$10^{3}$	kilograms
tans (metric).	2205	pounds
tans (short).	907.2	kilagrams
tons (short).	2000	pounds.
tpas (short) per sq. ft	9765	kgs per squore meter
tons (short) per sq. ft.	1389	pounds per sq. inch.
tons (short) per sq. in...............	$1.406 \times 10^{5}$	kgs. per square meter.
tons (short) per sq. in .... ....... ..	2000	pounds per sq inch.
Varas..... ............. ... . .........	2.7777	feet
varas	333333	inches
varas	000526	miles.
varas.	9259	yords.

Table 17-20. Conversion Foctors - Continued

Multiply	by	ta abroin
Watts   watts.   watts   watts   wotts   wotts.   wotts.   wott-haurs.   watt-haurs. $\qquad$   watthaurs. $\qquad$   watt hours   watt haurs.   watt-haurs.   webers.   weeks.   weeks.   weeks.   Yords   yards.   yords   yords   yords.   years (common).   years (common)   years (leap).   yeors (leap)	0.05692 $10^{7}$ 44.26 0.7376 $1.341 \times 10^{-3}$ 001434 $10^{2}$ 3.415 2655 $1341 \times 10^{-3}$ 0.8605 367.1 $10^{-3}$ $10^{8}$ 168 10,080 604,800 91.44 3 36 0.9144 1.08 365 8760 366 8784	B.t. units per min. ergs per secand. faat-paunds per min faat-paunds per sec. harse-pawer kg.-colaries per min. kilowatts.   British thermol units. faat-paunds. harse-pawer hours. kilagram-colaries kilagram-meters. kilowott-haurs. moxwells. haurs. minutes. seconds   centimeters. feet inches meters voras doys. haurs. doys haurs.

## 17-16. CONSTRUCTION DRAWING SYMBOLS

See figure 17-12.
EATH,
CDRNER

Figure 17-12. Construction drawing symbols.

DOOR SYMBOLS


DOUBLE DOOR. OPENING OUT


SINGLE DOOR, OPENING OUT


SLIDING DOORS


SINGLE DOOR, OPENING IN


SINGLE DOOR


DOUBLE DOOR


WINDOW SYMBOLS


DOUBLE HUNG


DOUBLE.
 OPENING OUT

SINGLE, OPENING IN


RIGHT SASH OVER LEFT


PIVOTED AND VENTED
LEFT SASH OVER RIGHT

Figure 17-12-Continued.


Figure 17-12-Continued.

## SECTION



	, 为	\%
EARTH	SAND	LIOUDS

EARTH, ETC.

Figure 17-12 - Continued.

Table 17-21. Conversion-English Metric Systems
LENGTH


Example: 2 inches $=5.08 \mathrm{~cm}$

## 17-17. CONVERSION-ENGLISH UNITS TO METRIC UNITS

See table 17-21.
Table 17-21-Continued

One unit (belaw)   $f$ Equals	mm	cm	meters	km
mm (millimaters)	1.	0.1	0.001	$0.000,001$
cm (centimetars)	10.	1.	0.01	$0.000,01$
metors	$1,000$.	100.	1.	0.001
km (kilomaters)	$1,000,000$.	$100,000$.	$1,000$.	1.


One unit (below)   1 Equols	gm	kg	metric ton
gm (gram)   kg (kilograms)   metric ton	1.000.	0.001	$0.000,001$

owits of centimeters

tm	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.10
Ind	0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.31	0.35	0.39

fractions of an inch

Inch	$1 / 16$	$1 / 6$	$3 / 16$	$1 / 4$	$5 / 16$	$3 / 8$	$1 / 16$	$1 / 2$
cm	0.16	0.32	0.48	0.64	0.79	0.95	1.11	1.27
Inch	$9 / 16$	$1 / 6$	$11 / 16$	$3 / 4$	$13 / 16$	$7 / 8$	$15 / 16$	1
cm	1.43	1.59	1.75	1.91	2.06	2.22	2.38	2.54

Table 17-21-Continued
WEIGHT ${ }^{1}$

ounces   groms   pounds kg short ton ${ }^{2}$ metric ton ${ }^{3}$	- groms					
	$\longrightarrow$ ounces					
				ilogrom		
			pounds			
		metric				
		ton				
	$\rightarrow$ short					
	$\rightarrow$ ton					
	1	$\dagger$	$\dagger$	$\checkmark$	1	
1	1.10	0.91	2.20	0.45	0.04	28.4
2	2.20	1.81	4.41	0.91	0.07	56.7
3	3.31	2.72	6.61	1.36	0.11	85.0
4	4.41	3.63	8.82	1.81	0.14	113.4
5	5.51	4.54	11.02	2.67	0.18	141.8
6	6.61	5.44	13.23	2.72	0.21	170.1
7	7.72	6.35	15.43	3.18	0.25	198.4
8	8.82	7.26	17.04	3.63	0.28	226.8
9	9.92	8.16	19.84	4.08	0.32	255.2
10	11.02	9.07	22.05	4.54	0.35	283.5
16	17.63	14.51	35.27	7.25	0.56	453.6
[20-	22.05	18.14	44.09	-9.07	0.71	567.0
30	33.07	27.22	66.14	13.61	1.06	850.5
40	44.09	36.29	88.18	18.14	1.41	1134.0
50	55.12	45.36	110.23	22.68	1.76	1417.5
60	66.14	54.43	132.18	27.22	2.12	1701.0
70	77.16	63.50	154.32	31.75	2.47	1984.5
80	88.18	72.57	176.37	36.29	2.82	2268.0
90	99.21	81.65	198.42	40.82	3.17	2551.5
100	110.20	90.72	220.46	45.36	3.53	2835.0

Exomple: Convert 28 pounds to kg
28 pounds $=\mathbf{2 0}$ pounds +8 pounds
From the tobles: 20 pounds $=9.07 \mathrm{~kg}$ and 8 pounds $=3.63 \mathrm{~kg}$
Therefore, 28 pounds $=9.07 \mathrm{~kg}+3.63 \mathrm{~kg}=12.70 \mathrm{~kg}$
${ }^{1}$ The weights usad for the English system ore avoirdupais (common) weights.
${ }^{2}$ The short ton is 2000 . pounds.
${ }^{3}$ The metric ton is $1000 . \mathrm{kg}$.

VOLUME


Exomple: $3 \mathrm{cu} . \mathrm{yd}=81.0 \mathrm{ar} \mathrm{ft}$
Volume: The cubic meter is the only common dimension used for meosuring the volume of sollds in the metric ystan.

## 17-18. CHARACTERISTICS OF INFANTRY WEAPONS

See table 17-22.

Table 17-22. Characteristics of

Weopan	Unlooded weight (appraximate in pounds)	Type of feed	Methad of operotion	*Cyclic (C) or moximum (M) rate af fire (rds per min)
Hond Grenodes Frogmentation M26A2 Grenade   M26A1   WP Grenode M34	1   1   $1 \frac{1}{2}$		Electrical impoct fuse 4-5 secand time delay fuse	
Mine Antipersonnel M18A1 Cloymore	3.5		Controlled electric detonation or uncantralled trip wire aperotian	One Shor
Pistol Automotic Col. 45, M1911A1	21	7 Rd Magazine	Recail semioutamotic	35-42 (M)
Submochine Gun, Col. 45, M3A1	9	30 Rd Magozine	Blaw back autamotic	450 (C)

Infantry Weapans

*Sustaned rate af fire (rds per min)	*Maximum effective rate of fire (rds per min)	*Maximum range (in meters)	*Maximum effective range (in meters)	Remarks
		$\begin{aligned} & 40 \\ & 40 \\ & 35 \end{aligned}$		The M26AI and M34 may be fired as rifle grenades with prajectian M1A2 adapter. The M26A2 will nat be used as a rifle grenade with the prajectian odapter. Appraximate effective bursting radii in meters are: M26A1-15, M26A2-15, M34-25
	One Shat Weapan	250	Mast effective range is 50 meters	Check FM 23-33 far back-blast effects. When emplayed in uncantralled rale Claymare must be treated as a mine and its lacatian recarded and reparted Directianal fragmentatian $-60^{\circ}$ sectar with radius af 50 meters.
		1500	50	
40-60	40-60	1550	100	Used as an-vehicle equipment. Replaced by M14 rifle and MIGAI rifles.



Infantry Weapons-Continued

*Sustained rate of fire (rds per min)	*Maximum effective rate of fire (rds per min)	*Maximum range (in meters)	*Maximum effective range (in meters)	Remorks
40-60	40-60	2025	250	Replaced by M14 rifle. May be equipped with sniper-scape infrared set Na 1, 20,000 Valts Lis.
40 for first twa minutes (semioutamatic)	60 for first minutes (outomatic)	3725	460	Full autamatic capability requires installation af selectar. Sustained rate based on limited tests. Bipad is a majar item and used in canjunctian with rifle when used as an autamatic rifle.
Same as for M-14 rifle	Same os for $\mathrm{M}-14$ rffe	3725	700 (semiautamatıc) 460 (autamatic)	Essentially same characteristics os M-14. Major difference lies in modified straight line stack with pistal grip.
45-65 (semiautamatic) 150-200 (autamatic)	20-40 (semiautamatic) 40-60 (autamatic)	2653	460	Installed selector with chaice of semıautamatic ar autamatic fire. Bipad issued with the rifle.
8-10	16-24	3200	460	Replaced by M-14 Rifle.

Table 17-22. Charocteristics of

Weapan	Unloaded weight (appraximate in paunds)	Type af feed	Methad af operatian	*Cyclic (C) or maximum ( M ) rate of fire (rds per min)
US Rifle, Cal. 30 MI , with rifle grenade launcher, M7A3, heat rifle grenade M31 amd sight M15	$10 \frac{1}{2}$	Manual	Manual single shat	4 (M)
US Rifle, 7.62 mm , M14 with Rifle Grenade Launcher M76. Heat Rifle Grenade, M31 and Sight M15	$10 \frac{1}{2}$	Manual	Manual Single Shat	4 (M)
Brawning Autamatic Rifle Cal. 30   M1918A2	1912	20 Rd Magazine	Gas Operated Automatic	350 (C) Slaw   Rate   550 (C) Fast   Rate   120-150 (M)
Machinegun 7.62 mm , M60	23	Belt   Metallic   Split   Link	Gas Operated Autamatic	550 (C)

## Infantry Weapons-Continued

*Sustained rate of fire (rds per min)	*Maximum effective rate of fire (rds per min)	*Maximum ronge (in meters)	*Maximum effective range (in meters)	Remarks
4	2	275	115	Complete Raund weighs appraximately $1 \frac{1}{2}$ pounds.
4	2	275	115	Grenade Launcher and M15 sight, weight appraximately 1 lb Complete raund weighs approximately $1 \frac{1}{2} \mathrm{lb}$.
40-60	$\begin{aligned} & \text { 40-60 (2 ar } 3 \\ & \text { Raund Bursts) } \\ & 120-150(20 \\ & \text { Raund Bursts) } \end{aligned}$	2750-3200	460	Replaced by M14A1 ar M16A1 rifles.
100	200	3725	1100	Moximum effective ronge limited by gunner's obility to see and adjust an target.

Table 17-22. Characteristics of

Weapan	Unlaaded weight (approximote in paunds)	Type of feed	Method of aperation	*Cyclic (C) ar moximum ( $M$ ) rate af fire (rds per min)
Machinegun, Cal. 50 HB, M2	MG -82   Tripod -44   Tatal -126	Belt   Metalic Split Link	Recal Semi-autamatic and Automatic	450-500
66 mm Heat Racket, M72 (Law)	4.7 (Racke $\dagger$ and Launcher Cambined)			Single shot throwaway
Portoble Flame-Thrawer, M2A1-7	421 $\frac{1}{2}$	Fuel Prapelled by Gas Under Pressure	Manual	Continuous dischorge 6-9 seconds
Portoble Flamethrawer, ABC, M9-7	25	Fuel Prapelled by Gos under Pressure	Manual	Continuaus dischorge 5-8 seconds
Self-Prapelled Flamethrower M132A-1	Approximate 21700	Fuel Propelled by Gos Pressure	Electrical	Continuous dischorge 32 seconds

## Infantry Weapans - Continued

*Sustained rote af fire (rds per min)	*Maximum effective rate of fire (rds per min)	*Maximum range (in meters)	*Maximum effective range (in meters)	Remorks
40	100	6800	725 AA   Target, 1825 Graund Target	
		1000	200	Launcher is disposable after firing racket and is baresighted during monufacture. Frant sight graduated to 325 meters The M72 is issued as ammunition.
Continuaus discharge 6-9 secands	Cantinuous discharge 6-9 secands	20-30 Unthickened Fuel 40-50 Thıck. ened Fuel	55	Cantains $4 \frac{1}{2}-4 \frac{3}{4}$ gallans of fuel weighing 25 ta 29 paunds. To be replaced by $\mathrm{M} 9-7$ flame. thrower.
Cantinuaus discharge 5-8 seconds	Continuaus discharge 5-8 seconds	20-30 Unthickened Fuel; 40-50 Thickened Fuel		Contains 4 gallons of fuel.
Cantinuaus discharge 32 seconds	Cantinuous discharge 32 secands	150-170	150-170	Contains 200 gallons af thickened fuel.

Table 17-22. Characteristics of

Weapon	Unlaaded weight (approximate in pounds)	Type of feed	Method of aperation	*Cyclic (C) or moximum (M) rate of fire (rds per min)
Irritant Gas Dispenser, Partoble M-3	Appraximate 40	Agent Propelled by Gas Pressure	Manual	Continuous discharge 25 seconds
40 mm Grenade Launcher M79	6	Percussion   Type   Single Shat		
81 mm Martar, M29 with Mount, M23A2	Barrel 28   8 ipad 40   Sight 4   8aseplate 25.5	Muzzle Looding by Hand	Drop Fire	12 (M) for 2 minutes with ony charge
4.2 Martar, M30 with Mount, M24A1	640	Muzzle Laading by Hond	Drap fire	18 (M) for 1 minute 5 per minute for next 9 minutes
Shotgun 12 Goge Riot Type	$7 \frac{1}{2}$	5 Rd. tub. mag.	Monual (pump handle) oir cooled	

[^14]Infantry Weapons - Continued

*Sustained   rote of fire   (rds per min)	*Maximum   effective   rote of fire   (rds per min)	*Moximum   ronge   (In meters)	*Moximum   effective ronge   (in meters)	Remarks
Continuous dis-   chorge 25   seconds	Continuous dis.   chorge 25   secands	Up to several   hundred feet	Up to several   hundred feet	Cantoins obout 20 pounds of C5I

*Maximum Effective Rate .
*Maximum ..... .........

- Maximum Effective Rate

Nate (A) Depending upan Iype af Ammunitian Used
d. After initial fire request to FDC, subsequent corrections are requested as fallaws:

ROUND \# 1: Left 60, drop 400

ROUND \#2: Add 200

ROUND \#3. Drop 100

ROUND \#4: Add 50, Fire far effect


RULES: (1) Keep rounds an abserver-target line.
(2) Bracket target during adjustment.
(3) Split 100 meter bracket befare firing far effect.
e. Angle between target and burst is read in mils, and distance thon determined by multiplying mils by range in thausands.
Example: 20 mils $\times 3(000)$ meters $=60$ meters.
Fallawing figures indicate hasty methad far estimatıng angle in mils:


## 17-19. REQUESTING AND ADJUSTING ARTILLERY FIRE

o. For detoils refer to FM 6-135.
b. Initiol fire request.

## Element

Identificotion of observer
W-Worning order
A-Azimuth (From mop.or composs)
L-Locotion (Mop coordinote or shift from known point)

N -Noture of torget
U - Unusuol foctors
T-Type control
c. WORM formulo, for colculoting odjustments.
$\mathbf{W}=\mathbf{R} \times \mathrm{m}$

W = Distonce in meters from burst to torget
$R=\begin{gathered}\text { Ronge to torget in thousonds } \\ \text { of meters }\end{gathered}$
$\mathrm{m}=$ Angulor deviotion in mils

Example
"Big Digger 14"
"Fire mission"
"Direction 230" (Between 0-6400)
"Grid NV 645734" or "From torget CD 101, right 220, odd 400"
"15 Mon potrol"
(Speciol fuze, shell, etc)
"Adjust fire, or connot observe. etc"


## f. Artillery weapans.

Type Range
105 mm.................................................. I 1,000 meters
$155 \mathrm{~mm} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$. 14,000 meters
8 inch................................................... 16,800 meters

g. Artillery a mmunition.

HE - high explasive
WP - white phasphorous
SMK - smoke, all colors
HEAT/HEPT - antitank
h. Fuzes.

M557 - paint detonatian/delay
M501 - mechanical time
M513-radar, airburst

## APPENDIX A

## REFERENCES

## A-1. ARMY REGULATIONS

AR 310-25
AR 310-50

Dictianary af United States Army Terms.
Autharized Abbreviatians and Brevity Cades.

## A-2. DEPARTMENT OF THE ARMY PAMPHLETS

DA Pam 108-1
DA Pam 310 series

## A-3. FIELD MANUALS

FM 3-8
FM 5-1
FM 5-13
FM 5-15
FM 5-20
FM 5-25
FM 5-30
FM 5-31
FM 5-35
FM 5-36
FM 6-135
FM 10-13
FM 20-22
FM 20-32
FM 21-5
FM 21-6
FM 21-10
FM 21-26
FM 21-30
FM 21-31
FM 21-41

Chemical Reference Handbaak.
Engineer Traap Organizatians and Operatians.
The Engineer Saldier's Handbaak.
Field Fartificatians.
Camauflage.
Explasives and Demalitians.
Engineer Intelligence.
Baabytraps.
Engineers' Reference and Lagistical Data.
Raute Recannaissance and Classification.
Adjustment af Artillery Fire by the Cambat Saldier.
Quartermaster Reference Data.
Vehicle Recavery Operatians.
Landmine Warfare.
Military Training Management.
Techniques af Military Instruction.
Military Sanitatian.
Map reading.
Military Symbals.
Tapagraphic Symbals.
Saldier's Handbaak far Defense Against Chemical and Bialagical Operatians and Nuclear Warfare.

FM 21-60 Visual Signals.
FM 21-76 Survivol, Evasion and Escope.
FM 24-1 Toctical Cammunicotians Doctrine.
FM 24-18
FM 30-5
FM 31-10
Field Rodia Techniques.
Cambot Intelligence.
FM 31-60
Denial Operotions and Barriers.
River-Crossing Operotians.
FM 31-70
Basic Cold Weather Monuol.
FM 55-15
FM 101-10-1
Transportotian Reference Dato.
Stoff Officers' Field Manuol: Orgonizotianal, Technical, ond Lagistical Dato, Unclossified Doto.

## A-4. TECHNICAL MANUALS

TM 3-220
TM 5-200
TM 5-210
TM 5-216
TM 5-220
TM 5-232
TM 5-233
TM 5-258
TM 5-270
TM 5-277
TM 5-280
TM 5-297
TM 5-302
TM 5-311

TM 5-312
TM 5-315

TM 5-330

TM 5-331A

CBR Decontominotion.
Comouflage Moterials.
Militory Flaoting Bridge Equipment.
Armared Vehicle Lounched Bridge.
Possoge af Obstocles Other Than Minefields.
Elements of Surveying.
Canstruction Surveying.
Pile Canstruction.
Coblewoys, Tromways, and Suspension Bridges.
Boiley Bridge.
Fareign Mine Worfore Equipment.
Well Drilling Operations.
Constructian in the Theoter of Operotians.
Militory Protective Canstruction (Nucleor Warfore ond Chemical and Bialogical Operotions).
Military Fixed Bridges.
Firefighting (Structures, Aircroft, Petraleum, and Nuclear Moteriol) and Rescue Operotions in Theoters of Operations.
Plonning ond Design of Raads, Airboses, and Heliports in the Theater of Operatians.
Earthmoving, Campoctian, Groding ond Ditching Equipment.

TM 5-331B
TM 5-331C
TM 5-331D
TM 5-331E
TM 5-332
TM 5-333
TM 5-337
TM 5-342
TM 5-349
TM 5-461
TM 5-617
TM 5-618
TM 5-624
TM 5-700
TM 5-725
TM 5-742
TM 5-9541
TM 9-1300-214
TM 9-1375-200

Lifting, Looding, ond Houling Equipment.
Rock Crushers, Air Compressors, ond Pneumotic Tools.
Aspholt ond Concrete Equipment.
Engineer Special Purpose ond Expedient Equipment.
Pits ond Quorries.
Construction Monogement.
Poving ond Surfocing Operotions.
Logging ond Sowmill Operotions.
Artic Construction.
Engineer Hondtools.
Roofing; Repoirs ond Utilities.
Points ond Protective Cooting.
Roods, Runwoys, ond Miscelloneous Povements; Repoirs ond Utilities.
Field Woter Supply.
Rigging.
Concrete and Mosonry.
AN/PRS Mine Detecting Set.
Militory Explosives.
Demolition Moteriols.
Paragraph Page
Abatis
2-5b(3), 4-23 ..... 19,137
Adjustment, artillery17-19535
Aggregate, estimating stored omaunts B-6 ..... 239
Agreements, Stondard 1-4 ..... 1
Airfields and heliports:
Airfield design.10-4350
Classification 10-1 ..... 345
Fortifications for parked oircraft 10-7 ..... 353
Helipad design 10-4 ..... 350
Layaut and namenclature 10-2 ..... 345
Marking expedient runway 10-6 ..... 352
Sail stobilizotian 10-5 ..... 352
Aluminum faotbridge 6-4 ..... 176
Anchorage systems ..... 6-1 ..... 163
Antennas 16-4 ..... 448
Antihandling devices 3-3d ..... 54
Antipersonnel mines ..... 3-3 ..... 49
Antitank ditch crater 2-7e ..... 24
Antitank mines ..... 3-3 ..... 49
Artillery fire 17-19 ..... 535
Assault baots 6-3 ..... 176
Attachments, rigging 12-6 ..... 374
Bock rippers 13-1c(4) ..... 390
Bocktrack laading, scrapers 13-3d(1) ..... 391
Bailey bridge. (See Bridges.)
Bangolare tarpeda 2-11b ..... 25
Barbed steel tape 4-13 ..... 129
Barbed wire. (See obstacles.)
Borbed wire ties 4-12 ..... 128
Batching concrete B-9 ..... 302
Bituminous materials 9-8 ..... 341
Blade-ta-blode dozing 13-lc(2) ..... 389
Blocks 12-3 ..... 367
Baam derricks 12-14 ..... 385
Borehole arientotion 2-13d ..... 41
Boulders, blasting. 2-14 ..... 41
Braces for cancrete forms:
Breaching in demolition. ..... 2-8 ..... 25
Breaching minefields 3-11 ..... 86
Bridge abutment demolition 2-9 ..... 32
Bridges:
Aluminum footbridge 6-4 ..... 176
ARCE-French 6-10 ..... 198
Bailey:
Classification ..... 7-9273
Construction data. 7-8 ..... 251
Introduction 7-7 ..... 250
Class 60 6-7 ..... 188
Classification, highway bridges:
Masanry arch bridge ..... 7-4 ..... 226
Nomenclature ..... 7-1 ..... 204
Reinforced contrete bridges 7-3 ..... 222
Stringey bridge 7-2 ..... 205
Design, highway bridges:
Substructure ..... 7-6 ..... 239
Superstructure 7-5 ..... 231
Light tactical ..... 6-5 ..... 176
M4 6-6 ..... 151
Mobile assault bridge (MAB) 6-11 ..... 201
M4T6 6-8 ..... 193
Miscellaneous bridging:
Expedient log bridges. 7-13 ..... 277
Four-rope bridge 7-12 ..... 276
Light suspension bridge design 7-10 ..... 274
Three-rope bridge 7-11 ..... 276
Reconnaissance 15-3, 15-4 ..... 425, 431
Bridge/vehicle classification:
Application 5-2 ..... 145
Bridge clossification and morking:
Classification number. 5-6 ..... 151
Signs 5-8 ..... 153
Width and height restrictions 5-7 ..... 152
Purpose 5-1 ..... 145
Traffic cantrols:
Normal crossings ..... 5-9 ..... 160
Special crossings 5-10 ..... 161
Bridge/vehicle classificatian-Can.Vehicle classification and marking:Page
Cambination vehicles bParagraph
Expedient means. 5-5147Nan-standard vehicles5-4b148
148
Single vehicles. 5-3a ..... 146
Standard vehicles. 5-4b ..... 148
4-6 Bunkers ..... 108
$6-1 e$ Cable-bridle line ..... 164
Cables, ancharage system $6-2 b$ ..... 166
Camauflage 17-7 ..... 473
Cast test (sails) $9-4 a(13)$ ..... 312
Cautian crassings, bridge 5-10a ..... 161
Cement types. 8-5 ..... 294
Centerline stakes for raads 9-3a ..... 307
Chain hoists 12-3 ..... 367
Chain laading, scrapers. 13-3d(3) ..... 391
Chains 12-2a ..... 369
Checkdams 9-5c ..... 323
Clamps, wire rape 12-6b ..... 375
Class 60 raft/bridge 6-7 ..... 188
Classificatian, airfields and heliparts... 10-1 ..... 345
Classification of bridge and vehicles. (See Bridge/vehicle classificatian.)
Classificatian, raads15-2b421
Classificatian, barbed wire 4-10 ..... 123
Clearing minefields. 3-12 ..... 86
Clearing aperatians, raute 3-13 ..... 91
Clips far wire rape eyes 12-6a ..... 374
Camments 1-2b ..... 1
Cammunicatians:
Antennas16-4448
Graund-ta-air emergency cade. 16-3 ..... 446
Marse cade ..... 16-1 ..... 446
Phanetic alphabet 16-2 ..... 446
Radia lacatian 16-5 ..... 454
Campactian equipment 13-7 ..... 396
Cancertina wire 4-17 ..... 132
Canstruction pracedure 4-18 ..... 132
Cancrete:
8otching 8-9 ..... 302
8roces 8-20(4) ..... 282
Cement types. 8-5 ..... 294
Curing and protecting 8-11 ..... 303
Estimoting stored aggregote. 8-6 ..... 295
Excovotion 8-1 ..... 280
Form design 8-3 ..... 284
Forming 8-2 ..... 281
Makes. 8-2b(3) ..... 281
Mixer cleaning 8-12 ..... 303
Mixing consideration. ..... 8-4 ..... 294
Mix design (trial batch methad). 8-7 ..... 297
Placing. 8-10 ..... 302
Quontities of mix material 8-8 ..... 312
Sheathing8-2a(1),281, 282
$b(2)$Shoe plates.8-2a(5)282
Slump. 8-7d,g,h ..... 297, 299, 300
Studs 8-2a(2) ..... 281
Tie wires 8-2a(7) ..... 282
Wales (walers) 8-2a(3) ..... 281
Concrete demolition. 2-10 ..... 33
Cantours (mop). ..... 360
11-8
Conversion:
English to metric 17-17 ..... 521
Foctars 17-15 ..... 500
Time-distance. 17-14 ..... 498
Caunterforce charge 2-8h ..... 30
Cratering2-721
Crossings, bridge:
Cautian 5-10a ..... 161
Risk 5-10b ..... 161
Cross sections of roads 9-2 ..... 306
Culverts 9-5d ..... 324
Curing ond protecting concrete 8-11 ..... 303
Deadmen 6-2d, 12-5 ..... 168
Declination diogrom. 11-6 ..... 358
Defensive position priorities 4-1 ..... 96
Deliberote road crater. 2-7c ..... 22
Demaltions. (See Explosives.) Paragraph Page
Density determinotion, soils 9-4c ..... 313
Design requirements for roads 9-1 ..... 304
Design strength:
Airfields.$10-3 c$347
Helipods $10-4 b$ ..... 350
Detanating velacity 2-1a ..... 2
Detonatian methads:
Detonating cord 2-15d(3) ..... 44
Eelctrical 2-15d(2) ..... 44
Propagatian 2-15d(1) ..... 44
Daimond charge 2-4f(2) ..... 15
Dispersol of oircroft 10-7a ..... 353
Ditching with explasives 2-15 ..... 43
Dauble apran fence. 4-10-4-12 ..... 124
Dawnhill dazing 13-1c(3) ..... 389
Dawnhill laading, scrapers $13-3 \mathrm{c}(1)$ ..... 391
Dozer output 13-16 ..... 389
Drainoge:
Culverts$9-5 d$324
Checkdams. 9-5c ..... 323
Open ditch design 9-5b ..... 320
Runaff 9-5a ..... 313
Drowing symbols, canstruction 17-16 ..... 516
Driftpins17-5d472
Dust cantrol far oirfields 10-5b ..... 352
Eorth lifting equipment 13-8 ..... 397
Electrical methad of detanotion 2-15d(2) ..... 44
Electrical wiring 17-3 ..... 461
Emplocements, types 4-3 ..... 98
Enemy minefield 3-7c, ..... 82
3-8o(4)Engineer reconnoissonce15-9436
Equipment production rotes. (See Production rotes of equipment.)
Equipment utilizatian ..... 13-5395
Excovatian far cancrete 8-1 ..... 280
Expedient log bridges 7-13 ..... 277
Explasives:
Blasting boulders. 2-14 ..... 41
Breaching charges ..... 2-8 ..... 25
Bridge abutment demalition 2-9 ..... 32
Characteristics ..... 2-1 ..... 2
Cratering charges 2-7 ..... 21
Detanating velacity 2-10 ..... 2
Ditching 2-15 ..... 43
Firing systems ..... 2-3 ..... 7
Obstacles, cancrete 2-10 ..... 33
Obstacles, steel and lag. 2-11 ..... 35
Pressure charges 2-6 ..... 20
Quarrying 2-13 ..... 38
Relative effectiveness factor 2-16 ..... 2
Safety ..... 2-2 ..... 6
Steel cutting ..... 2-4 ..... 8
Timber-cutting 2-5 ..... 17
Trees and stumps 2-16 ..... 47
Walls 2-12 ..... 37
Facing revetments 4-4b ..... 106
Ferry reconnaissance 15-7 ..... 434
Field sanitatian. (See Sanitatian facilities.)
Fields af fire ..... 4-2 ..... 96
Fire extinguishers. 17-9 ..... 478
Firing systems. ..... 2-3 ..... 7
Fixed bridge recannaissance. ..... 15-3 ..... 425
Flares 3-3c ..... 54
Flexible pavements ..... 338
9-6
Flaat bridge recannaissance. ..... 431 ..... 15-4
Fard recannaissance. ..... 432
Farm design, cancrete ..... 284
8-3
Farming cancrete ..... 281
Faur-rape bridge ..... 205
Faur strand cattle fence ..... 131
Faxhales. ..... 99
French raft/bridge. ..... 198
Functions of numbers ..... 491
Garbage pits 14-3b ..... 409
Geametric figures 17-11 ..... 488
Paragraph Page
Gin poles ..... 12-13 ..... 384
Graders. 13-6 ..... 395
Grade stakes 9-3e ..... 310
Ground-to-oir emergency code 16-3 ..... 446
Guy live tension 12-15 ..... 387
Hasty raod woter. 2-7b ..... 22
Helipod design 10-4 ..... 350
Heliparts. (See Airfields and heliports.) Highlines. 12-16 ..... 387
Highwoy bridges. (See Bridges.)
Haldfasts, picket ..... 12-4369
Hooks 12-2b ..... 366
Inert Mines 3-3b(2) ..... 54
Joint Operatian Graphics 11-2e ..... 354
Kedge anchors 6-1c ..... 163
Knife rest. 4-22b ..... 134
Knots 12-1 ..... 363
Lotrines 14-3a ..... 405
Light suspension bridge design 7-10 ..... 274
Light tactical raft/bridge 6-5 ..... 176
Lag bridges 7-13 ..... 222
Lag abstacle demolition 2-11 ..... 35
Low wire fence 4-15 ..... 131
M4 roft/bridge ..... 6-6 ..... 185
M4T6 roft/bridge ..... 6-8 ..... 193
Mops:
Contours ..... 11-8 ..... 360
Colors 11-4 ..... 355
Declinotion diagram 11-6 ..... 358
Definition 11-1 ..... 354
Marginal doto 11-5 ..... 355
Representative fraction. 11-7 ..... 359
Scales. 11-3 ..... 355
Slope 11-9 ..... 360
Topographic symbals 11-10 ..... 362
Types. 11-2 ..... 354
Marches.17-13495
Marginal data (map) 11-5 ..... 355
Marking expedient runways 10-6 ..... 352
Marking minefields. 3-5d ..... 64
Marking vehicles and bridges. (See Bridge/ vehicle classificatian.)
Masanry arch bridges7-4226
Mobile assault bridge (MAB) 6-11 ..... 201
Military city map 11-2g ..... 355
Minefields. (See olso Mines.)
Breaching 3-1186
Characteristics 3-4 ..... 54
Clearing 3-12 ..... 86
Data 3-149
Dactrine 3-14 ..... 94
Planning and siting ..... 3-2 ..... 49
Recannaissance ..... 3-9 ..... 83
Recards. 3-8 ..... 82
Reports ..... 3-7 ..... 80
Safety precoutians 3-14 ..... 94
Special techniques ..... 3-6 ..... 77
Symbals. 3-15 ..... 95
Types ..... 3-1 ..... 49
Mines. (See alsa Minefields.)
3-1085
Laying 3-5 ..... 60
Safety precautians 3-14 ..... 94
Symbols 3-15 ..... 95
Types ..... 3-3 ..... 49
Mixer cleaning 8-12 ..... 303
Mixing cancrete ..... 8-4, 8-7, 294, 297, 3128-8
Mavements, troop 17-13 ..... 461
Morse cade. 16-1 ..... 446
Nails and fasteners 17-5 ..... 469
Nuisance minefields. ..... 3-6b ..... 78
Numbers, functians 17-12 ..... 491
Obstacle demalition:
Cancrete 2-10 ..... 33
Obstocle demolition-Con. Paragraph PageSteel and log.
Wolls 2-12 ..... 372-1135
Offset stakes 9-3d ..... 308
Open ditch design 9-5b ..... 320
Orgonic test (soils). 9-4a(12)312
Output of equipment. (See Production rates of equipment.)
Pavements, flexible 9-6 ..... 338
Phonetic alphabet. 16-2 ..... 446
Photomap 11-2d ..... 354
Picket holdfosts 12-4 ..... 369
Pictomap 11-2f ..... 354
Plocing concrete 8-10 ..... 302
Planimetric map. 11-2a ..... 354
Plastic relief map 11-2c ..... 354
Portoble barbed wire obstocles 4-18 ..... 132
Portland cement 8-5 ..... 294
Proctice mines 3-3b(1) ..... 54
Pressure chorges 2-6 ..... 20
Production rote of equipment:
Capacity table. 13-9 ..... 400
Compaction equipment 13-7 ..... 396
Earth lifting equipment 13-8 ..... 397
Equipment utilizotion. 13-5 ..... 395
Graders 13-6 ..... 395
Scrapers 13-3, 13-4 ..... 391
Iractors 13-1, 13-2 ..... 389, 390
Propogation method of detonation. 2-15d(1) ..... 44
Protective minefields 3-6o, 3-8b ..... 77, 83
Protective materiol to resist penetration table 4-4 ..... 110
Punji jungle trap ..... 4-23 ..... 137
Push loading, scropers 13-3d ..... 391
Quarries, blosting 2-13 ..... 38
Rodio location. 16-5 ..... 454
Rofts:
ARCE-French ..... 6-10 ..... 198
Closs 60 6-7 ..... 188
Expedient, oluminum footbridge. 6-4 ..... 176
Light tocticol (LTR) 6-5 ..... 176
M-4 6-6 ..... 185
M4T6 6-8 ..... 193
MFAB/Ferry or MA8 6-11 ..... 201
Operotion. 6-9 ..... 198
Reconnoissonce:
Engineer15-9436
Ferry 15-7 ..... 434
Fixed bridge 15-3 ..... 425
Floot bridge. 15-4 ..... 431
Ford. 15-6 ..... 432
Overloy symbols 15-10 ..... 437
Rood. 15-2 ..... 417
Route15-1411
Tunnel ..... 15-5 ..... 432
Unit symbols 15-11 ..... 442
Woter 15-8 ..... 435
Recovery, vehicles 17-8 ..... 476
Reinforced concrete bridges 7-3 ..... 222
Relotive effectiveness foctor 2-1b ..... 2
Relieved foce croter 2-7d ..... 24
Representotive froction. 11-7 ..... 359
Requirements borbed wire, estimoting 4-11 ..... 124
Retoining woll revetments. $4-40$ ..... 99
Revetments:
Focing4-4b106
Retoining woll 4-40 ..... 99
Ribbon chorge. 2-4f(1) ..... 13
Ribbon test (soils) 9-40(7) ..... 311
Rigging:Atrochments12-6374
Blocks. 12-3 ..... 367
8oom derrick 12-14 ..... 385
Deodmen. ..... 12-5 ..... 371
Ginpole. 12-13 ..... 384
Guyline tension. 12-15 ..... 387
Helicopter:
Ground crew 12-11380
Slings 12-10 ..... 380
Rigging-Con. Paragraph Page
Highline 12-16387
Holdfost, picket 12-4 ..... 369
Knats 12-1 ..... 363
Rapes, chains, ond haaks 12-2 ..... 364
Shears 12-12 ..... 383
Rippers ar rooters 13-3f ..... 391
Risk crossings, bridge 5-10b ..... 161
Raad clossificatian 15-2b ..... 421
Raad constructian:
Bituminaus materials. 9-8 ..... 341
Crass sectians 9-2 ..... 306
Design requirements 9-1 ..... 304
Drainage 9-5 ..... 313
Flexible pavements 9-6 ..... 338
Hasty 13-6c ..... 396
Soils 9-4310
Stokes 9-3 ..... 307
Surface types. 9-7 ..... 339
Raad recannaissance 15-2 ..... 417
Rack excavation 2-14 ..... 41
Rollers 13-7 ..... 396
Roofing 17-6 ..... 472
Rapes 12-2a ..... 364
Raunding-aff rule, explosives 2-1c ..... 2
Route reconnaissance 15-1 ..... 411
Runoff 9-5a ..... 313
Runway dimensians $10-3 a, b$ ..... 347, 350
Runway marking, expedient 10-6 ..... 352
Saddle charge. 2-4 f(3) ..... 16
Sofety, explosives 2-2 ..... 6
Sonitation focilities:
Garboge pits 14-3b ..... 409
Latrines. 14-3a ..... 405
Shawers 14-2b ..... 405
Saakage pits 14-3c ..... 409
Washing 14-2a ..... 404
Scales, mop. 11-3 ..... 355
Scope 1-2a ..... 1
Scrapers. 13-3, 13-4 ..... 391
Screws 17-5b, c ..... 470, 471
Sedimentation test (soils) 9-4a(2) ..... 310
Shaking test (sails) 9-4a(8)(b) ..... 311
Shaped charges 2-8g ..... 30
Shears 12-12 ..... 383
Sheathing for cancrete farms. 8-2a(1), ..... 281,282
$b(2)$
Shelters. 4-7(11) ..... 115
Shine test (sails) 9-4a ..... 312
Shae plates for concrete farms 8-2a(5) ..... 282
Share guys 6-1b ..... 163
Shaulder stakes. 9-3b ..... 308
Shawers 14-2b ..... 405
Shuttle leading, scrapers 13-3d(2) ..... 391
Signs, bridge classification 5-8 ..... 153
Slab bridges. 7-3a, b ..... 223, 225
Slings, helicopter 12-10 ..... 380
Slape (map) 11-9 ..... 360
Slape stakes. 9-3c ..... 308
Slat dozing 13-1c ..... 389
Slump. ..... 8-7d, g, h 297, 299, 300
Saakage pits 14-3c ..... 409
Sails:
Characteristics $9-4 b$ ..... 312
Density determination. 9-4c ..... 313
Identificatian tests:
Cast 9-4a(13) ..... 313
Camparisan of sand and gravel. 9-4a(3) ..... 311
Dry strength 9-4a(4) ..... 311
Feel. 9-4a(10) ..... 312
Grit ar bite 9-4a(9) ..... 312
Odar 9-4a(12) ..... 312
Powder 9-4a(5) ..... 311
Ribban 9-4a(7) ..... 311
Separate gravel 9-4a(1) ..... 310
Sedimentatian 9-4a(2) ..... 310
Slaking 9-4a(14) ..... 312
Shine 9-4a(11) ..... 312
Thread 9-4a(6) ..... 311
Wet shaking 9-4a(8) ..... 311
Soils - Con. Paragraph Poge
Stabilization, oirfields and heliports 10-5 ..... 352
Testing 9-4a ..... 310
Specific gravities ..... 17-1 ..... 455
Spikes 17-5a ..... 469
Spruce timber, for gin pole ..... 12-7 ..... 376
Squore chorge. $2-8 \mathrm{~g}$ ..... 30
Stakes, canstructian 9-3 ..... 307
Steel obstacle demolitian 2-11 ..... 35
Stroddle loading, scrapers 13-3c(2) ..... 391
Streams:
Mining3-6c79
Velocity 15-6c ..... 433
Width 15-6b ..... 433
Stringer bridges 7-2 ..... 250
Studs for concrete farms 8-2a(2) ..... 281
Surfaces, types 9-7 ..... 339
Symbals:
Constructian drawing ..... 17-16 ..... 516
Overlay 15-10 ..... 437
Topagraphic 11-10 ..... 362
Unit 15-11 ..... 442
Tanglefoat 4-22d ..... 135
T-Beam bridges. 7-3c, d ..... 225
Thread test (sails). 9-4a(6) ..... 311
Three-rope bridge 7-11 ..... 276
Tie wires far cancrete farms 8-2a(7) ..... 282
Timber 17-4 ..... 462
Timber cutting, explosives ..... 2-5 ..... 17
Time-distance canversion 17-14 ..... 498
Topographic map 11-2b ..... 354
Tawers, ancharage 6-2c ..... 166
Tractar praductian 13-2b ..... 390
Tractors 13-1,13-2 ..... 389, 390
Traffic cantrals bridge:
Cautian5-10a161
Narmal crossings ..... 5-9 ..... 160
Risk 5-10b ..... 161
Special crossings 5-10 ..... 161
Treedazer blade production rates 13-2b ..... 390
Trees and stumps, blosting 2-16 ..... 47
Trestle apron fence ..... 4-22e ..... 136
Trigonometric functions 17-10 ..... 486
Trip wires 3-4d ..... 58
Troop movement foctors 17-13 ..... 461
Tunnel reconnoissonce 15-5 ..... 432
Vehicle člossificotion ond marking. (See Bridge/vehicle classification.) Vehicle recovery 17-8 ..... 476
Wales (wolers) for concrete forms 8-2a(3) ..... 281
Woll demolition. 2-8b, 2-12 ..... 25, 37
Washing focilities 14-20 ..... 404
Water, disinfection 17-2a ..... 455
Woter, quantity requirements 17-2b ..... 460
Waterproofing oirfield soil. 10-5b ..... 352
Water reconnaissonce. ..... 15-8 ..... 435
Weapons 17-18 ..... 523
Wedge socket, wire rope 12-6c ..... 375
Weights and specific grovities 17-1 ..... 455
Wire obstacles:
Antipersonnel 4-9a ..... 123
Antivehicular 4-9b ..... 123
Barbed steel tape 4-13 ..... 129
Combination bonds 4-21 ..... 134
Expedient 4-23 ..... 137
Estimoting requirements 4-11 ..... 128
Four ond two pace double apron fence 4-14 ..... 131
Construction procedure 4-16 ..... 131
Four strand comle fence 4-20 ..... 133
Low wire fence 4-19 ..... 133
Portable 4-22 ..... 134
Principles of employment. 4-8 ..... 123
Six and three poce double apron fence. 4-15 ..... 131
Triple stronded concertina 4-17 ..... 132
Construction procedure 4-18 ..... 133
Types 4-9 ..... 123
Wire rope roadblock 4-23 ..... 137
Wiring 17-3 ..... 461
Yokes for concrete forms 8-2b(3)282

## By Order of the Secretary of the Army:

W. C. WESTMORELAND, General, United States Army, Chief of Staff.<br>Officiol:<br>KENNETH G. WICKHAM,<br>Majar Generol, United States Army, The Adjutant General.

## Distribution:

Ta be distributed in accordance with DA Form 12-11 requirements for Engineer Field Dato.

$$
\text { U.S. GOVERNMENT PRINTING OFFICE } 1969 \text { OL-362-487 }
$$



(1) SECRET (when complotod)

(1) SECRET (when completed)



Figure 6-6. Nomograph " $A$ "
$\nabla$





[^0]:    *This manual supersedes FM 5-34, 30 December 1965.

[^1]:    *For reinforced concrete toble 2-7.

[^2]:    

[^3]:    *Figures are for daylight. for work at night, increase labor by 50 percent

[^4]:    Based on looding ratis wilh cenigr of grovity of loads $b$, nches downstieom from centerline of coft ond on property infloled floots
    

[^5]:    1. Assembly site loyaut ideal $100 \mathrm{f} \times 100 \mathrm{ff}$ Erection tume is for trained troaps

    2 Each assembly site crew consisting af 53 EM , exclusive and site crews

[^6]:    *Tests indicated by an atterisk (*) are canducted an material smaller than $\frac{1}{52}$ diameter

[^7]:    *Tests indicoted by an asterisk (*) are canducted an material smaller thon $\frac{1}{32^{\prime \prime}}$ diameter.

[^8]:    * for slopes from 1 to 2 percent

    Note. The figures given ore for comporotively level ground For slopes greoter thon 1 in $50(2 \%)$ the foctor should be increosed by 02 for every 2 percent of slopes up to a moximum 1.0

[^9]:    "Particular aircraft that is critical in laad and/ar graund run fram which area requirements, geametrics, and expedient surfacing requirements were develaped
    ${ }^{\text {n }}$ Graund run lengths indicated are far classification and can underga changes depending an aperating weight af aircraft, pressure altitude carrections, temperature carrections and lacal conditions

[^10]:    *Loose cubic yords

[^11]:    ${ }^{1}$ Manhours

[^12]:    Material Used in Span Construction

    Sleel or olher metal a
    Concrele k
    Reintorced Concrele ak
    Pre-stressed Concrete kk
    Sione or Brick
    Wood
    (1) Spans which are nol useable because of damage are symbolized by " $x$ " placed after the dimension of span length
    (2) Spans which are over waler are indicated by placing The symbol "W" also after the dimension of the span length

[^13]:    ${ }^{1}$ For unocclimotized personnel or for oll personnel when dry bulb reodings exceed $105^{\circ} \mathrm{F}$, in the jungle.
    ${ }^{2}$ Moximum consumption foctor is dependent upon work performed, solor rodiation, ond other environmentol stresses.

[^14]:    *Cyclic Rote of Fire (C)...... .. .... Rate at which weapon fires autamatically.
    *Maximum Rate of Fire (M).. . .... Greatest rate at which well-traned gunner can fire
    *Sustaned Rate of Fire ...... . . Rote of which weapon can fire indefinitely without seriausly averhealing

